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Abstract: Polyester elastomers are highly flexible and elastic materials that have demonstrated
considerable potential in various biomedical applications including cardiac, vascular, neural, and
bone tissue engineering and bioelectronics. Polyesters are desirable candidates for future commercial
implants due to their biocompatibility, biodegradability, tunable mechanical properties, and facile
synthesis and fabrication methods. The incorporation of bioactive components further improves the
therapeutic effects of polyester elastomers in biomedical applications. In this review, novel structural
modification methods that contribute to outstanding mechanical behaviors of polyester elastomers
are discussed. Recent advances in the application of polyester elastomers in tissue engineering and
bioelectronics are outlined and analyzed. A prospective of the future research and development on
polyester elastomers is also provided.
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1. Introduction

Polyesters are polymers formed through monomer(s) linked by ester bonds. Naturally
occurring esters are present in the human body, such as fatty acids [1]. Most polyesters
show hydrophobic properties attributed to their long alkyl chains, and their mechanical
performance can be fine tuned by modifying the polymer chain structure or adjusting the
ratios of monomers [2]. An important characteristic of polyesters is their innate biodegrad-
ability. When polyesters are implanted into the human body, their degradation can be
triggered through the breaking down of ester bonds by esterases or/and hydrolysis. This
in vivo degradation process plays a crucial role in the tissue engineering applications of
polyesters, facilitating the gradual transfer of mechanical burden and biofunctions from
the degrading scaffolds to the regenerated tissue [3,4].

Many polyesters exhibit elasticity, allowing the polymers to regain their original
shape after deformation. Elastomers are a type of polymer characterized by its viscoelastic
properties, relatively low Young’s modulus, and high breaking elongation [5]. While many
materials possess an elastic region, the term “elastomer” typically is used to describe a
material that features a highly expansive elastic region with a large strain, typically above
a few hundred percent [6]. The polyester elastomers can be categorized into physically
crosslinked and chemically crosslinked polyesters [7]. Physically crosslinked polyesters
are crosslinked with physical interactions including crystalline regions, hydrogen bonds,
and dipolar forces. The physically crosslinked regions, generally including the crystalline
region [8–10] and reinforcing nanofillers [11], provide crosslinking sites and rigidity. The
amorphous regions in elastomers, on the other hand, contribute to flexibility. Typical
physically crosslinked polyesters include poly(ε-caprolactone) (PCL), poly(glycolic acid)
(PGA), poly(lactic acid) (PLA), and their copolymers. Chemically crosslinked polyesters
have their polymer chains interconnected through covalent bonds, typically formed by
multifunctional monomers. For instance, citric acid is a monomer with three carboxylic
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acid groups that can react with alcohol compounds with two hydroxy groups to synthesize
poly(diol citrate)s (PDCs). To match the mechanical properties of human tissues, the
polyester elastomers can be tailored to the MPa ranges in strength by tuning the monomers,
molecular weight, processing conditions or structural design of the polymers, and therefore
expand their biomedical applications in tissue engineering, medical implants, and drug
delivery [12].

In recent years, polyesters have been playing an increasing role in biomedical research
and applications. Polyester elastomers are biocompatible, biodegradable, and reproducible,
making them excellent alternatives of allografts (Table 1). Advanced methods and tech-
nologies have been developed for polyester elastomers fabricated with various crosslinking
strategies and designed for a variety of properties and functionalities for different biomed-
ical applications. In this review, recent progress in the development and evaluation of
polyester elastomers will be summarized, and their applications in biomedical fields in-
cluding cardiac, vascular, neural, and bone tissue engineering and bioelectronics will be
discussed. Future perspectives in this area will also be provided.

Table 1. Mechanical properties and degradation behaviors of representative polyester elastomers for
biomedical applications.

Materials Young’s Modulus
(MPa)

Tensile Strength
(MPa) Elongation (%) Degradation Ref.

PLCL 19.6–95 17.2–26.6 388–1974
19% in 15 weeks in vivo
10% in 26 weeks, 50% in

52 weeks in vitro
[13–16]

PGCL 110–292.98 0.28–8 100–168 20–40% in 40 days in vitro [17,18]
PGS 0.05–1.5 0.4–1.5 100–500 13% after 35 days in vitro [19]

POC 0.42−16.4 0.35−6.1 100–265
20% after 28 days in vivo
100% after 15−68 weeks

in vitro
[20,21]

P3HB 74.45−3500 1.3−554 3.8−26 <10% in 6 weeks in vivo [22–24]
P4HB 0.1−670 2.3−70 10−1450 2–12 months in vivo [25–28]
PCLF 3–7 0.5–17 230−800 — [29–31]

2. Synthetic Pathways and Functionalization of Polyester Elastomers
2.1. Synthetic Pathways of Representative Polyesters
2.1.1. Physically Crosslinked Polyester Elastomers

Typical physically crosslinked polyesters include PLA, PCL, PGA, and their copoly-
mers, which are attractive synthetic polymers in tissue engineering due to their biocom-
patibility and biodegradability. They have been approved by the FDA for biomedical
applications [32–35]. Their copolymers are thermoplastic elastic biomaterials [36] (Figure 1).
These polymers can be polymerized through ring-opening reactions using catalyst stan-
nous(II)octoate [Sn(Oct)2] [37]. By optimizing the monomer ratios in the copolymerization
process, fine tuning of the mechanical properties and degradation profiles of these materials
can be achieved.

2.1.2. Chemically Crosslinked Polyester Elastomers

The representative chemically crosslinked polyester elastomers include poly(polyol
sebacate) (PPS) and PDC (Figure 1). In the PPS family, the polyol monomers can be
biomass-derived monomers, such as glycerol, iso-sorbitol, maltitol, erythritol, and xyli-
tol [38]. Among them, poly(glycerol sebacate) (PGS) has been a material attracting extensive
research. Many aliphatic diols have been used to synthesize PDC, and the most studied is
1,8-octanediol [39]. Polymerization processes for PPS and PDC are similar and typically
involve two steps. Firstly, the prepolymers are synthesized by thermal polycondensation
of the esterification reaction between -OH and -COOH groups. The reaction temperature
and time vary based on the specific type of monomers involved. Secondly, post polymer-
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ization takes several days to form the elastomers at a desired condition due to the covalent
crosslinking between unreacted -OH and -COOH groups [21,40,41].
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poly(L-lactide-co-ε-caprolactone), GA: glycolic acid, PGCL: poly(lactic-co-glycolic acid), PLGC:
poly(lactide-co-glycolide-co-caprolactone), POC: poly(octanediol-co-citric acid), PGS: poly(glycerol
sebacate), PCLF: poly(caprolactone fumarate).

2.2. Route of Degradation

In vivo biodegradability of polyesters is of utmost importance for their biomedi-
cal applications. Extensive research has been conducted to examine their degradation
pathways and identify the most suitable materials for specific biomedical applications.
The degradation mechanisms include surface erosion and bulk erosion. Surface-eroding
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polyesters involve PGS, poly(trimethylene carbonate) (PTMC), poly(ethylene carbonate),
and poly(anhydride) [42]. The degradation primarily occurs at the material surfaces, and
the mass loss and dimensional reduction in these materials are related to their surface area.
Consequently, the integrity of these materials is preserved during the degradation process,
and their properties will remain unchanged until they have fulfilled their intended treat-
ment purpose [43]. Bulk-eroding polyesters mainly include aliphatic polyesters and PDC.
The degradation of these polyester elastomers occurs within the bulk materials, resulting in
a decrease in molecular weight. During the initial stages, the mass of the materials remains
relatively stable, but there are significant changes in their properties. As the molecular
weight gradually decreases and reaches a critically low value, the materials ultimately
collapse or disintegrate, resulting in a quick release of the degradation products, which
can alter the local microenvironment or induce tissue response [44]. If the bulk erosion
elastomer is designed to deliver bioactive agents, its sudden collapse may cause fast drug
release, which may become a risk to patients. In contrast, the surface-eroding scaffolds
can provide a relatively constant drug administration; therefore, they are preferable in
biomedical applications.

2.3. Functionalization of Polyesters

Elastomers offer an essential elastic recoil capacity, which is vital for preserving the
functions of such natural tissues as the heart, lungs, blood vessels, and skin. In some
randomly coiled polymers such as elastin and silicone, polymer chains are linked via cova-
lent bonds to form elastomers [45]. Weak bonds perform similar tasks in polyurethanes,
polyamide, and polyvinyl chloride [46]. Different polymers may have specific struc-
tures/crosslinking bonds to form networks with a variety of physical and chemical proper-
ties. This complexity in elastomer design may constrain the versatility and the scope of
properties achievable in the resulting materials [47].

Functionalization has been explored to obtain elastomers with a wide variety of prop-
erties. For polyester elastomers, such modification methods as urethane doping, alkene
groups modification, and silicon doping, have been widely studied [48,49]. Polyesters
incorporated with urethane monomers have been demonstrated to enhance the mechanical
properties of elastomers while preserving their biocompatibility. Acrylated polyesters
retain their biodegradability and biocompatibility, and are endowed with photo curabil-
ity, contributing to their 3D printability. For example, itaconate was introduced into the
poly(octanediol-co-citric acid) (POC) backbone as an unsaturated component [50], con-
tributing to controlled and quick curing of the elastomers. These elastomers were gel-like
polymers which can be 3D printed into various shapes depending on their applications.
By adjusting reaction times and molar ratios of monomers, materials with a wide range
of elasticity (Young’s modulus in the range of 36–1476 kPa) were synthesized, indicat-
ing the mechanical tunability of materials. These poly(itaconate-co-citrate-co-octanediol)
(PICO) elastomers were further applied as cardiac tissue patches to provide the necessary
elastomeric support and result in visible tissue organization and viability.

Recent interests have grown towards dynamic covalent coordination bonds, which pro-
vide a new way to enrich the range of mechanical properties and to introduce self-healing
properties, which enable molecular binding between separated or damaged interfaces [51–57].
The coordination ligands can bind different kinds of metal ions and form different coor-
dination bonds, imparting versatility to the polymer networks. The strengths of different
coordination bonds are different, leading to various mechanical properties and biodegrad-
ability of the resultant polymers. Chen et al. [47] developed polyester elastomers from
monomers sebacic acid and 1,3-propanediol with the Schiff base coordination bond ligand
(2-[[(2-hydroxyphenyl)methylene]amino]-1,3-propanediol (HPA) (Figure 2A). Biologically
relevant metal ions such as Mg2+, Ca2+, Fe3+, Cu2+, Zn2+, and Co2+ were mixed with the
polymers using various ratios of metal to ligand and ligand density to provide materials with
a wide range of mechanical properties. The biocompatibility of the elastomers matched that
of PCL and showed promising potential for soft tissue regeneration. Guo et al. [58] designed
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PCL-based elastomers with dynamic coordination bonds that contributed to a toughness of
372 MJ m−3 and a significant fracture energy of 646 kJ m−2. Protocatechualdehyde (PA) as a
chain extender and Fe3+ were used in iron-catechol coordination. The obtained elastomers
were biocompatible and can be applied as surgical sutures to improve wound healing.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 5 
 

 

healing properties, which enable molecular binding between separated or damaged inter-
faces [51–57]. The coordination ligands can bind different kinds of metal ions and form 
different coordination bonds, imparting versatility to the polymer networks. The 
strengths of different coordination bonds are different, leading to various mechanical 
properties and biodegradability of the resultant polymers. Chen et al. [47] developed pol-
yester elastomers from monomers sebacic acid and 1,3-propanediol with the Schiff base 
coordination bond ligand (2-[[(2-hydroxyphenyl)methylene]amino]-1,3-propanediol 
(HPA) (Figure 2A). Biologically relevant metal ions such as Mg2+, Ca2+, Fe3+, Cu2+, Zn2+, and 
Co2+ were mixed with the polymers using various ratios of metal to ligand and ligand 
density to provide materials with a wide range of mechanical properties. The biocompat-
ibility of the elastomers matched that of PCL and showed promising potential for soft 
tissue regeneration. Guo et al. [58] designed PCL-based elastomers with dynamic coordi-
nation bonds that contributed to a toughness of 372 MJ m−3 and a significant fracture en-
ergy of 646 kJ m−2. Protocatechualdehyde (PA) as a chain extender and Fe3+ were used in 
iron-catechol coordination. The obtained elastomers were biocompatible and can be ap-
plied as surgical sutures to improve wound healing. 

 
Figure 2. Functionalization of polyesters. (A) Chelation crosslinking of polyester elastomers. Repro-
duced with permission from ref. [47]. Copyright 2020 Wiley. (B) Ionic interactions of polyester elas-
tomers [59]. (i) Catalyzation by catalyzed by LZnMg(C6F5)2, (ii) addition of raw materials, (iii) thiol 
—ene reaction, (iv) neutralization of the carboxylic acid with LiOH or NaOH. Copyright 2022 Amer-
ican Chemical Society. 

Non-covalent interactions were also used to improve polyester elastomers in elastic-
ity and robustness [60]. Introducing hydrogen bonds into elastomers is an effective way 
to tune their properties [61,62]. For example, 2-Ureido-4[1H]-pyrimidone (UPy), a supra-
molecular assembly, was widely studied recently because it can improve the properties of 
elastomers by the formation of quadruple hydrogen bonding [63]. PCL functionalized 
with UPy groups has been shown to enhance elasticity due to the reversible intermolecu-
lar hydrogen bonds that help with energy dissipation [53]. Furthermore, some Upy-mod-
ified bioactive molecules can bind to the UPy moieties in elastomers, providing an addi-
tional function to the scaffold. Gregory et al. [59] introduced ionic interactions into poly(ε-
decalactone) (PDL)-based polyester elastomers. Lithium or sodium ions were added to 
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(iii) thiol —ene reaction, (iv) neutralization of the carboxylic acid with LiOH or NaOH. Copyright
2022 American Chemical Society.

Non-covalent interactions were also used to improve polyester elastomers in elasticity
and robustness [60]. Introducing hydrogen bonds into elastomers is an effective way to tune
their properties [61,62]. For example, 2-Ureido-4[1H]-pyrimidone (UPy), a supramolecular
assembly, was widely studied recently because it can improve the properties of elastomers
by the formation of quadruple hydrogen bonding [63]. PCL functionalized with UPy
groups has been shown to enhance elasticity due to the reversible intermolecular hydrogen
bonds that help with energy dissipation [53]. Furthermore, some Upy-modified bioactive
molecules can bind to the UPy moieties in elastomers, providing an additional function to
the scaffold. Gregory et al. [59] introduced ionic interactions into poly(ε-decalactone) (PDL)-
based polyester elastomers. Lithium or sodium ions were added to polyesters terminated
with -COOH groups to form carboxylates to improve the tensile strength and elasticity of
ionized elastomers (Figure 2B).

3. Biomedical Applications of Polyester Elastomers
3.1. Cardiac Tissue Engineering

Cardiac tissue engineering (CTE) has been an important branch of tissue engineer-
ing (TE) with the objective of creating a cell-scaffold structure that facilitates repairing
of cardiac tissues [64]. Myocardial tissues exhibit an intricate architecture, comprising
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various cell types, including cardiomyocytes, fibroblasts, smooth muscle cells (SMCs),
endothelial cells (ECs), and extracellular matrix (ECM) that comprise fibrin, collagen, and
elastin. Both the cells and the ECM contribute to the elastomeric mechanical characteristics
and physiological functions of the heart [65]. The ECM is crucial in facilitating cell inter-
connection, transmitting signals, and maintaining the tissue’s mechanical properties [66].
The end-diastolic Young’s modulus of typical human myocardial tissue is 0.2–0.5 MPa
and tensile strength is 3–15 kPa, demonstrating its high elasticity [67]. Various approaches
have been reported to promote myocardial tissue repair, including efforts to replicate the
microenvironment of the native myocardium, stimulate the recruitment and division of
cardiac cells, improve tissue vascularization, and regulate the secretion of factors associated
with repair [48,68].

Various strategies have been reported to develop polyester scaffolds with matching
mechanical properties to that of host myocardial tissues. Polyesters can be blended with
other polymers, inorganic fillers or modified with unsaturated bonds to obtain suitable
mechanical properties and biodegradation rates. For example, PGS was combined with
a multiblock thermoplastic polymer poly (butylene succinate-butylene dilinoleate) (PBS-
DLA) to obtain a material with desired properties to be applied in cardiac regeneration [69].
The resulting elastomers showed higher mechanical property: the storage modulus E’
was nearly doubled from 23 ± 11 MPa to 39 ± 7 MPa when the PBS-DLA contents were
increased from 30% to 60%. And the composite patches showed slower degradation
than PGS, which were more suitable for use in cardiac patches. Increased C2C12 cell
viability was observed on cardiac patches with higher PBS-DLA content. Huyer et al.
designed unsaturated polyester elastomers (poly(itaconate-co-citrate-co-octanediol) (PICO)
and employed itaconic acid as a co-monomer in the copolymerization of a POC (Figure 3A).
The PICO elastomers displayed an adjustable elasticity within a range of 36–1476 kPa by
tuning the crosslinking density and were shown to support the organization and viability
of cardiac tissue [50]. To make the unsaturated polyester better attached to the cardiac
tissue, Bannerman et al. reported an elastomer patch with satisfying adhesive strength
by introducing dopamine (DA) into poly(ocatamethylene maleate(anyhydride)citrate)
(POMaC) polymers. The biocompatible adhesive patches showed good adhesive strength
(~0.43 N/cm2) to cardiac tissue, which was better than that of POMaC and fibrin glue
(~0.11 N/cm2 and ~0.16 N/cm2) due to the interaction between DA and tissue. The elastic
modulus of the patch was 51.4 ± 4.1 kPa, similar to the cardiac tissue [70].

Moreover, blending with other bioactive polymers or inorganic fillers can endow scaf-
fold therapy effects and better tissue recovery [71]. PGS was mixed with polypyrrole (PPy)
to fabricate a semiconductive polymer film as cardiac repairing patches. The introduction
of conductive components was found to help with cardiac tissue maturity because cardiac
tissue has an electromechanical property [72]. Some recent patents described the structural
design of polyester elastomers for CTE. For example, 1,2,4-butanetricarboxylic acid was
polycondensed with maliec anhydide and 1,8-octanediol to functionalize the polymer
with UV crosslinked property. This material was molded and UV crosslinked into mesh
structures or porous scaffolds with customized shapes/sizes. The elastomeric properties
could be tuned by optimizing monomer ratios to match those of the myocardium. These
elastomers also showed approparaite degradation behaviors as a scaffold support for po-
tential implants [73]. In another patent, the hexamethylene diisocyanate (HDI) crosslinked
PGS (PGSU) elastomers were developed to mimic the viscoelastic properties of tissue [74].
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Different fabrication techniques have been explored to generate porous scaffold with
appropriate thickness for cardiac cellular proliferation. Solvent casting, electrospinning,
micropatterning, and 3D printing have been the most used fabrication methods of CET
scaffolds [77]. Hu et al. created the PGS-co-aniline elastomeric scaffold with electroactivity
using aniline as the conductive component [75] (Figure 3B). These films exhibited elec-
troactive characteristics and an appropriate elastic modulus that could support heart tissue
regeneration; Young’s modulus was 20.2 ± 3.6 MPa and the elongation varied from 27%
to 141%. The scaffolds were biodegradable and the micropatterning fabrication method
enhanced the viability and proliferation of cardiomyoblast-derived H9c2 cells of rat, as
well as ridge surface guided cardiomyocytes’ alignment and elongation. The biocompati-
bility test for the films proved a similar biological response to control the PGS group with
good biocompatibility. Yang et al. designed an elastic cardiac scaffold using mixtures of
biocompatible PCL and PGS and employing 3D printing technology to obtain the construc-
tion with regular patterned filaments and interconnected micropores [78]. The scaffold
showed superior mechanical properties and could be tailored to custom shapes through
3D printing. Young’s modulus of PCL-PGS was 748.5 ± 21.0 kPa, the tensile strength
was 748.5 ± 21.0 kPa, and the elongation was 57.3 ± 1.3%. In an infarcted myocardium
model, the implanted PCL-PGS scaffold was found to promote heart functions. A flexible
microneedle array was fabricated by solvent casting using PLGA, PCL or a combination of
these two polymers [79]. This microneedle array showed flexible mechanical properties,
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facilitating safe wearability for patients. The drug delivery capacity was also promoted
due to the higher contact area.

Polyesters have also been combined with natural polymers. Natural polymers provide
important ligands for cell adhesion and proliferation (e.g., arginine-glycine-aspartic acid
(RGD) tri-peptide unit that is present in almost all ECM protein fibronectin) [80–83]. The
primary degradation products of natural polymers are harmless, and therefore trigger a
minimal immune response [70]. Ruther et al. designed a layered scaffold based on porous
PGS substrates. A top layer of electrospun gelatin fiber mat was deposited on the substrates,
glued by a middle layer of gelatin [76]. Adhesion and degradation tests suggested that
gelatin gluing, which bonded all the components by forming chemical bonds, showed
better results even after being kept in the phosphate buffered saline for two weeks: the
crosslinked gelatin was relatively stable and the PGS substrates were still adhered together.
These results demonstrated that the layered cardiac patches composed from porous PGS
substrates and electrospun biopolymer fibers had potential in CTE (Figure 3C).

In addition to preformed scaffolds, injectable polyesters have been developed, sim-
plifying the material application process. Hamada et al. reported a controlled release
strategy to deliver extracellular vesicles (EVs) using a photocurable polyester to cardiac
tissue, aimed at improving the muscle damage [84]. The PGSA-g-EG mixture was injected
to the affected myocardium and photo crosslinked with an LED light (405 nm) in situ. The
authors proved that this composition did not impact the bioactivity of EV and could control
the release of EV for two weeks due to the in vivo surface erosion degradation. In vitro
cytotoxicity tests of PGSA-g-EG using H9c2 rat cardiac myoblasts and in vivo biocompati-
bility experiments using male Wistar rats demonstrated no toxicity and no morphologic
alterations when the polymer was applied on tissue.

3.2. Vascular Tissue Engineering

Vascular tissue comprises cells, proteins, and ECM that form a tubular layered struc-
ture [85]. Typical vascular tissue exhibited viscoelastic mechanical properties, its tensile
strength is about 4.3 MPa, and the burst pressure is up to 3000 mmHg. A special biological
function of vascular tissue is that they can prevent platelet adhesion [86]. Several strategies
have been reported to promote vascular tissue repair, including mimicking the natural
vascular tissue structures, preventing platelet adhesion, improving endothelialization, de-
livery, and release of bioactive materials [87,88]. Regarding polyester elastomer materials,
braiding, electrospinning, salt leaching, and 3D printing have been explored for vascular
TE applications.

For arterial tissue engineering, strong, bioresorbable scaffolds are needed to provide
temporary strength, namely, to hold an expanded vessel and to resist vessel recoil until
the healing process is completed [89,90]. To achieve appropriate bioabsorbability and
mechanical properties, Sharma et al. [91] designed scaffolds from PGA and L-PLGA fibers
that were braided. Then, the braided scaffold was coated with four-arm poly(glycolide-co-
caprolactone) (PGCL) elastomer which was crosslinked by HDI (Figure 4A). The elastomer-
coated scaffolds showed higher compression strength and elasticity than the scaffolds
without coating (~700 mmHg vs. ~100 mmHg), measured by the radical stiffness (RRF).
Their expansion properties were also improved and similar to those of metallic stents,
meeting the expanding requirement of vessel treatment, the data were ~150 mmHg vs.
~30 mmHg, measured by the chronic outward force (COF). Mechanical properties of the
elastomers can be adjusted by changing their branching structure, crosslinking density,
and molecular weight. These scaffolds showed a promising application as vessel implants.
Their biocompatibility was evaluated by an ovine model, in which inflammation was
found to be lower than the moderate amount, demonstrating acceptable biocompatibility
as vascular implants. Zhao et al. [90] also reported a bioresorbable stent comprising poly(p-
dioxanone) (PPDO) monofilaments and polycaprolactone/poly(p-dioxanone) (PCL/PPDO)
core-shell composite yarns via braiding. The degradation profile of the bioresorbable stent
was optimized to match the vascular remodeling process and to promote healing. Self-
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expanding stents made of polyester were also described in some patents. For example, one
design contains an inner stent made from bioabsorbable metal Nitinol, and an outer stent
that comprises PLLA or PGA [92]. The outer layer was configured to be absorbed in vivo,
allowing for the inner stent to expand to a larger diameter. More recently, Fu et al. [93]
reported PGS-based porous vascular grafts using the salt-leaching method (Figure 4B).
They introduced palmitic acid into PGS (palmitic acid-PGS, PPGS) to slow the degradation
of the materials and to be synchronous with in vivo regeneration of common carotid artery
(CCA). The PPGS showed lower Young’s modulus and larger water contact angles than
PGS. The degradation of the developed grafts varied from 4 to 12 weeks, which was longer
than that of PGS, which degraded in approximately 2 weeks [94]. When implanted into
rat common carotid arteries, better vascular conduits regeneration results of PPGS also
demonstrated the slow degradation modification to match the regeneration rate, which
can improve the overall performance of vascular grafts during their transformation into
autologous vascular conduits.
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and the braided implants for porcine femoral artery. Reproduced with permission from Ref. [91].
Copyright 2018 Springer Nature. (B) PGS derivative-based scaffolds with slow degradation to
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2020 Elsevier. (C) Three-dimensional printing of vascular tubes using bioelastomer prepolymers
PITCO [95]. Copyright 2020 American Chemical Society.
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POC-based elastomers have been the subject of extensive research in vascular TE [45].
In addition to good mechanical properties and biocompatibility, POC elastomers show less
platelet adhesion and clotting, minimal hemolysis, and appropriate protein adsorption,
indicating their excellent hemocompatibility [96]. Gregory et al. [97] fabricated all-trans
retinoic acid(atRA)-POC (POCR)-coated expanded polytetrafluoroethylene (ePTFE) (POCR-
ePTFE) vascular graft, which promoted endothelialization. The performance of this material
combined previous reported advantages of POCR and POC-ePTFE [98,99]. The atRA was
applied to inhibit intimal hyperplasia and accelerate reendothelialization of vascular; ePTFE
was utilized as a scaffold material. The atRA-POC-ePTFE performed better in vascular
regeneration than the previous atRA-ePTFE as shown in the in vivo experiments. Urethan
doping [100] and unsaturated polyester doping [101] have been used to tune the mechanical
properties of POC to fit vessel applications. For example, maleic anhydride [102] and
itaconic acid [50] were incorporated into the POC backbone to fabricate vascular scaffolds.
Montgomery et al. [102] studied poly(octamethylenemaleate (anhydride) citrate (POMaC)
with different monomer ratios to tune the elasticity, which ranged from 5.4 kPa to 60.1 kPa.
And the fabricated shape-memory scaffolds with various patterns and geometrics could be
injected and applied as aorta scaffold.

Three-dimensional printing processes have been a cost-effective way to fabricate
customized vascular grafts [103]. Savoji et al. [95] prepared poly(dimethyl itaconate-citric-
octanediol) (PITCO) vascular tubes using prepolymers synthesized from dimethyl itaconate
(DMI), triethyl citrate (TEC), and 1,8-octanediol (OD) through 3D printing (Figure 4C). The
vascular tubes were formed within a short crosslinking time by UV irradiation. Their elastic
modulus is in the range of 11–53 kPa, which varies by the component ratio and matches the
mechanics of cardiac tissues. These vascular tubes could effectively support the adhesion
and proliferation of umbilical vein endothelial cells, supporting cardiac tissue formation.
These scaffolds were also shown to allow for exchanges of oxygen/nutrition and metabolic
waste because the materials were semipermeable.

3.3. Neural Tissue Engineering

The treatment of traumatic injury of nerves has always been an important part of
TE. The recovery function of adult peripheral nervous system is limited, making medical
interventions essential for a better regeneration effect [104]. The conventional treatment
approaches involve autologous nerve grafting, which is limited by such factors as the finite
supply of autologous nerves, the need for a second surgical procedure, donor site com-
plications, and immune reactions and complications. Furthermore, the clinical functional
recovery rates of autologous nerve grafting are only around 80% [105]. In recent years,
artificial nerve grafts have been reported and applied in nerve tissue engineering as the
substitution of conventional nerve grafts. In addition to biocompatibility and biodegrad-
ability, the natural/synthesized materials designed for neural regeneration are expected to
have properties/structures similar to that of the nervous systems, including permeability,
biochemical activity, and architecture [106].

Functionalized polyester materials have been a recent focus in the field of neural TE. Various
bioactive components were blended in the polyesters to impart electrochemical properties or
emulate the biochemical activities of the nervous system. Wu et al. fabricated a conductive
film of PGS-co-aniline crosslinked with HDI [107]. The conductive polyaniline enabled the
films to conduct an electrical signal and promoted the therapy effect by inducing Schwann
cells’ myelination and neurotrophin secretion. Calcium titanate (CaTiO3) was also mixed
with PGS to achieve a similar effect [108]. In this research, the release of Ca2+ and its effect
on axon outgrowth was studied. The conductive property of CaTiO3 was also important in
the regeneration process. The mechanical properties of PGS elastomers were enhanced after
incorporation of CaTiO3 which acted as reinforcing particles. As a result, Young’s modulus
increased from 0.30 ± 0.05 MPa to 1.06 ± 0.08 MPa. Moreover, it has been demonstrated that
calcium can promote the development of neural cells and foster functional connections between
them, thus facilitating neural regeneration [109,110]. Ghafaralahi et al. reported polymeric
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matrixes that comprise PGS and PCL with various monomer ratios for nerve guidance conduit.
Graphene nanosheets were added as a conductive filler to improve the mechanical properties
and promote the biological properties [111]. PGS was shown to influence cellular behavior
positively. Kim et al. [112] doped folic acid into HDI-POC to fabricate a nerve guidance conduit
(fCUPE) (Figure 5A). With tailored scaffold mechanical properties and the regulating function of
folic acid, the fCUPE conduit demonstrated a positive impact on the regeneration and functional
recovery of the peripheral nervous system. Cell cytotoxicity and proliferation assays were
performed to prove that the folic acid was non-toxic on cells.
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fabrication method. (i) A 405 nm laser, (ii) a digital micromirror device, (iii) a motorized Zstage and
(iv) liquid polymer. Reproduced with permission from Ref. [113]. Copyright 2018 Elsevier. (C) In-
jectable neuroactive Mg2+/PGSM hybrids. Reproduced with permission from Ref. [114]. Copyright
2019 Elsevier.

Unsaturated group modifications were also studied in neural TE. The methacrylated
PGS (mAcr-PGS) nerve guidance conduits (NGCs) for neural regeneration were reported
by Singh et al. [113]. The materials were fabricated and then postprocessed by laser cutting
to achieve the tubes. These mAcr-PGS tubes displayed flexibility, resistance to kinking, and
the capability to endure suturing, rendering them suitable for use in larger gap models
(Figure 5B). Moreover, the in vitro analysis demonstrated the elongation and alignment
of neurites within the NGC grooves, along with observed growth of both neuronal and
glial cells. In the in vivo experiments, the mAcr-PGS conduits were found to facilitate axon
regeneration, direct axonal growth, and did not lead to an increase in neuropathic pain.
Sun et al. designed a hybrid of PGS-maleate and magnesium ions (PGSM-Mg) [114]. The
Mg2+ interacted with polymer through the coordination bond. The obtained elastomers
kept their soft nature and could be fabricated to elastic scaffolds with tailored porosity via
3D printing. The cell adhesion and proliferation of Schwann cells (SCs) were improved by
the scaffolds (Figure 5C).

3.4. Bone Tissue Engineering

Over the last few decades, the incidence of bone injuries has significantly increased due
to the aging population and rising cases of bone trauma and cancers. In response, bone
tissue engineering (BTE) has been rapidly developed to provide biomaterials as substitutes
for conventional bone grafts [115]. Materials studied for BTE included ceramics, polymers,
bioactive drug, and their composites. Among these materials, osteoinductive biomaterials have
shown promise. These biomaterials have the capability to induce bone formation by influencing
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the in vivo environment [116,117]. Osteoinductive ability has been found in several bioactive
materials, such as calcium phosphate (CaPs) [118], hydroxyapatite (HA) [119], β-tricalcium
phosphate (β-TCP) [120], and bioactive glasses [121]. Polyesters used in bone TE scaffolds
include PCL, PLA, PGA, and their copolymers [122]. In general, scaffolds for BTE are expected
to possess biocompatibility, biodegradability, osteoinductivity, and appropriate mechanical
properties [123]. Incorporation of ceramic particles into polyester elastic scaffolds or the infusion
of polyesters into ceramic scaffolds are common ways to improve the mechanical properties of
scaffolds to make them suitable for bone regeneration.

Most polyester elastomers developed for bone regeneration were combined with bioactive
components. Citrate-based polyesters have shown significant promise in BTE applications,
their multifunctional chemical properties make it possible to load various bioactive materials
that promote osteogenesis [124–126]. Li et al. [127] developed a biodegradable poly(citrate-
siloxane) (PCS) hybrid elastomer (PCS-SN) reinforced by silica nanoparticles (SNs). The SNs
were evenly dispersed in the scaffolds. The weight ratio of SNs can be tuned to regulate the
mechanical properties and biodegradability of the PCS-SN elastomers. The PCS-SN elastomers
showed good histocompatibility, capable of promoting adhesion and proliferation of osteoblasts.
Another PCS-based hybrid elastomer was incorporated with bioactive glass nanoparticles (BGNs),
which contribute to biomineralization activities, facilitating bone tissue regeneration [128]. Guo
et al. [129] designed a POC-based bone regeneration material coated with hydroxyapatite (HA)
which prevents inorganic/organic phase separation (Figure 6A). As a natural bone component,
HA plays an important role in lumber fusion, and it can enhance the mechanical properties of
the materials. Tannic acid (TA) was coated to the surface of HA, and the silver nanoparticles
interacted with the surface of HA to confer antimicrobial activity. The resulting tannin-bridged
bone composites (CTBCs) based on POC display a significantly enhanced compression strength
of up to 323.0 ± 21.3 MPa. These composites were biocompatible and could promote cell
adhesion, proliferation, and biomineralization performance. Lumbar fusion model experiments
on rabbits demonstrated the osteoconductive, osteoinductive, and bone regeneration promoting
properties of CTBCs. By employing intrinsically fluorescent citric-based polyester synthesized
from citric acid, 1,8-dioctanediol and L-Serine reacted with HA, Tan et al. [130] reported a bone
putty (BPLP-Ser/HA) enabling the monitoring of material degradation kinetics. This composite
showed mechanical properties (compressing strength and initial modulus) matching the early
non-mineralized bone. The bone putty displayed malleability and could be press fitted into
irregular defects with ease, demonstrating its handling properties that are on par with bone wax.
This bone putty exhibited in vivo biocompatible and osteogenic potential in a rat calvaria model.

Over the past few decades, 3D printed scaffolds have garnered significant attention due
to their distinctive three-dimensional porous structure, which provides the desired porosity
and favorable mechanical properties. This allows them to closely mimic the natural trabecular
bone [131]. Porous structures, being an essential element in scaffolds, provide a conducive
microenvironment for cell adhesion, proliferation, differentiation, and biomineralization. Addi-
tionally, bioactive cues are necessary to create a synergistic microenvironment that accelerates
the process of bone regeneration [132]. In recent research on bone regeneration, PCL and
PLA have gained widespread use due to their excellent printability, the ability to control their
mechanical properties, and their biodegradability [131,133,134]. Three-dimensional printed
scaffolds incorporating bioactive materials for vascularity and osteoinduction are a common
method in bone defect treatment, because bone regeneration is a continual and complex process,
in which the angiogenesis and osteogenesis are tightly related to each other. Yan et al. [131]
fabricated a PCL-based biodegradable scaffold which could deliver deferoxamine (DFO), an
FDA approved iron chelator with the potential to promote vascularization and bone regenera-
tion. The PCL scaffolds were fabricated by 3D printing and DFO was loaded via aminolysis of
PCL surface and layer-by-layer assembly (Figure 6B). The compression strength of PCL-DFO
was 2.7 ± 0.3 MPa, matching that of cancellous bones. The cell viability and proliferation tests
revealed that the 3D printed PCL scaffold had good biocompatibility and DFO did not show
a significant effect on cell growth. Further analysis of PCL scaffolds and PCL-DFO scaffolds
indicated that the incorporation of DFO was essential for in vivo angiogenesis and osteogenesis,
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and the degradation profile of PCL-DFO scaffolds matched bone development and reconstruc-
tion. Three-dimensional printed scaffolds were also reported in patents. For example, Zhou
et al. [135] described a polyester resin synthesized from α-ketoglutaric acid and 1,2-propanediol.
Low temperature 3D printing was employed to fabricate a bone scaffold with an optimized
pore size. Another polyester resin polypropylene fumarate (PPF) was synthesized to achieve a
photocurable material which can be applied as bone regeneration scaffolds [136]. The viscosity
of PPF was 24 Pa·s, which is higher than the general viscosity of polymer for photocuring 3D
printing. Therefore, PPF can be dissolved in a solvent, then printed into a porous bone scaffold
in 2 h.
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printed scaffold delivering DFO. Reproduced with permission from Ref. [131]. Copyright 2019
Elsevier. (C) Three-dimensional printed biomimetic scaffold with promoted tissue infiltration and
vascularization capacity. Reproduced with permission from Ref. [137]. Copyright 2023 American
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2022 American Chemical Society. (E) Integrated cartilage therapy using tissue batteries of triboelectric
nanogenerators. Reproduced with permission from Ref. [139]. Copyright 2023 Elsevier.



Molecules 2023, 28, 8025 14 of 26

Dual-drug or multiple-drug delivery scaffolds are extensively sought after to pro-
mote bone regeneration, as the regeneration process is regulated by a variety of bioactive
molecules [132]. Hybrid scaffold is a promising method to match the bone microenviron-
ment, carry the cells, and deliver multiple bioactive agents [137,140–142]. Zhou et al. [137]
developed a biomimetic scaffold by assembling short electrospun nanofibers containing
mesoporous silica nanoparticles which were loaded with dimethyloxalylglycine (DMOG).
This was combined with a 3D printed scaffold made of strontium (Sr) contained HA
and PCL (SrHA-PCL) (Figure 6C). The compression modulus of SrHA-PCL scaffolds was
29.85 ± 4.75 MPa, and the mechanical stress was 1.87 ± 0.13 MPa. The degradation rate of
electrospun nanofiber was faster than SrHA-PCL scaffold, facilitating the tailored release
of DMOG and Sr ions. The scaffolds were proven to have biocompatibility and angio-
genesis functions. This sequential release accelerated bone tissue growth and promoted
vascularized bone regeneration. Liu et al. [138] reported a bone ECM-mimic 3D printing
scaffold of PLLA (Figure 6D). The chitin whiskers were electrostatically self-assembled
on the surface of PLLA via the layer-by layer method to strengthen the PLLA scaffold.
Then, DFO was encapsulated in chitosan/chitin whiskers hydrogel, which exhibited an
ECM-like liquid crystalline state and viscoelasticity. Thereafter, the hydrogel was intro-
duced into the reinforced PLLA scaffold to create a bone ECM-mimic microenvironment.
The obtained scaffold showed effective angiogenesis and osteogenesis promotion. PCL
can also act as the coating on the 3D printed hydrogel scaffolds to form the core/shell
hybrid scaffolds [132,143]. The hydrogel templates were fabricated by gelatin, alginate,
chitosan or their mixtures. The degradation of the sacrificial hydrogel template is much
faster than PCL, then a hollow channeled scaffold was obtained as there was core space left.
These hollow channels serve as distinct architectural cues that promote bone formation
and vascularization.

Another trend in recent bone regeneration research is introducing biofunctions, includ-
ing electroactivity, conductivity [144], shape-memory property [145], and photothermal
effects [146]. The real-time monitoring of regeneration states can be achieved by introducing
a multi-convex triboelectric nanogenerator (TENG)-based sensor [139] (Figure 6E). For ex-
ample, Zhang et al. reported conductive porous scaffolds by introducing camphor sulfonic
acid-doped polyaniline (PANI) into HA/PLGA scaffolds [144]. The conductive scaffold was
beneficial to osteogenesis and the PANI regulated the degradation behavior of the scaffold,
preventing the severely compromised mechanical functionality caused by bulk erosion of
PLGA (Figure 7). Most recently, Wang et al. [147] reported an optoelectronic composite
scaffold that comprises silicon (Si) thin films with specific patterns and HA-collagen/PCL.
The Si thin films can generate electrical signals and interact with the tissue when exposed
to external light, regulating the cellular behavior. The HA-collagen/PCL constitutes the
porous matrix that can topographically and mechanically support cell growth and differ-
entiation. The Si films were tested and showed ideal biocompatibility. This biomimetic
multiscale hierarchical architecture of the scaffold was biocompatible and found to improve
bone regeneration efficiency.
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3.5. Bioelectronics

There has been a growing interest in applying stimuli-responsive and highly elastic
devices in implantable or wearable electronics and flexible sensors. The wearable sen-
sors are expected to be biocompatible and have matching mechanical properties with the
host tissues [148]. Therefore, the stretchability and compressibility of these elastomers
are essential. Commercial elastomers (such as polyethylene terephthalate, polyimide,
polyethylene, acrylonitrile butadiene styrene, polystyrene-ethylene-butylene-styrene, and
polydimethylsiloxane) for wearable electronics often show high stiffness, which may lead
to discomfort in touch [148–150]. Therefore, there has been a demand for the develop-
ment of flexible bioelastomers including polyester elastomers. Traditional implantable
bioelectronics for short-term applications have limitations such as inadequate mechanical
properties, risks of infection, and a need for removal surgery after the complete treatment
or monitoring [151]. To overcome the disadvantages of conventional implants, polyester
elastomers have been developed due to their capacities to be dissolved or be degraded
in situ. Recently, polyester elastomers developed for bioelectronic applications included
PGS-based elastomers, POC-based elastomers, and PCL-based elastomers.
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To fabricate implantable electronics, insulating and biodegradable polyester elas-
tomers were developed as an encapsulation layer, substrate, and dielectric material. In
bioabsorbable electronics, the encapsulation layer shields the electrode from the external
environment. The materials used in the encapsulation layer decide the degree of expo-
sure of the electronics. The substrate provides a platform for microelectronic fabrication,
while the dielectric materials endow functionality of the electronics [152] (Figure 8A). The
degradation ratios of all these bioabsorable materials regulate the lifetime of the device.
Boutry et al. [153] created a biodegradable pressure sensor that measures arterial blood flow
with high sensitivity. The blood flow signal can be detected in both contact and non-contact
manners by employing the fringe-field capacitor technology. This sensor comprised a
micro-structured PGS dielectric layer in the pressure sensitive regions, POMaC and poly-
hydroxybutyrate/polyhydroxyvalerate (PHB/PHV) packaging layers, and a PLLA spacer
for the bilayer coils (Figure 8B). All the layers were ultrathin films and laminated together
with a magnesium (Mg) electrode to fabricate the sensor. A dynamic covalent elastomer
(b-DCPU) synthesized from PCL-triol and HDI was deployed by Choi et al. to serve as an
encapsulating layer for a bioabsorbable wireless stimulation device [52]. The thermally
activated dynamic bond exchange reactions enabled robust self-bonding between b-DCPU
layers, resulting in good interfacial toughness between layers (Figure 8C). The device was
employed for sciatic nerve stimulation for 30 days in a rat model, keeping its monitor
sensitive and indicating the stable and long service life of the device.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 5 
 

 

comprised a micro-structured PGS dielectric layer in the pressure sensitive regions, 
POMaC and poly-hydroxybutyrate/polyhydroxyvalerate (PHB/PHV) packaging layers, 
and a PLLA spacer for the bilayer coils (Figure 8B). All the layers were ultrathin films and 
laminated together with a magnesium (Mg) electrode to fabricate the sensor. A dynamic 
covalent elastomer (b-DCPU) synthesized from PCL-triol and HDI was deployed by Choi 
et al. to serve as an encapsulating layer for a bioabsorbable wireless stimulation device 
[52]. The thermally activated dynamic bond exchange reactions enabled robust self-bond-
ing between b-DCPU layers, resulting in good interfacial toughness between layers (Fig-
ure 8C). The device was employed for sciatic nerve stimulation for 30 days in a rat model, 
keeping its monitor sensitive and indicating the stable and long service life of the device.  

 
Figure 8. Implantable bioelectronics. (A) The essential components of implantable electronic devices 
degradable in vivo. Reproduced with permission from ref. [152]. Copyright 2017 Springer Nature. 
(B) Soft multilayer electronics for arterial-pulse monitoring. Reproduced with permission from ref. 
[153]. Copyright 2019 Springer Nature. (C) Bioresorbable electronic stimulators for neuromuscular 
regeneration. Reproduced with permission from ref. [52]. Copyright 2020 Springer Nature. 

Polyester elastomers have been employed as the substrates of wearable biosensors 
due to their outstanding elastic properties. Conductive components such as metals [154], 
nanotubes [155], nanowires, nanosheets, conductive polymers like poly(ethylenedioxythi-
ophene): poly(styrenesulfonate) (PEDOT:PSS) [156], ionic liquids [157], and semiconduc-
tive polymers [158] were incorporated into polyesters to improve their electrochemical 
properties. Sencadas et al. [159] designed a sensitive piezoresistive sensor that comprises 
elastomeric porous PGS. Multi-walled carbon nanotubes (MWCNTs) were incorporated 
to enhance its electromechanical performance. This flexible sensor is highly sensitive, ca-
pable of detecting pressure as low as 100 Pa within a response time of 20 ms. The foam 
structure of PGS was found to contribute to the high sensitivity of the sensor. PGS-ure-
thane functionalized with PEDOT:PSS and CNTs was used to fabricate a strain sensor, 
which possessed both biocompatibility and biodegradability [155]. Hwang et al. [160] 
fabricated a skin sensor using POC substrates combined with biodegradable metal Mg to 
measure the biopotential and pH level. Chu et al. [157] fabricated strain sensors made of 
a biodegradable elastomer poly(1,8-octanediol-co-citrate-co-caprolactone) (POCL) incor-
porated with a conductive ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluorome-
thylsulfonyl) imide ([EMI]+ [TFSI]−) (Figure 9A). They designed the entangled flexible 
chains by using PCL diol with a molecular weight (Mw) that is larger than its entanglement 

Figure 8. Implantable bioelectronics. (A) The essential components of implantable electronic devices
degradable in vivo. Reproduced with permission from Ref. [152]. Copyright 2017 Springer Nature.
(B) Soft multilayer electronics for arterial-pulse monitoring. Reproduced with permission from
Ref. [153]. Copyright 2019 Springer Nature. (C) Bioresorbable electronic stimulators for neuromuscu-
lar regeneration. Reproduced with permission from Ref. [52]. Copyright 2020 Springer Nature.

Polyester elastomers have been employed as the substrates of wearable biosensors due
to their outstanding elastic properties. Conductive components such as metals [154], nan-
otubes [155], nanowires, nanosheets, conductive polymers like poly(ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS) [156], ionic liquids [157], and semiconductive poly-
mers [158] were incorporated into polyesters to improve their electrochemical properties.
Sencadas et al. [159] designed a sensitive piezoresistive sensor that comprises elastomeric
porous PGS. Multi-walled carbon nanotubes (MWCNTs) were incorporated to enhance its
electromechanical performance. This flexible sensor is highly sensitive, capable of detect-
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ing pressure as low as 100 Pa within a response time of 20 ms. The foam structure of PGS
was found to contribute to the high sensitivity of the sensor. PGS-urethane functionalized
with PEDOT:PSS and CNTs was used to fabricate a strain sensor, which possessed both
biocompatibility and biodegradability [155]. Hwang et al. [160] fabricated a skin sensor using
POC substrates combined with biodegradable metal Mg to measure the biopotential and pH
level. Chu et al. [157] fabricated strain sensors made of a biodegradable elastomer poly(1,8-
octanediol-co-citrate-co-caprolactone) (POCL) incorporated with a conductive ionic liquid (IL)
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMI]+ [TFSI]−) (Figure 9A).
They designed the entangled flexible chains by using PCL diol with a molecular weight (Mw)
that is larger than its entanglement molecular weight (Mc), facilitating the good resilience and
low hysteresis of the sensor. The tensile strength of POCL was 0.20 MPa and the elongation
was 770%, revealing suitable mechanical properties for epidermal electronics. POCL-based
strain sensors showed a self-adhesive property, making it possible to be attached to the skin
surface tightly, helping with their high sensitivity and fast response.
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Figure 9. Wearable bioelectronics. (A) Elastomers with low hysteresis as strain sensors and elec-
troluminescent devices. (i–iv) Monitor of movement of fingers. Reproduced with permission from
Ref. [157]. Copyright 2022 American Chemical Society. (B) Skin-like elastomers for piezocapacitive
pressure sensor. Reproduced with permission from Ref. [53]. Copyright 2020 Springer Nature. (C) Hy-
brid of elastomer and conductive hydrogel for flexible electronics. Reproduced with permission from
Ref. [161]. Copyright 2022 Elsevier.

Recent developments of polyester-based wearable biosensors also focused on the
modification of polyester structures to achieve appropriate mechanical properties that
better match those of human skin, and to endow a self-healing property to enhance the
durability and reliability of the sensors [162,163]. Zhang et al. [164] designed poly(sebacoyl
1,6-hexamethylenedicarbamate diglyceride) (PSeHCD) elastomers using both chemical
and physical crosslinking. The urethane units introduced hydrogen bonds as dynamic
physical bonds which contribute to the self-healing property. These elastomers were coated
with PEDOT:PSS in the fabrication of strain sensors that exhibited real-time signal outputs.
Chen et al. [53] designed a poly(sebacoyl diglyceride) (PSeD)-graft-Upy (PseD-U) elas-
tomer to be used in a dielectric layer in piezocapacitive pressure sensors (Figure 9B). The
incorporation of Upy units provided effective energy dissipation through the sacrifice of
hydrogen bonds. The PseD-U elastomers showed mechanical properties (Young’s modulus
of 0.64 ± 0.10 MPa, tensile strength of 0.73 ± 0.10 MPa, elongation of 297 ± 16%) similar
to those of human skin due to the combination of physical and covalent crosslinking [35].
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Fabricated with micro-structured PseD-U elastomers and Au-coated PCL films, the piezoca-
pacitive pressure sensors showed high pressure sensitivity and fast response, demonstrating
that the PseD-U elastomers were appropriate substrate materials in wearable electronics.

Elastomers have also been used in combination with conductive hydrogel in bioelectronic
devices. Biomimetic multilayered structures, which are ubiquitous in human tissue, have
provided inspirations for bioelectronics development [165]. To simulate the heterogenous
structure of biological tissues in which different tissue layers vary in mechanical properties and
biological functions, tough elastomers and stretchable hydrogels were integrated in advanced
flexible electronics [166–169]. Generally, the modulus of the elastomers is tuned to match that
of hydrogels, as the low-modulus hydrogels may cause signal noise due to the presence of
motion artifacts. Liu et al. combined tough elastomers with conductive hydrogels to achieve
a sensor with improved electronic signal that can be comparable with commercial Ag/AgCl
electrodes in the detection of electrocardiogram (ECG) [161] (Table 2). The elastomers (CPU-Fe-
Py-U) with high modulus and stretchability were synthetically based on poly(ε-caprolactone-co-
DL-lactide)-glycerin (G-PLCL) polyester backbone. Upy was the physical crosslinker providing
hydrogen bonding, and N-(1,3-dihydroxy-2-methylpropan-2-yl) pyridine-3-carboxamide was
the coordination ligand to interact with Fe3+. The desirable mechanical properties were achieved
by the cooperation of quadruple hydrogen bonding and coordination bonding, which could
both tune the crosslinking density and flexibility of polymer chains. The resulting elastomer
had tensile strength of 11.52 MPa and elongation of 1150%. The conductive hydrogel containing
polyaniline (PANI) served as the sensitive component. This elastomer hydrogel hybrid structure
sensor showed high sensitivity and fast response (10 ms) as a skin sensor (Figure 9C).

Table 2. Recent progress of polyester elastomer for biomedical applications.

Applications Backbone Polyester Materials Function of Elastomer Other Functional Materials Ref.

Cardiac tissue
engineering Cardiac repair patch

PGS elastic PBS-DLA [69]
PGS conductive film PPy [72]

POMaC adhesive dopamine [70]
PICO injectable [75]

PGS-co-aniline conductive [75]
PCL, PGS 3D printing [78]

PGS conductive PPy, collagen [76]
PGSA-g-EG injectable [84]

Vascular tissue
engineering

Vessel treatment
requiring expanding PGA, PGCL elastic [91]

vascular implants
PGS-palmitic acid elastic [93]

POC antithrombus and
endothelialization ePTFE, atRA [97]

POMaC elastic [102]
cardiovascular

tissue regeneration PITCO 3D printing [95]

Nerve tissue
engineering Nerve repair

PGS conductive CaTiO3 [108]
PCL, PGS conductive graphene nanosheets [111]

Folic acid-doped CUPE regulation of cells [112]
Methacrylated PGS elastic [113]

PGS-maleate injectable Mg2+ [114]

Bone tissue
engineering

Bone tissue
regeneration PCS elastic silica nanoparticles [127]

bioactive glass [128]
Lumbar fusion POC elastic HA, TA, Ag NPs [129]

Bone putty BPLP-Ser intrinsically fluorescent elastic
scaffold HA [130]

Vascularized bone
regeneration PCL long-term scaffold Strontium-HA, DMOG-silica

nanoparticles [137]

channeled scaffold sacrificial hydrogel [132,
143]

Bone regeneration PLGA conductive scaffold Sulfonic acid-doped PANI, HA [144]

Bioelectronic

Semiconductor
device PCL elastic matrix

Pressure sensor
PGS

POMaC, PHB/PHV
PLLA

dielectric layer
packaging layer

spacer
[153]

Stimulation device PCL substrate and encapsulant [52]
Piezoresistive sensor PGS piezoresistive layer CNTs [159]

PSeD-U piezoresistive layer Au [53]
Strain sensor PGS-urethane sensor layer PEDOT: PSS-functionalized CNTs [130]

POCL elastic matrix [EMI]+[TFSI]− [157]
PSeHCD elastic matrix PEDOT: PSS [156]

Electronic device G-PLCL elastic layer with high
modulus and stretchability conductive hydrogel [161]
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4. Conclusions and Perspectives
4.1. Conclusions

Polyester elastomers exhibit great potential in various biomedical applications includ-
ing cardiac, vascular, neural, and bone tissue engineering and bioelectronics. Polyester ma-
terials are biocompatible and in vivo biodegradable, making them promising candidates in
these biomedical applications. In recent years, there has been increasing interest in polyester
elastomers with superior mechanical and biological properties that can be developed by
exploring innovative polymer synthesis/modification methods and co-polymerization
strategies. In addition, material processing technologies have been further developed to
match the materials to the targeted applications. Moreover, polyester elastomers have
generally been combined with bioactive materials to supply reactive sites, introduce a
therapeutical effect, and/or to provide a biomimetic microenvironment to improve tissue
regeneration. Overall, exploring polyester elastomers for biomedical treatment is becoming
an attractive strategy in biomedical applications.

4.2. Perspectives

Despite the rapid progress in the development of polyester elastomers, there have been
several aspects in this field that require further work and explorations. Firstly, there is still
room for the structural design of polyester elastomers to achieve better performance and
wider application. Further work on innovative synthetic strategies is necessary to endow
multiple functionalities to the materials. Secondly, these properties such as shape memory
and injectability of polyester elastomers need to be further explored because they exhibit
great potential in providing an easy and minimally invasive surgery. The application
of these properties can be expanded to cardiac repair patches, bioelectronics for in vivo
monitors, or bone repair scaffolds. Thirdly, the fabrication method of hybrid scaffolds could
be further improved. Similar to the implants, hybrid scaffolds that comprise polyester
elastomers incorporated with bioactive components generally show better therapeutic effect
than polyester elastomers. Exiting methods mostly involve mixing polyesters with bioactive
components directly and fabricating the different layers separately, then assembling them
together. Integrated processing methods are therefore demanded to simplify the fabrication
process. Additionally, 3D fabrication methodologies are yet to be tuned to control the
porosity and pore size of the 3D architecture when hybrid scaffolds are fabricated. As
compared to other technologies (electrospinning, salt leaching), 3D printing allows for the
preservation of cell viability and function, making it possible for in situ bioprinting. It is
still a challenge to process the composites of polyester and the hydrogel/natural polymers
with suitable mechanical properties and bioactivity. Hybrid scaffolds and multilayer
elastomeric scaffolds have been widely studied because their designs simulate natural
tissues. Nevertheless, the interactions between the polyester elastomers and the other
layers were understudied. Benzophenone is a photo initiator reported to form chemical
interactions between an elastomer and a hydrogel when the hybrid hydrogel/elastomer
structure is UV crosslinked [145]. How to achieve a strong chemical or physical interaction
between the elastomers and other hydrophilic components in the hybrid materials can
be an interesting topic in further research to promote the development of bioelectronics.
Finally, developing new biocompatible monomers and polyester elastomers with specific
properties can be attractive, especially for some bio-based monomers. Bio-based polyester
elastomers have proven their unique functionality in tissue engineering because scaffolds
have been designed to assist in some metabolic functions such as citrate metabonegenic
regulation that promote osteogenic differentiation [130,170]. Therefore, the exploration of
novel bio-based polyester elastomers and their roles in providing physiological functions
in tissue engineering will be a promising area.
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