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Abstract: Bruton tyrosine kinase (BTK) is an essential enzyme in the signaling pathway of the B-
cell receptor (BCR) and is vital for the growth and activation of B-cells. Dysfunction of BTK has
been linked to different types of B-cell cancers, autoimmune conditions, and inflammatory ailments.
Therefore, focusing on BTK has become a hopeful approach in the field of therapeutics. Small-
molecule inhibitors of BTK have been developed to selectively inhibit its activity and disrupt B-cell
signaling pathways. These inhibitors bind to the active site of BTK and prevent its phosphorylation,
leading to the inhibition of downstream signaling cascades. Regulatory authorities have granted
approval to treat B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and mantle cell
lymphoma (MCL), with multiple small-molecule BTK inhibitors. This review offers a comprehensive
analysis of the synthesis and clinical application of conventional small-molecule BTK inhibitors
at various clinical stages, as well as presents promising prospects for the advancement of new
small-molecule BTK inhibitors.
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1. Introduction

BTK plays a crucial role as an essential enzyme in the signaling pathway of BCR
activation [1–3]. B-cells, a type of white blood cell, play a crucial role in producing anti-
bodies and depend on them for their growth and functioning. The abnormal activity of
BTK has been linked to different B-cell cancers, autoimmune conditions, and inflammatory
disorders [4,5].

At present, the utilization of small-molecule inhibitors targeting BTK has become a
very promising treatment method for these diseases. These inhibitors work by binding to
the active site of BTK and blocking its enzymatic activity, thereby inhibiting downstream
signaling pathways that promote cell proliferation, survival, and inflammation [6]. Ibruti-
nib, the initial BTK inhibitor approved by the U.S. Food and Drug Administration (FDA),
has demonstrated exceptional effectiveness in addressing B-cell malignancies like CLL
and MCL [7]. However, Ibrutinib, the first-generation BTK inhibitor, still possesses certain
limitations. It possesses the ability to inhibit various targets, including epidermal growth
factor receptor (EGFR), tyrosine kinase expressed in hepatocellular carcinoma (TEC), bone
marrow kinase on chromosome X (BMX), and others [8]. In order to solve these difficulties,
many enterprises have begun to develop the second generation of BTK inhibitors [9,10].
Approved in 2017 and 2019, respectively, Acalabrutinib and Zanubrutinib have been struc-
turally optimized and improved to have less off-target effects and greater effectiveness
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than Ibrutinib [11]. Since then, several other small-molecule BTK inhibitors have been
created and are currently undergoing assessment in clinical trials for various indications.
In the last ten years, a multitude of preclinical and clinical trials have examined the efficacy
of BTK inhibitors as standalone treatments or in conjunction with targeted therapies, im-
munotherapy, or traditional chemotherapy to treat different types of cancers. In addition, as
covalent BTK inhibitors still have off-target effects and tolerability problems, the industry
and academia are increasingly calling for non-covalent BTK inhibitors. A new generation
of BTK inhibitors, such as Pirtobrutinib, is in the fast lane of development [12,13].

The progress in the realm of BTK inhibitor research heralds a promising spectrum
of therapeutic avenues for the effective management of afflictions characterized by BTK
overexpression. Additional investigation and inquiry are essential to achieving a compre-
hensive understanding of the full potential inherent in these inhibitors. Further scrutiny
and inquiry are paramount to attaining a comprehensive grasp of the inherent potential
embodied by these inhibitors. As far as our current knowledge extends, a thorough in-
vestigation into the synthetic methodologies employed in chemical compounds and their
respective mechanisms of action within clinical contexts holds substantial promise for
propelling the advancement of groundbreaking pharmaceuticals.

Drawing upon well-substantiated data concerning BTK inhibitors, this review method-
ically elucidates the clinical utility and synthetic techniques associated with prototypical
BTK inhibitors across diverse clinical phases (Figure S1 and Table S1). This information
carries significant import in the ongoing design and refinement of BTK inhibitors.

2. Signaling Pathway of BTK

BTK is a non-receptor tyrosine kinase that plays a crucial role in the signaling pathways
of B-cells, macrophages, and microglia [14]. As shown in Figure 1, BTK is activated
downstream of the BCR and FcγRIII in macrophages and microglia, leading to the activation
of downstream elements crucial to immune cell function. When BTK is activated, it
phosphorylates phospholipase Cγ2 (PLCγ2), causing the hydrolysis of phosphatidylinositol
4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol
(DAG). IP3 binds to its receptor on the endoplasmic reticulum, leading to the release of
calcium ions into the cytoplasm, which activates downstream signaling pathways. DAG
triggers the activation of protein kinase C (PKC), which subsequently initiates the activation
of signaling pathways downstream. BTK also activates the nuclear factor kappa B (NF-κB)
pathway, which is involved in the regulation of immune responses. BTK also participates
in signaling networks that play a role in innate immunity, such as the transmission of
signals through the Fc epsilon receptor (FcεR) in mast cells and basophils. When antigen
binds to immunoglobulin E (IgE) molecules linked to FcεR, it triggers the phosphorylation
of immunoreceptor tyrosine-based activation motifs (ITAMs) in the FcεR β and γ chains.
During the BCR signal transduction process, the phosphorylation of FcεR and ITAMs
plays a crucial role in recruiting and subsequently activating Lck/yes-related novel protein
tyrosine kinase (LYN) and spleen tyrosine kinase (SYK).
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3. Representative Small-Molecule BTK Inhibitors in the Clinic
3.1. Aminopyrimidines
3.1.1. Spebrutinib (CC-292)

Spebrutinib, developed by Xinji Company, is a small-molecule drug currently in
clinical phase II. It is being investigated for its potential in treating diffuse large B-cell
lymphoma (DLBCL) and CLL. Spebrutinib irreversibly binds to the cysteine residue
(Cys481) in the active site of BTK, inhibiting its activity and downstream signaling path-
ways (IC50 = 0.5 nM) [15,16]. In clinical trials, Spebrutinib has shown favorable efficacy
in patients with relapsed or refractory CLL and MCL [17]. It has demonstrated durable
responses and manageable toxicity profiles, leading to its potential as a targeted therapy for
these diseases. However, additional clinical trials are required to determine its effectiveness
and safety in larger groups of patients [17].

In 2008, a method for synthesizing Spebrutinib was elucidated (Scheme 1) [18,19]. First,
the 4-Cl of 2,4-dichloro-5-fluoropyrimidine (SPEB-001) is substituted with tert-butyl (3-
aminophenyl)carbamate (SPEB-002) in the presence of N,N-diisopropylethylamine (DIPEA)
to obtain SPEB-003. SPEB-003 undergoes further substitution with 4-(2-methoxyethoxy)
aniline (SPEB-004) to obtain SPEB-005. Treatment of SPEB-005 with trifluoroacetic acid
(TFA) to remove the t-butyloxycarbonyl (Boc) group gives SPEB-006. Finally, in the pres-
ence of DIPEA, SPEB-006 is amidated with acryloyl chloride to obtain Spebrutinib.
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3.1.2. Evobrutinib (M-2951)

Evobrutinib, developed by Merck Serrano, is a small-molecule medication currently
in the advanced clinical phase III of development. It is specifically designed to address the
treatment of multiple sclerosis (MS). In clinical trials, Evobrutinib has shown efficacy in
treating relapsing forms of MS. Phase 2 trials showed a notable decrease in the occurrence
of fresh brain lesions and relapse rates when compared to the placebo group [20,21]. Addi-
tionally, Evobrutinib has shown potential to treat autoimmune diseases such as rheuma-
toid arthritis (RA) and systemic lupus erythematosus (SLE) [22]. Although additional
research is required to comprehensively comprehend its long-term safety profile, Evobruti-
nib demonstrates promise as a valuable therapeutic choice for individuals suffering from
autoimmune disorders.

The preparation of Evobrutinib first consists of the reaction of 5,6-dichloropyrimidin-
4-amine (EVOB-001) with N-Boc piperidine EVOB-002 to give EVOB-003 (Scheme 2) [23].
Subsequently, Suzuki coupling of EVOB-003 with (4-phenoxyphenyl)boronic acid (EVOB-
004) catalyzed by Pd(OAc)2 affords EVOB-005. Treatment of EVOB-005 with HCl to
remove the Boc moiety gives EVOB-006. Finally, EVOB-006 is amidated with acryloyl
chloride to obtain Evobrutinib.
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3.1.3. Remibrutinib (LOU-064)

Remibrutinib is a small-molecule drug developed by Novartis pharmaceuticals. At
present, the highest research and development stage of the drug is clinical phase III, which is
used to treat chronic urticaria (CU), MS, urticaria, and relapsing remitting MS. Remibrutinib
is a highly effective BTK inhibitor that can be taken orally. It has a remarkable potency,
with an IC50 value of 1 nM. In blood, Remibrutinib demonstrates strong inhibition of
BTK activity, with an IC50 value of 0.023 µM [24]. Remibrutinib effectively suppressed
HuMOG experimental autoimmune encephalomyelitis (EAE), a B-cell-dependent disease,
in a dose-dependent manner and significantly alleviated neurological symptoms. When
administered orally at a dose of 30 mg/kg, Remibrutinib exhibited potent inhibition of BTK
in both peripheral immune organs and the brain of EAE mice. In clinical trials, Remibrutinib
has shown promising efficacy in patients with CLL and other B-cell malignancies. It has
shown impressive response rates and long-lasting remissions in patients who have not
responded to previous treatments. Additionally, Remibrutinib has shown a favorable safety
profile with manageable toxicities, including mild to moderate gastrointestinal symptoms
and reversible hematological abnormalities [25,26].

Scheme 3 presents a concise method for synthesizing Remibrutinib [24]. First, in the
presence of ammonia, 4,6-dichloro-5-methoxypyrimidine (REMI-001) undergoes halogen
amination to give the amine REMI-002, and then boron tribromide is used to remove the
methyl group of REMI-002 to give the phenol REMI-003. In the presence of diisopropyl
azodicarboxylate (DIAD) with Smopex-301, a convenient polymer-supported version of
triphenylphosphine, REMI-003 reacts with hydroxyethylamine REMI-004 in a Mitsunobu
reaction to give REMI-005. Under the catalytic effect of PdCl2(PPh3)2, REMI-005 reacts
with the intermediate REMI-006 in a Suzuki coupling reaction to give REMI-007. The
Boc group of REMI-007 is removed using TFA to obtain REMI-008. Finally, REMI-008
is amidated with acrylic acid to obtain Remibrutinib in the presence of the condenser
propylphosphonic anhydride (T3P).
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3.2. Pyrimidine-Fused Bicyclic Heterocycles
3.2.1. Ibrutinib (Imbruvica, PCI-32765)

Ibrutinib, originally created by Pharmacyclics LLC. and marketed as Imbruvica, re-
ceived its first FDA approval to treat MCL on 13 November 2013. Subsequently, it ob-
tained FDA approval for the management of Waldenstrom macroglobulinemia (WM), CLL,
marginal zone B-cell lymphoma (MZBL), and graft vs. host disease (GvHD) in subsequent
years. Ibrutinib is a BTK inhibitor that is both selective and irreversible, with an IC50 value
of 0.5 nM [27]. Ibrutinib effectively blocks the activity of the enzyme by creating a covalent
bond with Cys481, found in the active site of BTK. This blocking action of Ibrutinib on BTK
then stops the phosphorylation process of downstream substrates like phospholipase C-γ
(PLC-γ) [28]. The increase in IC50 against BTK-C481S phosphorylation from 2.2 nM to 1µM
is due to the fact that Ibrutinib cannot establish a covalent bond with the serine hydroxyl
group [29].

An optimized synthetic route for Ibrutinib is described in Scheme 4 [30]. First, 4-
phenoxybenzoyl chloride (IBRU-001) undergoes a Knoevenagel-type reaction with malony-
dinitril to obtain the enol intermediate, followed by the methylation of the enol intermediate
with dimethyl sulfate to obtain IBRU-002. In the presence of triethylamine (TEA), IBRU-
002 undergoes pyrazole cyclization with hydrazine IBRU-003 to give IBRU-004. Finally,
catalyzed by acetic acid, IBRU-004 undergoes a pyrimidine cyclization with the cycloadduct
dimethylformamide dimethylacetal (DMF-DMA) to obtain Ibrutinib.
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3.2.2. Zanubrutinib (Brukinsa, BGB-3111)

Zanubrutinib, developed by BeiGene, received its initial FDA approval on 14 Novem-
ber 2019, to treat MCL. Subsequently, it gained approval to treat MZBL, CLL, and WM.
Zanubrutinib, a member of the second-generation BTK inhibitor drug category, demon-
strates exceptional effectiveness and selectivity towards BTK while causing minimal off-
target effects in comparison [31]. Due to its similar binding specificity to other BTK
inhibitors, Zanubrutinib impedes BTK function by forming a covalent bond with Cys481.
Due to this binding pattern, Zanubrutinib has the ability to bind to adenosine triphos-
phate (ATP)-binding kinases that possess a Cys481 at this specific site, regardless of their
relationship or similarity, exhibiting varying levels of affinity [31–33].

Zanubrutinib is prepared by the reaction of 4-phenoxybenzoic acid (ZANU-001) with
thionyl chloride to obtain the chloride intermediate IBRU-001, and then IBRU-001 under-
goes a Knoevenagel-type reaction with malony-dinitril to obtain ZANU-002 in the presence
of DIPEA (Scheme 5) [34]. Alkylation of ZANU-002 with trimethyl orthoformate affords
IBRU-002, followed by cyclization of IBRU-002 with hydrazine hydrate to give pyrazol
ZANU-003. Under the catalytic effect of acetic acid, ZANU-003 reacts with N-Boc piperi-



Molecules 2023, 28, 8037 7 of 21

dine ZANU-004 to give ZANU-005. Reduction of ZANU-005 using sodium borohydride
gives ZANU-006, followed by hydrolysis of the cyano group of ZANU-006 using hydrogen
peroxide to give the amide ZANU-007. Treatment of ZANU-007 with TFA to remove the
Boc group yields the trifluoroacetate salt ZANU-008. Finally, ZANU-008 is first amidated
with acryloyl chloride to obtain the amide ZANU-009, and then ZANU-009 is separated
using Chiral pre-high-performance liquid chromatography (HPLC) to obtain Zanubrutinib.
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3.2.3. Tirabrutinib (Velexbru, ONO/GS-4059)

Tirabrutinib Hydrochloride, created by Ono Pharmaceutical, was granted approval by
the Pharmaceuticals and Medical Devices Agency (PMDA) on 25 March 2020. This drug
is used for treating lymphoma [35]. Tirabrutinib, an orally administered BTK inhibitor
(IC50 = 6.8 nM), possesses the capability to cross the blood–brain barrier (BBB) [36]. As
a novel BTK inhibitor, Tirabrutinib exerts its anti-tumor and anti-inflammatory effects
through selective inhibition of BTK activity. For example, Tirabrutinib has shown good
efficacy in patients with CLL [37,38]. Common adverse events (AEs) were rash (35.3%) and
vomiting (29.4%) [38].

Tirabrutinib Hydrochloride is prepared first by the reaction of dibenzylamine with
nitropyrimidine TIRA-001 to give TIRA-002 (Scheme 6) [39]. In the presence of TEA, the
reaction of TIRA-002 with aminopyrrolidine TIRA-003 gives amine TIRA-004. Reduc-
tion of TIRA-004 using zinc powder affords the amine TIRA-005, which is subsequently
amidated with N,N′-carbonyl diimidazole (CDI) to give imidazolidinone TIRA-006. Un-
der the 20% Pd(OH)2/C reduction, TIRA-007 is derived from TIRA-006 by removing the
benzyl (Bn) group. A Chan–Lam coupling reaction of amide TIRA-007 with boronic acid
TIRA-008 catalyzed by copper acetate gives TIRA-009, which is treated with hydrochloric
acid to eliminate the Boc-protecting group, resulting in the formation of TIRA-010. In
the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and
hydroxybenzotriazole (HOBt), TIRA-010 is amidated with 2-butynoic acid (TIRA-011) to



Molecules 2023, 28, 8037 8 of 21

obtain TIRA-012. Finally, treatment of TIRA-012 with hydrochloric acid gives Tirabrutinib
Hydrochloride.
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3.2.4. Nemtabrutinib (MK-1026)

Nemtabrutinib was developed by Arqule Inc. At present, the highest research and
development stage of the drug is clinical phase III, which is used to treat chronic lym-
phoblastic leukemia. Nemtabrutinib is a promising BTK inhibitor with potent activity
against B-cell malignancies, including CLL and non-Hodgkin lymphoma (NHL) [40]. It
has also shown promising activity against drug-resistant forms of these cancers. In clinical
trials, Nemtabrutinib has shown favorable efficacy and safety profiles [41]. Nemtabrutinib
has exhibited substantial clinical efficacy in patients with relapsed or refractory CLL and
NHL, resulting in long-lasting responses. Moreover, it has displayed promise when used
in combination with other targeted agents, thereby augmenting its effectiveness [42].

The approach for Nemtabrutinib is described in Scheme 7 [43]. First, pyrrolo[2,3-
d]pyrimidine NEMT-001 undergoes lithium-bromine exchange with a lithium reagent to ob-
tain an organolithium reagent, which is then added to methyl 2-chloro-4-phenoxybenzoate
(NEMT-002) to obtain ketone NEMT-003. Finally, in the presence of DIPEA, the Cl of
NEMT-003 is substituted with the amine NEMT-004 to obtain Nemtabrutinib.
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3.2.5. Rilzabrutinib (PRN-1008)

Rilzabrutinib, created by Principia Biopharma Inc., is currently in the advanced clinical
phase III of development. Its primary purpose is to treat idiopathic thrombocytopenic
purpura (ITP). Rilzabrutinib, an orally active inhibitor of BTK (IC50 = 1.3 nM), is a reversible,
covalent, and selective compound [44,45]. Rilzabrutinib has demonstrated encouraging
effectiveness in the management of autoimmune disorders during clinical trials [46]. In
a phase II trial involving patients with active RA, Rilzabrutinib significantly improved
disease activity compared to placebo. Additionally, Rilzabrutinib has shown efficacy in
the treatment of ITP and pemphigus vulgaris, with positive results observed in phase
2 trials [47].

The preparation of Rilzabrutinib is depicted in Scheme 8 [48]. First, the amine RILZ-
001 is iodinated using N-iodosuccinimide (NIS) to obtain RILZ-002. In the presence of triph-
enylphosphine and DIAD, RILZ-002 is mixed with tert-butyl (R)-3-hydroxypiperidine-1-
carboxylate (RILZ-003) in a Mitsunobu reaction to give RILZ-004. Catalyzed by Pd(dppf)Cl2,
RILZ-004 undergoes a Suzuki coupling reaction with the intermediate RILZ-005 to give
RILZ-006. RILZ-006 is treated with TFA to remove the Boc group to give RILZ-007. Sub-
sequently, RILZ-007 is amidated with 2-cyanoacetic acid in the presence of the condenser
2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU)
to give RILZ-008. Finally, RILZ-008 undergoes a Knoevenagel condensation reaction with
the aldehyde RILZ-009 to obtain Rilzabrutinib.
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3.2.6. Abivertinib (AC-0010)

Abivertinib, developed by Zhejiang ACEA Pharmaceutical Co., Ltd., has applied
for listing to treat non-small cell lung cancer (NSCLC) in China. Abivertinib is a specific
inhibitor of tyrosine kinases that targets mutant forms of human EGFR and BTK [49].
Abivertinib has been investigated for its potential use in the management of NSCLC
and B-cell malignancies. It exerts its effects by binding to and inhibiting EGFR and BTK
receptors, leading to immunomodulatory actions. These actions include the inhibition of
pro-inflammatory cytokine production and release, such as tumor necrosis factor (TNF)-α
and interleukins [50]. It has also shown favorable pharmacokinetic properties, with good
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oral bioavailability and tissue distribution. Nevertheless, additional research is required to
thoroughly assess its long-term effectiveness and safety.

The preparation of Abivertinib starts with the N-alkylation of pyrrolo[2,3-d]pyrimidine
ABIV-001 with 2-(trimethylsilyl)ethoxymethyl chloride (SEMCl) in the presence of sodium
hydride to yield ABIV-002 (Scheme 9) [51]. Subsequently, in the presence of potassium
carbonate, ABIV-002 undergoes a Williamson synthesis with 3-nitrophenol (ABIV-003) to
give the ether ABIV-004. The Buchwald–Hartwig cross-coupling of ABIV-004 with aniline
ABIV-005 catalyzed by Pd2dba3 affords ABIV-006, which is reduced with iron powder to
give the amine ABIV-007. Under the action of DIPEA, ABIV-007 is amidated with acryloyl
chloride to obtain ABIV-008. Finally, ABIV-008 is subjected to incomplete removal of
the SEM group by TFA to obtain the hydroxymethyl intermediate ABIV-009, and then
ammonia treatment is applied to remove the hydroxymethyl group to obtain Abivertinib.
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3.3. Benzopyrroles
3.3.1. Luxeptinib (CG-806)

Luxeptinib, co-developed by Crystalgenomics Inc. and Aptose, is investigated for
its potential in treating various conditions, including myelodysplastic syndrome (MDS),
CLL, acute myeloid leukemia (AML), and NHL in clinical phase I. Luxeptinib is a non-
covalent, reversible, and orally active inhibitor that targets both fms-like tyrosine kinase
(FLT3) and BTK [52]. Luxeptinib effectively blocks the phosphorylation of AKT, ERK1/2,
Plcg2, BTK, and S6 ribosomal proteins and significantly suppresses SYK phosphorylation
in primary CLL cells [53]. This implies that Luxeptinib may be applicable to patients with
different types of B-cell malignancies who have developed resistance, refractory response,
or intolerance to covalent or non-covalent BTK inhibitors.

One notable method of Luxeptinib is depicted in Scheme 10 [54–56]. First, 7-bromo-3-
oxoisoindoline-4-carbonitrile (LUXE-001) is reduced using Raney Ni to give the aldehyde
LUXE-002. In ammonia, LUXE-002 is condensed with 2-oxopropanal (LUXE-003) to give
the imidazole LUXE-004. The Suzuki coupling of LUXE-004 with the borate ester LUXE-005
catalyzed by Pd(PPh3)4 yields LUXE-006. Finally, 2,4,6-trifluorobenzoyl azide (LUXE-007)
undergoes a Curtius rearrangement to give the isocyanate, which reacts with the amine
LUXE-006 to give the urea Luxeptinib.
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3.3.2. Branebrutinib (BMS-986195)

Branebrutinib, created by Bristol Myers Squibb, is currently in phase II development.
This drug shows promise in treating various conditions, including atopic dermatitis (AD),
Sjogren syndrome (SS), RA, and SLE. In preclinical studies, Branebrutinib has demonstrated
potent inhibition of BTK activity (IC50 = 0.1 nM), leading to the suppression of B-cell
activation and a subsequent reduction in disease severity [57]. The results indicate that
Branebrutinib shows promise for treating autoimmune disorders such as RA and SLE [58].
Promising outcomes have been observed in clinical trials assessing the effectiveness of
Branebrutinib. In a phase II trial involving individuals with relapsed or refractory MCL,
Branebrutinib exhibited a high overall response rate (ORR) and long-lasting responses [59].
Additionally, in a phase III trial for RA, Branebrutinib showed significant improvement in
disease activity compared to placebo.

The synthesis of Branebrutinib begins with a Pd2(dba)3-catalyzed Buchwald–Hartwig
cross-coupling reaction of indole BRAN-001 with tert-butyl (S)-piperidin-3-ylcarbamate
(BRAN-002) to give BRAN-003 (Scheme 11) [57]. Subsequently, BRAN-003 undergoes the
hydrolysis of cyanide in the presence of H2SO4 to give the amide BRAN-004. Finally, in
the presence of the condenser HATU, BRAN-004 undergoes amidation with 2-butynoic
acid (TIRA-011) to obtain Branebrutinib.
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3.3.3. Elsubrutinib (ABBV-105)

Elsubrutinib, developed by Abbvie Ltd., is in clinical phase II and is used to treat SLE
and RA. Elsubrutinib is a BTK inhibitor that is taken orally and exhibits selectivity and
irreversibility (IC50 = 0.18 µM) [60]. Elsubrutinib irreversibly inhibits BTK and exhibits
superior selectivity in the kinome. It demonstrates potent activity in cellular assays involv-
ing B-cell receptors, Fc receptors, and TLR-9. Its mode of action involves the irreversible
inhibition of BTK, which disrupts BCR signaling. Both preclinical and clinical research
have confirmed its effectiveness and tolerable toxicity profile, positioning it as a promising
treatment option for individuals with B-cell malignancies and autoimmune diseases [61].
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Elsubrutinib inhibits antibody responses to both non-dependent thymus and dependent
thymus antigens, reducing paw swelling and bone destruction in collagen-induced arthritis
in rats. It also alleviates disease in an IFNα-accelerated lupus nephritis model [60].

The synthesis of Elsubrutinib starts with the Suzuki coupling of 4-bromo-1H-indole-
7-carboxamide (ELSU-001) with the borate ester ELSU-002 catalyzed by Pd(dppf)Cl2 to
obtain ELSU-003 (Scheme 12) [62]. ELSU-004 is obtained by catalytic hydrogenation of
ELSU-003 with H2 and Pd/C. Subsequently, the Boc group is removed using acetyl chloride
to obtain ELSU-005, which is amidated with acryloyl chloride in the presence of DIPEA to
obtain ELSU-006. Finally, ELSU-006 is separated into the desired isomer of Elsubrutinib
by HPLC.
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3.4. Pyrazine-Fused Bicyclic Heterocycles
3.4.1. Acalabrutinib (Calquence, ACP-196)

On 31 October 2017, the FDA authorized the initial approval of Acalabrutinib to treat
MCL. Subsequently, it obtained FDA approval for the treatment of CLL as well on 3 August
2022. Calquence, originally developed by AstraZeneca and Acerta Pharma LLC., is the
brand name for Acalabrutinib. Acalabrutinib is a second-generation BTK inhibitor that is
taken orally. It is irreversible and highly selective [63]. Acalabrutinib effectively inhibits
BTK with a potency of 30 nM (IC50) and effectively suppresses CD69 B-cell activation in
human whole blood with an EC50 of 8 nM. It works by binding to a Cys481 residue in
the active site of BTK, forming a covalent bond, and inhibiting BTK activity [64]. Because
Acalabrutinib can effectively block the activation of CD86 and CD69 downstream signaling
proteins through BTK, it effectively suppresses the growth and survival of malignant B-cells.
Acalabrutinib demonstrates improved selectivity and inhibition of BTK activity compared
to Ibrutinib. Additionally, it exhibits significantly higher IC50 values or minimal inhibition
of other kinase activities, including EGFR, ERBB4, tyrosine-protein kinase (ITK), Janus
kinase 3 (JAK3), hematopoietic cell kinase (HCK), B lymphoid tyrosine kinase (BLK), feline
Gardner-Rasheed sarcoma viral oncogene homolog (FGR), and SRC [65].

A method of synthesis for Acalabrutinib is summarized in Scheme 13 [66]. First,
3-chloropyrazine-2-carbonitrile (ACAL-001) is catalytically reduced by hydrogen to give
the amine ACAL-002. In the presence of the condenser HATU, ACAL-002 is amidated
with ((benzyloxy)carbonyl)-L-proline (ACAL-003) to give the amide ACAL-004. The cy-
clization of ACAL-004 in acetonitrile using phosphorus oxychloride with 1,3-dimethyl-2-
imidazolidinone affords the imidazole ACAL-005. Subsequently, ACAL-005 is brominated
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using N-bromosuccinimide (NBS) to obtain ACAL-006. ACAL-006 undergoes a halogen
aminolysis reaction in ammonia to give ACAL-007. Under the catalysis of Pd(dppf)Cl2,
ACAL-007 undergoes a Suzuki coupling reaction with (4-(pyridin-2-ylcarbamoyl)phenyl)
boronic acid (ACAL-008) to give ACAL-009. Treatment of ACAL-009 with 33% HBr
to remove the benzyloxycarbonyl (Cbz) group gives ACAL-010. Finally, ACAL-010 is
amidated with 2-butynoic acid (TIRA-011) in the presence of the condenser HATU to
obtain Acalabrutinib.
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3.4.2. Fenebrutinib (GDC-0853)

Fenebrutinib, a small-molecule drug, was developed by Genentech. At present, the
highest research and development stage of the drug is clinical phase III, which is used
to treat MS and chronic progressive MS. Fenebrutinib is a highly effective and specific
non-covalent BTK inhibitor that can be taken orally. The inhibitor has Kis values of 0.91 nM,
1.6 nM, 1.3 nM, 12.6 nM, and 3.4 nM for wild-type BTK, as well as the C481S, C481R,
T474I, and T474M mutants [67]. It has also shown synergy with other targeted therapies,
such as Venetoclax, further enhancing its anti-tumor effects. In clinical trials, Fenebrutinib
has shown promising efficacy in patients with CLL and other B-cell malignancies [68,69].
Fenebrutinib has exhibited impressive response rates and long-lasting remissions, both
when used alone and in conjunction with other medications. Moreover, it has displayed
promising results in patients with relapsed or refractory conditions who have not re-
sponded to prior treatments [70]. While Fenebrutinib had an acceptable safety profile, the
primary end point, the SRI-4 response, was not met despite the evidence of strong pathway
inhibition [68].

The preparation of Fenebrutinib is depicted in Scheme 14 [71]. First, 5-bromo-2-
nitropyridine (FENE-001) undergoes Buchwald–Hartwig cross-coupling with (S)-tert-butyl
3-methylpiperazine-1-carboxylate (FENE-002) catalyzed by Pd2(dba)3 to give FENE-003.
The amine FENE-004 is obtained by reducing FENE-003. A Buchwald–Hartwig cross-
coupling reaction of FENE-004 with pyridinone FENE-005 catalyzed by Pd2(dba)3 affords
FENE-006. Treatment of FENE-006 with HCl to remove the Boc moiety yields FENE-007.
A reductive amination of FENE-007 with oxetan-3-one (FENE-008) under the reducing
action of sodium cyanoborohydride yields FENE-009. Subsequently, FENE-009 undergoes
a Miyaura Borylation reaction with bis(pinacolato)diboron catalyzed by Pd2(dba)3 to obtain
the borate ester FENE-010. Then, FENE-010 undergoes a Suzuki coupling reaction with the
intermediate FENE-011 to obtain FENE-012. Finally, the aldehyde group of FENE-012 is
reduced using sodium borohydride to obtain Fenebrutinib.
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3.5. Others
3.5.1. Orelabrutinib (ICP-022)

Orelabrutinib, created by Beijing InnoCare Pharma Tech, received approval from
the National Medical Products Administration (NMPA) on 25 December 2020, for its
effectiveness in treating MCL and CLL [72]. The NMPA also approved the drug to treat
MZBL on 20 April 2023. Orelabrutinib, a potent oral inhibitor of BTK, exhibits remarkable
efficacy as an antineoplastic agent. By blocking the activation of the B-cell antigen receptor
signaling pathway and subsequent survival pathways triggered by BTK, it effectively
inhibits the growth of cancerous B-cells with elevated levels of BTK [73]. In terms of safety,
the AEs observed during the study of Orelabrutinib treatment are generally consistent with
the characteristics of BTK inhibitors. The most common AEs are hematologic toxicities,
including thrombocytopenia, neutropenia, and anemia. In addition, a small number of
patients have also reported respiratory system infections and purpura [74].

The preparation of Orelabrutinib begins with the hydrolysis of 2,6-dichloronicotinonitrile
(OREL-001) in the presence of concentrated sulfuric acid to give the amide OREL-002
(Scheme 15) [75]. Subsequently, a Suzuki coupling reaction of OREL-002 with (4-phenoxyphenyl)
boronic acid (OREL-003) is catalyzed by Pd(dppf)Cl2 to obtain OREL-004, which undergoes
further Suzuki coupling reaction with N-Boc-protected boronic ester OREL-005 to obtain
OREL-006. Catalytic hydrogenation of OREL-006 by Pd/C gives OREL-007, which is
treated with TFA to remove the Boc group. Finally, OREL-008 is N-alkylated with acryloyl
chloride in the presence of TEA to obtain Orelabrutinib.

3.5.2. Pirtobrutinib (Jaypirca, LOXO-305)

Pirtobrutinib, developed by Redx Pharma, received FDA approval on 27 January
2023 to treat MCL. It is a highly selective and non-covalent-binding BTK inhibitor and
demonstrates significant efficacy in suppressing different BTK-C481 substitution mutations.
Pirtobrutinib exhibits a high level of selectivity for BTK, with a selectivity ratio of over
300-fold compared to the 370 other kinases tested. Additionally, at a concentration of 1 µM,
it does not significantly impede any non-kinase off-targets [76,77]. Cys481 mutations play a
significant role in conferring resistance to covalent BTK inhibitors, but they do not affect the
efficacy of Pirtobrutinib. Although the precise mechanisms behind resistance to covalent
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BTK inhibitors are not yet fully understood, it is evident that these mutations play a major
contributing factor [77–79].
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The synthesis of Pirtobrutinib starts with the reaction of 5-fluoro-2-methoxybenzoic
acid (PIRT-001) with thionyl chloride to obtain the chloride intermediate, and then the
amidation of the chloride intermediate with 4-(aminomethyl)benzoic acid (PIRT-002) under
the action of TEA to obtain amide PIRT-003 takes place (Scheme 16) [80]. Under the same
conditions, PIRT-003 is reacted with sulfoxide to obtain the chloride intermediate, and
then PIRT-004 is obtained by Knoevenagel condensation of the chloride intermediate with
malony-dinitril. Alkylation of PIRT-004 with trimethyl orthoformate affords the ether
PIRT-005. Subsequently, hydrazine PIRT-006 is transformed into the free base in TEA,
followed by cyclization with PIRT-005 in the presence of TEA to give pyrazole PIRT-007.
Finally, PIRT-007 is hydrolyzed in methanesulfonic acid (MsOH) to give Pirtobrutinib.

3.5.3. Tolebrutinib (SAR-442168)

Tolebrutinib, created by Principia Biopharma Inc., is currently in the advanced clinical
phase III of development. This drug is specifically designed to address MS and chronic
progressive MS. Tolebrutinib is a highly effective and specific inhibitor of BTK, which can be
taken orally and easily crosses the BBB. In Ramos B-cells, it has shown IC50 values of 0.4 nM,
while in HMC microglia cells, it has exhibited IC50 values of 0.7 nM [81]. The mechanism
of action of Tolebrutinib involves blocking the activation of BTK, thereby preventing the
proliferation and survival of malignant B-cells. This inhibition also leads to the suppression
of downstream signaling pathways, like NF-κB and AKT, which are crucial for the growth
and survival of cancer cells [82]. In clinical trials, Tolebrutinib has shown favorable efficacy
and safety profiles [83]. It has demonstrated significant clinical responses in patients with
relapsed or refractory CLL and MCL, leading to its accelerated approval by the FDA for
these indications [84]. The drug has also shown potential in other B-cell malignancies, such
as WM and DLBCL [85].

The synthetic route of Tolebrutinib as described in the publication is shown in Scheme 17 [86].
First, 2,4-dichloro-3-nitropyridine (TOLE-001) is reacted with tert-butyl (R)-3-aminopiperidine-
1-carboxylate (TOLE-002) in the presence of TEA to give TOLE-003. Subsequently, TOLE-
003 is reacted with bis(4-methoxybenzyl)amine (TOLE-004) in the presence of TEA to give
TOLE-005, which is reduced by iron powder to give aminopyridine TOLE-006. TOLE-006
is cyclized with CDI to give TOLE-007, and treatment of TOLE-007 with TFA to remove
the Boc and p-methoxybenzyl (PMB) groups gives TOLE-008. The reaction of TOLE-008
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with (Boc)2O utilizes the Boc group to protect the piperidine ring to obtain TOLE-009,
and the subsequent condensation of TOLE-009 with DMF-DMA to obtain TOLE-010 is
performed. A Chan–Lam coupling reaction of TOLE-010 with (4-phenoxyphenyl)boronic
acid (TOLE-011) catalyzed by copper acetate yields TOLE-012. TOLE-012 is stripped of its
Boc group using hydrochloric acid to give TOLE-013. Finally, TOLE-013 is amidated with
acryloyl chloride to obtain Tolebrutinib.
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4. Challenge and Prospective

At present, the difficulties in the advancement of BTK inhibitors mainly include: (1) off-target
effects and related adverse reactions and (2) drug resistance. BTK belongs to the Tec
family of non-receptor tyrosine kinases and is essential for BCR signaling. Nonetheless,
BTK is found in different cell types, such as macrophages and mast cells, which may
lead to unintended consequences when employing small-molecule inhibitors. Achieving
selectivity for BTK while avoiding inhibition of other kinases is a significant challenge in
the development of these inhibitors. After iteration and optimization, the current BTK
inhibitors have improved significantly in terms of off-target adverse reactions in general,
but another difficulty is the problem of drug resistance, which has not been addressed
in the existing commercially available BTK inhibitors. Among them, acquired resistance
caused by point mutations of BTK kinase is a major cause of resistance to BTK inhibitors;
moreover, covalent binding site mutations (C481S, C481F/y, and C481R), “gated region”
mutations (T474I and T474S), and β-fold VII mutations (L528W) were the major ones.

In response to these problems, the pharmacochemical strategies of the new generation
of BTK inhibitors focus on optimizing existing molecules, such as developing non-covalent
inhibitors, avoiding steric hindrance of mutant residues, interacting with mutant residues,
modifying solvent-accessible regions, and developing new skeletons. In addition, strategies
to combat resistance to BTK inhibitors include combination with other targeted drugs,
reduction of BTK content, inhibition of upstream and downstream pathways of BTK,
combination with CAR-T cell immunotherapy, and implementation of other pathways to
inhibit the proliferation of tumor cells.

5. Conclusions

In conclusion, the use of small-molecule inhibitors targeting BTK has demonstrated
significant potential for treating different types of B-cell malignancies and autoimmune
disorders. These inhibitors effectively hinder the function of BTK, a key player in BCR
signaling and immune response. Clinical trials have demonstrated their efficacy in improv-
ing patient outcomes, including ORR and progression-free survival (PFS). Furthermore,
these inhibitors have shown favorable safety profiles with manageable adverse effects. The
emergence of small-molecule BTK inhibitors signifies notable progress in targeted therapy
and holds immense promise for the prospective management of BTK-related diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28248037/s1, Figure S1: Chemical structures of represen-
tative BTK inhibitors in the clinic; Table S1: Representative BTK inhibitors in various clinical stages.
The chemical structures and clinical application of representative BTK inhibitors in diverse clinical
phases are available in the supporting information (Figure S1 and Table S1).
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