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Abstract: Janus kinase inhibitors, also known as JAK inhibitors, JAKinibs or JAKi, are a new group
of disease-modifying drugs. They work by inhibiting enzymes involved in the transmission of
information from receptors located in the cell membrane to the cell interior, specifically to the cell
nucleus, thus disrupting the JAK-STAT pathway. This pathway plays a role in key cellular processes
such as the immune response and cell growth. This feature is used in the treatment of patients with
rheumatological, gastroenterological and hematological diseases. Recently, it has been discovered
that JAK-STAT pathway inhibitors also show therapeutic potential against dermatological diseases
such as atopic dermatitis, psoriasis, alopecia areata and acquired vitiligo. Studies are underway to
use them in the treatment of several other dermatoses. Janus kinase inhibitors represent a promising
class of drugs for the treatment of skin diseases refractory to conventional therapy. The purpose of
this review is to summarize the latest knowledge on the use of JAKi in dermatological treatment.

Keywords: JAK inhibitors; Janus kinase inhibitors; JAKinibs; JAK-STAT pathway; autoimmune skin
diseases; inflammatory skin conditions; dermatology

1. Introduction

Tremendous advances in the ability to analyze the immunological patterns and molec-
ular processes leading to specific dermatoses are contributing to the expanding array of
therapeutic options available to dermatologists [1–3]. Analysis of skin biopsies has made
it possible to pinpoint the cytokines, receptors and signaling proteins involved in the
development of dermatological conditions [4]. Recent studies show that a huge role in the
pathophysiology of cutaneous diseases with an inflammatory/autoimmune basis is played
by the cytokine-induced Janus kinase signaling system [5–7]. JAKi are a family of non-
receptor tyrosine kinases that transmit signals from the cell membrane to the cell nucleus
via signal transducers and activators of transcription (STAT) proteins [8]. Awareness of the
importance of the JAK/STAT pathway in the pathomechanisms of skin diseases has con-
tributed to the development of a new class of drugs that interfere with this pathway—JAK
inhibitors.

2. JAK/STAT Pathway

JAKs are a family of cytoplasmic, non-receptor tyrosine kinases that are composed
of seven JAK homology (JH) domains. Functionally, a distinction is made between the
FERM domain (JH4, 5, 6 and 7), the Src homology 2 (SH2) domain (JH3 and 4) and the
tandem kinase domains: pseudokinase (JH2) and tyrosine kinase (JH1) (Figure 1) [9,10]. The
tyrosine kinase domain consists of approximately 250 amino acid residues. JH1 encodes
the kinase protein, which is the structure domain of the kinase. It is responsible for
substrate phosphorylation, and it is this domain that has become the main target for
the introduction of new drug therapies. The pseudokinase domain resembles the kinase
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domain in its structure but does not exhibit tyrosine kinase activity. The pseudokinase
domain is involved in the interaction of JAK and STAT and the inhibition of tyrosine
kinase activity by binding to it. The function of the SH2 and FERM domains is to mediate
interactions with two intracellular peptide motifs of the cytokine receptor: the proline rich
‘Box1’ and the hydrophobic ‘Box2’ [9]. There are four different Janus kinases: JAK1, JAK2,
JAK3 and TYK2 (tyrosine kinase 2) [6,11,12]. Expression of JAK1, JAK2 and TYK2 occurs
in many tissues to regulate immunity, while JAK3 is expressed mainly in hematopoietic
cells participating in hematopoiesis [13–16]. The action of JAK is strictly determined by
the mediators of inflammation–cytokines: interleukins (IL), interferons (IFN), growth
factors along with their receptors with which JAKi are linked [6,14,17,18]. Cytokine-
induced signal transport is mediated by different combinations of different types of JAK
proteins, for example, the combination of JAK2 and TYK2 is necessary for the action of IL-12
and Il-23 (Table 1) [5,14]. Cytokines bind to the extracellular domains of corresponding
receptors located on specific cells leading to conformational changes within the intracellular
domain. This results in bringing two JAK molecules close enough to each other that their
mutual phosphorylation and activation is feasible [6,11,17]. The activated JAKi then lead to
further intracellular signal transduction through phosphorylation and activation of STAT
proteins [12]. STAT proteins are signal transducers and activators of transcription that are
intracellular transcription factors. The family of these proteins includes seven members:
STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6 [13,19]. STATs are involved
in many key cellular processes: processes of proliferation, differentiation, apoptosis and
functional activation [19,20]. These proteins are composed of an N-terminal domain, a
coiled-coil-type domain, a DNA-binding domain, a transcription activation domain, an
SH2 domain and a tyrosine activation domain [21]. Activated STAT proteins dimerize and
are transported into the cell nucleus to positively or negatively modulate the expression of
target genes, encoding, for example, inflammatory cytokines involved in the formation of
numerous diseases, including dermatological conditions [13,22].
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Table 1. Cytokines and hormones that transmit signals via appropriate combinations of Janus ki-
nases. 

Kinases Cytokines or Hormones 
JAK1, JAK3 IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, TSLP 
JAK1, JAK2 IFNγ, IL-27, IL-31, IL-35 
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Figure 1. Schematic presentation of the Janus kinase’s structure. The function of the FERM and SH2
domains is to link JAK to receptors. The pseudokinase domain is thought to regulate the activity
of the kinase domain, which leads to the phosphorylation of the receptor tyrosine, followed by
phosphorylation of downstream molecules.

Table 1. Cytokines and hormones that transmit signals via appropriate combinations of Janus kinases.

Kinases Cytokines or Hormones

JAK1, JAK3 IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, TSLP

JAK1, JAK2 IFNγ, IL-27, IL-31, IL-35

JAK1, TYK2 IFNα, IFNβ, IFNκ, IFNω, IFNε, IFNλ, IL-10, IL-19,
IL-20, IL-22, IL-24, IL-26

JAK2, JAK2 EPO, TPO, G-CSF, GM-CSF, GH, Leptin, IL-3, IL-5

JAK2, TYK2 IL-12, IL-23

JAK1, JAK2, TYK2 OSM, LIF, IL-6, IL-11, IL-13
Abbreviations: JAK = Janus-activated kinases; TYK = tyrosine kinase; IL = interleukin; TSLP = thymic stro-
mal lymphopoietin; IFN = interferon; EPO = erythropoietin; TPO = thrombopoietin; G-CSF = granulocyte
colony-stimulating factor; GM-CSF = granulocyte-macrophage colony-stimulating factor; GH = growth hormone;
OSM = oncostatin M; LIF = leukemia inhibitory factor.
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In general, the JAK-STAT pathway is a pathway activated by cytokine stimulation
that allows signals from outside the cell to pass through the cell membrane to the nucleus,
resulting in changes in DNA transcription [14]. Figure 2 shows a schematic presentation of
JAK-STAT pathway. The utilization of JAK by various receptors coupled to downstream
STAT signal transduction results in a mechanism to achieve exceptional in vivo specificity
for more than 60 cytokines and growth factors [11,23].
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Figure 2. Schematic presentation of JAK-STAT pathway. The attachment of a ligand in the form of a
cytokine or hormone (examples: IFN, IL-2, IL-27, IL-19, EPO and OSM) to the extracellular domain
of the respective receptors located on specific cells induces conformational changes within their
intracellular parts. These changes lead to the two JAK molecules approaching each other, resulting in
their phosphorylation (P) and activation. Phosphorylation of the cytoplasmic part of the receptor
also occurs, creating a docking site for STAT proteins. STAT proteins, which are signal transducers
and activators of transcription, are intracellular transcription factors. STATs bind to the cytoplasmic
part of the receptor and their phosphorylation, activation and dimerization occur. A dimer consisting
of two STAT molecules translocates into the cell nucleus, where it directly interacts with the DNA
matrix and positively or negatively regulates the expression of thousands of different target genes,
encoding, for example, inflammatory cytokines that are involved in the pathogenesis of numerous
diseases, including dermatological conditions.

3. Janus Kinase Inhibitors

Recognition of the importance of the JAK/STAT pathway in the pathogenesis of many
inflammatory and autoimmune diseases has contributed to the development of a new class
of drugs—Janus kinase inhibitors. JAKi stop the intracellular signal transduction pathway
by inhibiting JAK protein phosphorylation catalyzed by the kinase component of JAK [4]. In
September 2021, the Food and Drug Administration (FDA) approved the first JAK inhibitor,
ruxolitinib, for the treatment of skin disorders [24]. Since then, more Janus kinase inhibitors
have been successively approved for the treatment of dermatoses. The advantage of
JAKinibs is that they can be administered by oral or topical routes. This distinguishes them
from biologic drugs, which are administered via subcutaneous or intravenous injections.
Topical application of JAKi can successfully reduce the risk of side effects compared to their
use via the oral route. Noteworthy is the fact that, unlike topical corticosteroids, topical
JAKinibs do not cause telangiectasia or skin atrophy [1]. There are two generations of
JAKi. Generation I, which includes, for example, ruxolitinib or baricitinib, is characterized
by lower specificity toward various Janus kinase isoforms, which is associated with a
relatively higher risk of side effects. However, their use can be argued by the theory
that blocking multiple JAKi benefits therapeutic success. Second-generation JAKinibs (for
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example, upadacitinib, abrocitinib, deucravacitinib) are characterized by greater selectivity
and specificity. This causes them to be more valued, as their use results in fewer side
effects which has an impact on the eventual maintenance of treatment efficacy [4,5,25,26].
Currently, atopic dermatitis, alopecia areata, vitiligo and psoriasis are dermatological
conditions for the treatment of which JAKi have been officially approved by the FDA
or EMA. In Table 2, we have provided a brief summary of the JAKi and dermatological
diseases for which they have been approved by the FDA or EMA [24,27,28]. Figure 3 shows
a schematic presentation of Janus kinases together with the STAT proteins with which they
interact and the site of action of individual Janus kinase inhibitors [10,12].

Table 2. JAK inhibitors and dermatological conditions in which JAKi are approved by the FDA
or EMA.

JAK Inhibitors Generation Target Form Route of
Administration

FDA Approved
Dermatological

Condition

EMA Approved
Dermatological

Condition

Ruxolitinib 1st JAK1, JAK2 Cream 1.5% Topical

Atopic dermatitis
(mild to moderate)

Vitiligo
(non-segmental)

-

Upadicitinib 2nd JAK1 Tablets 15 mg
and 30 mg Oral

Atopic dermatitis
(moderate to

severe)

Atopic dermatitis
(moderate to

severe)

Abrocitinib 2nd JAK1 Tablets 100 mg
and 200 mg Oral

Atopic dermatitis
(moderate to

severe)

Atopic dermatitis
(moderate to

severe)

Baricitinib 1st JAK1, JAK2 Tablets 2 mg
and 4 mg Oral Alopecia areata

Alopecia areata
Atopic dermatitis

(moderate to
severe)

Deucravacitinib 2nd TYK2 Tablets 6 mg Oral Psoriasis Psoriasis

Ritlecitinib 2nd JAK3 Tablets 50 mg Oral Alopecia areata Alopecia areata

Abbreviations: JAK = Janus-activated kinases; TYK = Tyrosine kinase; FDA = Food and Drug Administration;
EMA = European Medicines Agency.
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The binding of different ligands to their specific receptor subunits leads to the activation of a specific
JAK/STAT pathway. Receptors for cytokines transmit the signal to the cell nucleus via their associated
Janus kinases. There are four enzymes in this family: JAK1, JAK2, JAK3 and TYK2. These kinases are
essential for signal transduction from cytokine receptors lacking kinase activity. Signal transducers
and activators of STAT transcription are also involved in signal transport to the cell nucleus. Seven
homologous STAT proteins are currently known: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and
STAT6. Each cytokine receptor recruits and activates a specific combination in the JAK/STAT cascades
as shown in the figure. Activation results in signal transduction to the cell nucleus, modulation of
gene expression and formation of molecules that may be involved in the pathogenesis of skin diseases.
However, the signal transduction cascade from the receptor, through JAK/STAT to the cell nucleus,
is inhibited by Janus kinase inhibitors. Ruxolitinib and baricitinib are inhibitors of both JAK1 and
JAK2, upadacitinib and abrocitinib inhibit JAK1, ritlecitinib blocks JAK3 activity and deucravacitinib
inhibits TYK2.

4. Dermatological Conditions Where JAK Inhibitors Are Approved by the FDA or EMA
4.1. Atopic Dermatitis

Atopic dermatitis (AD) is one of the chronic inflammatory dermatoses, with genetic
predisposition, abnormal skin barrier function, abnormal microbiome, dysfunctional im-
mune system and environmental factors cited as underlying causes [29]. Chronic, persistent
pruritus can significantly reduce a patient’s quality of life or self-esteem, increase the risk
of depression or anxiety, and have a negative impact on sleep [30,31]. The diagnosis of AD
is relatively more common in the pediatric population, but this skin disease can occur at
any age [1]. A key role in the pathogenesis of AD is attributed to a strong activation of the
immune response, both in the serum and in the skin, involving Th2 helper lymphocytes
with their associated cytokines IL-4, IL-5, IL-13 and IL-31. The cytokines IL-4, IL-13 and IL-
31 require further signaling through the JAK/STAT pathway [32]. In Table 3, we discussed
the exact importance of these cytokines in the formation of AD [23,33–38].

Table 3. Functions of Th2-related cytokines in the pathogenesis of atopic dermatitis.

Cytokine Importance in Atopic Dermatitis Janus Kinase That Transmits Signal to
the Cell Nucleus

IL-4

Inhibition of gene expression for filaggrin, loricrin, involucrin and
lipid components of the skin barrier

Pruritus
Modulation of gene expression of cathelicidin and β-defensins

JAK1, JAK3

IL-5 Eosinophilia activator -

IL-13

Inhibition of gene expression for filaggrin, loricrin, involucrin and
lipid components of the skin barrier

Pruritus
Modulation of gene expression of cathelicidin and β-defensins

JAK1, JAK2, TYK2

IL-31 Pruritus JAK1, JAK2

Abbreviations: JAK = Janus-activated kinases; TYK = tyrosine kinase; IL = interleukin.

Inhibition of gene expression for filaggrin, involucrin and loricrin via IL-4 and IL-13
promotes skin dehydration and destabilizes skin barrier integrity resulting in dryness
and increased likelihood of skin superinfection [38,39]. In addition, modulation of gene
expression for cathelicidin and β-defensins (innate immune response genes) potentiates
the risk of skin infection by pathogens. This results in exacerbation of AD [36].

It is noteworthy that Th1 lymphocytes are also involved in the pathogenesis of AD
along with the cytokine it produces, IFN-γ, and Th17/Th22 lymphocytes along with IL-17
or IL-22. IL-22 plays a role especially in chronic lesions by promoting epidermal hyper-
plasia [12]. These interleukins also act in a JAK-STAT pathway-dependent manner [33].
Ruxolitinib, upadicitinib, abrocitinib and baricitinib are JAKinibs approved by the FDA or
EMA for the treatment of AD.
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Ruxolitinib belongs to the first-generation JAKinibs that inhibit JAK1 and JAK2.
Two phase 3 trials (this study is registered at ClinicalTrials.gov available online: https:
//www.clinicaltrials.gov/ (accessed on 2 October 2023)), NCT03745638, NCT03745651)
have confirmed the efficacy and safety of ruxolitinib cream in AD in monotherapy. It is
recommended to be used continuously for 8 weeks twice daily, and then after continuous
treatment, it should be used occasionally as needed for long-term disease control. The low
plasma concentration of ruxolitinib suggests that systemic JAK inhibition is highly unlikely
in this case. Adverse effects occurred relatively infrequently and were mostly unrelated to
treatment [40].

Upadicitinib is a second-generation JAKinib, inhibiting JAK1. Two replicated, random-
ized, double-blind, controlled phase 3 studies (NCT03569293 and NCT03607422) showed
that the use of one upadicitinib tablet per day as a monotherapy is an effective treatment
for adolescents and adults with moderate to severe atopic dermatitis in terms of skin
symptoms, itching, skin pain and quality of life [41]. In contrast, another phase 3 study
(NCT04195698) showed that patients previously treated with dupilumab had more favor-
able treatment outcomes after changing it to upadicitinib [42]. Upadicitinib has no new
side effects compared to other JAK inhibitors, and its safety profile is reasonably acceptable
(NCT03569293, NCT03607422, NCT03568318) [43].

Abrocitinib is a second-generation JAK1 inhibitor used for atopic dermatitis (moderate
to severe) in the form of 100 mg or 200 mg tablets (one tablet per day). Observations
made during the Phase 3 Atopic Dermatitis Efficacy and Safety (JADE) REGIMEN trial
(NCT03627767) showed that continuous monotherapy with abrocitinib 200 mg is the
therapy with the best results in terms of maintaining disease control. No exacerbation of
symptoms occurred in patients treated with the 100 mg dose for the 40 weeks of the trial, so
it is believed that induction-maintenance therapy (using abrocitinib 200 mg first and then
switching to the 100 mg dose) will be the most rational approach among most patients. On
the other hand, in case of possible AD exacerbation during abrocitinib therapy, combination
therapy is recommended: abrocitinib 200 mg combined with a topical corticosteroid [44].
Abrocitinib shows superiority over dupilumab, with faster and greater improvement in
skin clearance (NCT03720470) [45,46].

Baricitinib is a JAK1 and JAK2 inhibitor. The use of baricitinib in monotherapy at a
dose of 4 mg or a reduced dose of 2 mg reduces pruritus, improves skin, sleep and quality
of life among patients struggling with moderate to severe atopic dermatitis (NCT03334435)
(NCT03334435) [47–49]. For baricitinib, the incidence of adverse events of special interest
(AESI) is low [50].

In Table 4, we have presented active and completed clinical trials of JAKi for the
treatment of atopic dermatitis.

Table 4. Active and completed clinical trials conducted on JAKi for the treatment of atopic dermatitis
according to ClinicalTrials.gov.

Janus Inhibitor Age of Group Target Administration Phase Study Number Sponsor

Active Clinical Trials

Ruxolitinib ≥12 yo–<18 yo JAK1, JAK2 Topical Phase 3 NCT05456529 Incyte
Corporation

Ruxolitinib 2 yo–11 yo JAK1, JAK2 Topical Phase 3 NCT04921969 Incyte
Corporation

Upadacitinib 2 yo–12 yo JAK1 Oral Phase 1 NCT03646604 AbbVie

Upadacitinib 12 yo–64 yo JAK1 Oral Phase 3 NCT05601882 AbbVie

Upadacitinib 12 yo–75 yo JAK1 Oral Phase 3 NCT03569293 AbbVie

Upadacitinib 12 yo–75 yo JAK1 Oral Phase 3 NCT03607422 AbbVie

Upadacitinib 12 yo–75 yo JAK1 Oral Phase 3 NCT03568318 AbbVie

ClinicalTrials.gov
https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
ClinicalTrials.gov
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Table 4. Cont.

Janus Inhibitor Age of Group Target Administration Phase Study Number Sponsor

Upadacitinib 18 yo–64 yo JAK1 Oral Phase 4 NCT05507580 AbbVie

Upadacitinib ≥18 yo JAK1 Oral - NCT05989932 SIDeMaST

Abrocitinib ≥12 yo JAK1 Oral Phase 3 NCT03422822 Pfizer

Abrocitinib ≥18 yo JAK1 Oral - NCT05250115 Pfizer

Abrocitinib ≥12 yo JAK1 Oral - NCT05391061 Pfizer

Abrocitinib ≥0 yo JAK1 Oral - NCT05721937 Pfizer

Abrocitinib ≥18 yo JAK1 Oral - NCT05689151 Pfizer

Abrocitinib ≥18 yo JAK1 Oral Phase 4 NCT05602207 Innovaderm
Research Inc.

Tofacitinib ≥18 yo JAK1, JAK3 Topical Phase 2 NCT05487963 CAGE Bio Inc.

Tofacitinib

12 yo–50 yo
(patients with

Down
Syndrome)

JAK1, JAK3 Oral Phase 2 NCT04246372
University of

Colorado,
Denver

Baricitinib 2 yo–17 yo JAK1, JAK2 Oral Phase 3 NCT03952559 Eli Lilly and
Company

Baricitinib 18 yo–75 yo JAK1, JAK2 Oral - NCT05969730

Mazandaran
University of

Medical
Sciences

Completed clinical trials

Ruxolitinib ≥2 yo–17 yo JAK1, JAK2 Topical Phase 1 NCT03257644 Incyte
Corporation

Ruxolitinib 12 yo–65 yo JAK1, JAK2 Topical Phase 1 NCT03920852 Incyte
Corporation

Ruxolitinib 2 yo–11 yo JAK1, JAK2 Topical Phase 1 NCT05034822 Incyte
Corporation

Ruxolitinib 18 yo–70 yo JAK1, JAK2 Topical Phase 2 NCT03011892 Incyte
Corporation

Ruxolitinib 18 yo–65 yo JAK1, JAK2 Topical Phase 2 NCT04839380 Incyte
Corporation

Ruxolitinib ≥12 yo JAK1, JAK2 Topical Phase 3 NCT03745638 Incyte
Corporation

Ruxolitinib ≥12 yo–17 yo JAK1, JAK2 Topical Phase 3 NCT03745651 Incyte
Corporation

Tofacitinib 18 yo–60 yo JAK1, JAK3 Oral Phase 2 NCT02001181 Pfizer

Upadacitinib 18 yo–75 yo JAK1 Oral Phase 2 NCT02925117 AbbVie

Upadacitinib 12 yo–75 yo JAK1 Oral Phase 2 NCT03661138 AbbVie

Upadacitinib 18 yo–75 yo JAK1 Oral Phase 3 NCT04195698 AbbVie

Upadacitinib 18 yo–75 yo JAK1 Oral Phase 3 NCT03738397 AbbVie

Abrocitinib ≥18 yo JAK1 Oral Phase 3 NCT04345367 Pfizer

Baricitinib ≥18 yo JAK1, JAK2 Oral Phase 2 NCT02576938 Eli Lilly and
Company

Baricitinib ≥18 yo JAK1, JAK2 Oral Phase 3 NCT03334422 Eli Lilly and
Company



Molecules 2023, 28, 8064 8 of 20

Table 4. Cont.

Janus Inhibitor Age of Group Target Administration Phase Study Number Sponsor

Baricitinib ≥18 yo JAK1, JAK2 Oral Phase 3 NCT03435081 Eli Lilly and
Company

Baricitinib ≥18 yo JAK1, JAK2 Oral Phase 3 NCT03334396 Eli Lilly and
Company

Baricitinib ≥18 yo JAK1, JAK2 Oral Phase 3 NCT03733301 Eli Lilly and
Company

Baricitinib ≥18 yo JAK1, JAK2 Oral Phase 3 NCT03428100 Eli Lilly and
Company

Delgocitinib ≥2 yo JAK1, JAK2,
JAK3, TYK2 Topical Phase 1 NCT03826901 LEO Pharma

Delgocitinib ≥18 yo JAK1, JAK2,
JAK3, TYK2 Topical Phase 2 NCT03725722 LEO Pharma

Jaktinib 18 yo–65 yo JAK1, JAK2,
JAK3, TYK2 Oral Phase 2 NCT04539639

Suzhou Zelgen
Biopharmaceu-

ticals Co.,
Ltd.

Abbreviations: JAK = Janus-activated kinases; TYK = tyrosine kinase; yo = years old.

4.2. Alopecia Areata

Alopecia areata (AA) is characterized by partial or complete, sudden, non-scarring
hair loss with preservation of hair follicles. The incidence ranges from 1.7 to 2.1%, and
the first symptoms usually occur before the age of 30 [51,52]. The disease can affect all
human hair areas (in both children and adults). AA can be associated with psychological
suffering for the patient and a decrease in quality of life, especially when it affects areas
such as the scalp, beard, mustache, eyelashes, or eyebrows [53]. Alopecia areata arises from
loss of immune privileging in hair follicles during the anagen phase and results in their
attack by autoreactive CD8+ T cells and NK T cells [54]. Follicles in AA are characterized
by increased expression of MHC class I, MHC class II, elevated levels of IL-2, IL-15 and
CXCL belonging to the pro-inflammatory interleukin family, and abundant infiltration of
various inflammatory cells [55,56]. CD8+ T lymphocytes, upon activation by NK cells via
the NKG2D receptor, produce IFNγ mediated by JAK1 and JAK3. Interferon stimulates
IL-15 secretion via follicular epithelial cells using JAK1 and JAK2 signaling. Interleukin-15
affects CD8+ T lymphocytes, also through the JAK-STAT pathway, resulting in the secretion
of perforin and granzymes by these lymphocytes. The result of these processes is hair
follicle dystrophy and premature onset of the catagen phase resulting in alopecia [57–59].

Janus kinase inhibitors are a kind of breakthrough in the treatment of alopecia areata.
Baricitinib and ritlecitinib are the first and, so far, only drugs approved by the FDA for the
treatment of AA. Baricitinib has found use for treating the disease among adult patients
(≥18 yo), while ritlecitinib can be used in both adult and adolescent patients (≥12 yo).
It is noteworthy that the research on these two formulations was conducted by a single
doctor—Dr. Brett King from Yale School of Medicine [60].

Baricitinib is a first-generation JAKinib that inhibits JAK1 and JAK2 [4]. Two random-
ized, placebo-controlled phase 3 trials conducted by a team led by Dr. Brett King showed
that oral baricitinib administered once daily had hair regrowth efficacy compared to the
control group after 36 weeks of use. The percentage of patients with a SALT score ≤20 at
36 weeks of use in the BRAVE-AA1 trial (NCT03570749) was 38.8% for the 4 mg dose of
baricitinib, 22.8% for the 2 mg drug and 6.2% for placebo, and for the BRAVE-AA2 trial
(NCT03899259) the percentages were 35.9%, 19.4% and 3.3%, respectively. Acne, increased
cholesterol and creatine kinase levels were relatively more common with baricitinib than
placebo [61].
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Ritlecitinib belongs to the second-generation inhibitors that irreversibly inhibit JAK3 [62].
A formulation containing this active ingredient was relatively recently approved for the
treatment of AA: the FDA approved it in June 2023 and the EMA in September 2023. A phase
3 trial lasting 48 weeks, also supervised by Dr. King, showed ritlecitinib to be effective in
treating AA and well tolerated among the population aged 12 years and older. Doses of
30 mg and 50 mg taken once daily (with or without a saturating dose of 200 mg taken over
four weeks) resulted in significant hair regrowth compared with the control group. The
drug was generally safe, and major adverse cardiovascular events, opportunistic infections
or deaths were reported throughout the study period (NCT03732807) [63]. A long-term
evaluation of ritlecitinib is underway: NCT04006457.

In Table 5 we have presented active and completed clinical trials of JAKi for the
treatment of alopecia areata.

Table 5. Active and completed clinical trials conducted on JAKi for the treatment of alopecia areata
according to ClinicalTrials.gov.

Janus Inhibitor Age of Group Target Administration Phase Study Number Sponsor

Active Clinical Trials

PF-06651600 ≥12 yo JAK3 Oral Phase 3 NCT04006457 Pfizer

Baricitinib 18 yo–70 yo JAK1, JAK2 Oral Phase 3 NCT03899259 Eli Lilly and
Company

Baricitinib 18 yo–70 JAK1, JAK2 Oral Phase 2/3 NCT03570749 Eli Lilly and
Company

Jaktinib 18 yo–65 yo JAK1, JAK2, JAK3 Topical Phase 1/2 NCT04445363
Suzhou Zelgen

Biopharmaceuticals
Co., Ltd.

Jaktinib 18 yo–65 yo JAK1, JAK2, JAK3 Oral Phase 3 NCT05255237
Suzhou Zelgen

Biopharmaceuticals
Co., Ltd.

Tofacitinib
12 yo–50 yo

(patients with
Down Syndrome)

JAK1, JAK3 Oral Phase 2 NCT04246372 University of
Colorado, Denver

Upadacitinib 12 yo–63 yo JAK1 Oral Phase 3 NCT06012240 AbbVie

Completed clinical trials

Delgocitinib ≥18 yo JAK1, JAK2,
JAK3, TYK2 Topical Phase 2 NCT05332366 LEO Pharma

Jaktinib ≥12 yo JAK1, JAK2, JAK3 Oral Phase 2 NCT04034134
Suzhou Zelgen

Biopharmaceuticals
Co., Ltd.

Ruxolitinib 18 yo–75 yo JAK1, JAK2 Oral Phase 2 NCT01950780 Columbia
University

Tofacitinib 18 yo–65 yo JAK1, JAK3 Oral Phase 2 NCT02299297 Columbia
University

Tofacitinib ≥18 yo JAK1, JAK3 Oral Phase 2 NCT02812342 Yale University

Tofacitinib 18 yo–90 yo JAK1, JAK3 Oral Phase 2 NCT02197455 Yale University

Tofacitinib 18 yo–60 yo JAK1, JAK3 Oral Phase 4 NCT03800979
Institute of

Dermatology,
Thailand

Tofacitinib ≥18 yo JAK1, JAK3 Oral - NCT02312882 Stanford University

PF-06700841 ≥18 yo JAK1, TYK2 Oral Phase 2 NCT05076006 Emma Guttman

Abbreviations: JAK = Janus-activated kinases; TYK = tyrosine kinase; yo = years old.

4.3. Non-Segmental Vitiligo

Acquired vitiligo involves the formation of well-demarcated, discolored patches on the
skin of any part of the body as a result of the loss of melanocytes within the epidermis. This
dermatosis affects about 1–2% of the human population. Non-segmental vitiligo clinically

ClinicalTrials.gov
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occupies the skin surface regardless of the dermatomes. Skin lesions in the course of vitiligo
impinge on the patient’s quality of life, leading to psychic discomfort, social withdrawal
and stigmatization [64–68]. Certain exogenous and/or endogenous factors in genetically
predisposed individuals lead to cellular stress within melanocytes, which promotes the
migration of CD8+ T lymphocytes into the epidermis. CD8+ T lymphocytes are responsible
for perforin- and granzyme-mediated destruction of melanocytes. These lymphocytes are
also responsible for the local production of disease-promoting proteins: interferon gamma
and tumor necrosis factor alpha. IFN-γ causes activation of the JAK/STAT pathway in
nearby keratinocytes leading to increased levels of the chemokines CXCL9 and CXCL10.
It is worth noting that CXCL10 binds to the CXCR3 receptor located on CD8+ T cells—an
example of positive feedback. The CXCL10/CXCR3 axis is involved in recruiting more T
cells to the skin, exacerbating inflammation. Interferon-gamma is responsible for inhibiting
melanogenesis and inducing melanocyte apoptosis. IFN-γ, along with its associated
heterodimer: JAK1-JAK2, plays an important role in the pathogenesis of vitiligo [69–73].

Ruxolitinib is the first and only FDA-approved pharmacological drug for the treatment
of non-segmental vitiligo. It belongs to the first generation JAK1 and JAK2 inhibitors.
Two randomized phase 3 trials (NCT04052425 and NCT04057573) were conducted in which
patients in the study group were applied 1.5% ruxolitinib cream twice daily for 52 weeks.
This ultimately resulted in relatively greater repigmentation of lesions compared to the
control group. However, it is noteworthy that patients developed acne and pruritus at the
application site [74,75].

In Table 6 we have presented active and completed clinical trials of JAKi for the
treatment of vitiligo.

Table 6. Active and completed clinical trials conducted on JAKi for the treatment of vitiligo according
to ClinicalTrials.gov.

Janus Inhibitor Age of Group Target Administration Phase Study Number Sponsor

Active Clinical Trials

Baricitinib ≥12 yo JAK1, JAK2 Oral - NCT05950542 Assiut University

Ritlecitinib ≥18 yo JAK3 Oral Phase 3 NCT06072183 Pfizer

Ritlecitinib ≥12 yo JAK3 Oral Phase 3 NCT05583526 Pfizer

Ruxolitinib 12 yo–99 yo JAK1, JAK2 Topical Phase 2 NCT05247489 Incyte
Corporation

Ruxolitinib ≥18 yo JAK1, JAK2 Topical Phase 2 NCT05750823 Incyte
Corporation

Tofacitinib
12 yo–50 yo

(patients with
Down Syndrome)

JAK1, JAK3 Oral Phase 2 NCT04246372 University of
Colorado, Denver

Completed clinical trials

Baricitinib 18 yo–75 yo JAK1, JAK2 Oral Phase 2 NCT04822584
University
Hospital,
Bordeaux

Ruxolitinib ≥18 yo JAK1, JAK2 Topical Phase 2 NCT04896385 Incyte
Corporation

Ruxolitinib 18 yo–75 yo JAK1, JAK2 Topical Phase 2 NCT03099304 Incyte
Corporation

Ruxolitinib ≥12 yo JAK1, JAK2 Topical Phase 3 NCT04057573 Incyte
Corporation

Ruxolitinib ≥12 yo JAK1, JAK2 Topical Phase 3 NCT04530344 Incyte
Corporation

Ruxolitinib ≥12 yo JAK1, JAK2 Topical Phase 3 NCT04052425 Incyte
Corporation

Upadacitinib 18 yo–65 yo JAK1 Oral Phase 2 NCT04927975 AbbVie

Abbreviations: JAK = Janus-activated kinases; TYK = tyrosine kinase; yo = years old.

ClinicalTrials.gov
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4.4. Psoriasis

Psoriasis (PsO) is an inflammatory erythematous and scaly skin disease that affects
about 2% of the population. It has been recognized by the World Health Organization
as a serious non-communicable disease, and the continued increase in its incidence is a
public health concern. The course of ordinary (plaque-like) PsO results in characteristic
sharply demarcated erythematous, itchy and scaly lesions [23,76–78]. PsO is characterized
by the properties of an autoimmune disease on (auto)inflammatory grounds [79] Activated
myeloid dendritic cells secrete TNF-α, IL-23 and IL-12, the latter two interleukins affecting
Th17 and Th1 proliferation. This results in an accumulation of Th17 and Th1 lymphocytes
within the lesions and their secretion of IL-17, IL-21 and IL-22 (Th17) and IFNγ (Th1). It
is worth noting that IL-23, for example, promotes Th17 proliferation precisely through
JAK1/JAK2/TYK2 signaling. Finally, IL-22, after binding to the surface receptors IL-10R2
and IL-22R1, leads to acanthosis of keratinocytes also through the JAK/STAT pathway,
more specifically with the participation of JAK1/TYK2 and STAT3. In addition, IL-21 and
IL-6, which are present around psoriatic lesions, stimulate Th-17 to produce IL-17 through
a JAK-STAT signaling-dependent pathway [80–85].

Deucravacitinib is a TYK2 inhibitor approved by the FDA and EMA for the treat-
ment of PsO. In the randomized phase 3 PETYK PSO-1 trial (NCT03624127), participants
were assigned to a group receiving deucravacitinib 6 mg once daily, to a group receiving
apremilast 30 mg daily, or to a placebo group. At week 16, the response rate for PASI 75
was relatively higher for the deucravacitinib-treated group than for the apremilast-treated
group and the placebo group, 58.4%, 35.1% and 12.7%, respectively. Efficacy was main-
tained until the 52nd week of the study. The most common side effects among patients
using deucravactinib were nasopharyngitis (6.3%) and upper respiratory tract infection
(6.3%) [86].

In Table 7 we have presented active and completed clinical trials of JAKi for the
treatment of psoriasis.

Table 7. Active and selected completed research on JAKi for the treatment of psoriasis according to
ClinicalTrials.gov.

Janus Inhibitor Age of Group Target Administration Phase Study Number Sponsor

Active Clinical Trials

Deucravacitinib ≥18 yo TYK2 Oral Phase 4 NCT05478499 Bristol-Myers
Squibb

Deucravacitinib 18 yo–75 yo TYK2 Oral Phase 4 NCT05858645
University of

California, San
Francisco

Deucravacitinib ≥18 yo TYK2 Oral - NCT06104644 Bristol-Myers
Squibb

Jaktinib 18 yo–65 yo JAK1, JAK2,
JAK3 Oral Phase 2 NCT04612699

Suzhou Zelgen Bio-
pharmaceuticals

Co., Ltd.

Tofacitinib

12 yo–50 yo
(patients with

Down
Syndrome)

JAK1, JAK3 Oral Phase 2 NCT04246372 University of
Colorado, Denver

Completed clinical trials

Baricitinib ≥18 yo JAK1, JAK2 Oral Phase 2 NCT01490632 Eli Lilly and
Company

Ruxolitinib 18 yo–65 yo JAK1, JAK2 Oral Phase 2 NCT00617994 Incyte Corporation

Ruxolitinib 18 yo–75 yo JAK1, JAK2 Topical Phase 2 NCT00820950 Incyte Corporation

ClinicalTrials.gov
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Table 7. Cont.

Janus Inhibitor Age of Group Target Administration Phase Study Number Sponsor

Ruxolitinib 18 yo–75 yo JAK1, JAK2 Topical Phase 2 NCT00778700 Incyte Corporation

Tofacitinib 18 yo–65 yo JAK1, JAK3 Oral Phase 1 NCT01736696 Pfizer

Tofacitinib ≥18 yo JAK1, JAK3 Topical Phase 2 NCT01831466 Pfizer

Tofacitinib ≥18 yo JAK1, JAK3 Oral Phase 2 NCT01710046 Pfizer

Tofacitinib ≥18 yo JAK1, JAK3 Oral Phase 3 NCT01882439 Pfizer

PF-06826647 18 yo–55 yo TYK2 Oral Phase 1 NCT03210961 Pfizer

PF-06263276 ≥18 yo JAK1, JAK2,
JAK3, TYK2 Topical Phase 1 NCT02193815 Pfizer

PF-06700841 18 yo–75 yo JAK1, TYK2 Oral Phase 2 NCT02969018 Pfizer

CP-690,550 18 yo–65 yo JAK1, JAK2,
JAK3 Oral Phase 2 NCT00678561 Pfizer

CP-690-550 18 yo–99 yo JAK1, JAK2,
JAK3 Oral Phase 2 NCT01246583 Pfizer

CP-690,550 ≥18 yo JAK1, JAK2,
JAK3 Oral Phase 3 NCT01815424 Pfizer

CP-690,550 ≥18 yo JAK1, JAK2,
JAK3 Oral Phase 3 NCT01309737 Pfizer

CP-690,550 ≥18 yo JAK1, JAK2,
JAK3 Oral Phase 3 NCT01276639 Pfizer

CP-690,550 ≥18 yo JAK1, JAK2,
JAK3 Oral Phase 3 NCT01186744 Pfizer

CP-690,550 ≥20 yo JAK1, JAK2,
JAK3 Oral Phase 3 NCT01519089 Pfizer

Abbreviations: JAK = Janus-activated kinases; TYK = tyrosine kinase; yo = years old.

4.5. JAK Inhibitors in Other Dermatology Conditions

The JAK/STAT pathway is involved in the pathogenesis of many other diseases mani-
fested by skin lesions. Studies are underway to test the therapeutic potential of Janus kinase
inhibitors in such dermatological conditions as: hidradenitis suppurativa, chronic hand
eczema, diffuse cutaneous systemic scleroderma, granuloma annulare, dermatomyositis,
lichen planus and lupus erythematosus. In Table 8, we preface current and completed
clinical trials on the therapeutic value of JAKi in these conditions.

Table 8. Active and completed clinical trials conducted on the use of JAK inhibitors w hidradenitis
suppurativa, chronic hand eczema, diffuse cutaneous systemic scleroderma, granuloma annulare,
dermatomyositis, lichen planus and lupus erythematosus according to ClinicalTrials.gov.

Dermatological
Condition JAK Inhibitor Target Administration Status Phase Study

Number Sponsor

Hidradenitis
suppurativa Tofacitinib JAK1, JAK3 Oral Active Phase 2 NCT04246372

University of
Colorado,
Denver

Upadacitinib JAK1 Oral Active Phase 3 NCT05889182 AbbVie

Deucravacitinib TYK2 Oral Active Phase 2 NCT05997277
Beth Israel
Deaconess

Medical Center

Upadacitinib JAK1 Oral Completed Phase 2 NCT04430855 AbbVie

INCB054707 JAK1 Oral Completed Phase 2 NCT03607487 Incyte
Corporation

ClinicalTrials.gov
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Table 8. Cont.

Dermatological
Condition JAK Inhibitor Target Administration Status Phase Study

Number Sponsor

Chronic hand
eczema Ruxolitinib JAK1, JAK2 Topical Active Phase 2 NCT05906628 Incyte

Corporation

Delgocitinib JAK1, JAK2,
JAK3, TYK2 Topical Completed Phase 2 NCT03683719 LEO Pharma

Diffuse
cutaneous
systemic

scleroderma

Tofacitinib JAK1, JAK3 Oral Active Phase 2 NCT06044844

Bangabandhu
Sheikh Mujib

Medical
University,

Dhaka,
Bangladesh

Tofacitinib JAK1, JAK3 Oral Completed Phase 1/2 NCT03274076 University of
Michigan

Granuloma
Annulare AC-1101 JAK1, JAK3 Topical Active Phase 1 NCT05580042

TWi
Biotechnology,

Inc.

Abrocitinib JAK1 Oral Active Phase 2 NCT05650736 William
Damsky

Tofacitinib JAK1, JAK3 Oral Completed Phase 1 NCT03910543 Yale University

Dermatomyositis Tofacitinib JAK1, JAK3 Oral Completed Phase 1 NCT03002649 Johns Hopkins
University

Baricitinib JAK1, JAK3 Oral Active Phase 3 NCT04972760

Assistance
Publique—

Hôpitaux de
Paris

Baricitinib JAK1, JAK3 Oral Active Phase 2 NCT05524311

Assistance
Publique—

Hôpitaux de
Paris

Brepocitinib JAK1, TYK2 Oral Active Phase 3 NCT05437263
Priovant

Therapeutics,
Inc.

Baricitinib JAK1, JAK2 Oral Completed Phase 2 NCT05188521 Aaron R.
Mangold

Lupus
erythematosus Deucravacitinib TYK2 Topical Active Phase 3 NCT05620407 Bristol-Myers

Squibb

Deucravactinib TYK2 Topical Active Phase 3 NCT05617677 Bristol-Myers
Squibb

Upadacitinib JAK1 Oral Active Phase 3 NCT05843643 AbbVie

Tofacitinib JAK3, JAK1 Oral Active Phase 1 NCT05048238

National
Institute of
Allergy and
Infectious
Diseases
(NIAID)

Tofacitinib JAK3, JAK1 Oral Completed Phase 1 NCT02535689

National
Institute of

Arthritis and
Musculoskele-
tal and Skin

Diseases
(NIAMS)

Tofacitinib JAK3, JAK1 Oral Completed Phase 2 NCT03288324

Children’s
Hospital

Medical Center,
Cincinnati

Delgocitinib JAK1, JAK2,
JAK3, TYK2 Topical Completed Phase 2 NCT03958955 LEO Pharma
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Table 8. Cont.

Dermatological
Condition JAK Inhibitor Target Administration Status Phase Study

Number Sponsor

Baricitinib JAK1, JAK2 Oral Completed Phase 2 NCT02708095 Eli Lilly and
Company

Baricitinib JAK1, JAK2 Oral Completed Phase 3 NCT03616912 Eli Lilly and
Company

Baricitinib JAK1, JAK2 Oral Completed Phase 3 NCT03843125 Eli Lilly and
Company

Baricitinib JAK1, JAK2 Oral Completed Phase 3 NCT03616964 Eli Lilly and
Company

Abbreviations: JAK = Janus-activated kinases; TYK = tyrosine kinase.

5. Side Effects of Janus Kinase Inhibitors

What researchers always pay attention to, in addition to the effectiveness of a method,
are its side effects. In 2019, the FDA added boxed warnings (formerly known as Black
Box Warnings) regarding the increased risk of blood clots and death during oral use of
tofacitinib 10 mg twice daily in patients with ulcerative colitis [87]. In the ORAL Surveil-
lance study (NCT02092467), the incidence of cancer and major adverse cardiovascular
events (MACE) were compared among groups of patients receiving tofacitinib 5 mg twice
daily, tofacitinib 10 mg twice daily and a tumor necrosis factor inhibitor. All patients had
active rheumatoid arthritis, had at least one additional cardiovascular risk factor and were
aged 50 years or older. The final results showed that the risk of MACE and cancer was
relatively higher for the combined doses of tofacitinib (3.4% and 4.2%, respectively) than
for the TNF inhibitor (2.5% and 2.9%) [88]. Post hoc analysis of this study showed that
the presence at baseline of risk factors such as smoking, age > 65 years, taking oral contra-
ceptives/hormone replacement therapy and venous thromboembolism (VTE), coronary
artery disease or a history of hypertension resulted in an increased risk of VTE or MACE
among patients taking JAKi therapy [89,90]. This information raises questions about the
advantage of benefits over risks in treating dermatological conditions with Janus kinase
inhibitors. However, it is noteworthy that the population of patients with dermatological
conditions is relatively younger compared to those suffering from rheumatoid arthritis. It
is also worth noting that a large cohort study that included 158,123 patients showed that
chronic inflammatory skin diseases, including psoriasis, alopecia areata, vitiligo and atopic
dermatitis were not associated with an increased incidence of VTE after controlling for
relevant VTE risk factors [91]. In Table 9, we collected patient-reported selected adverse
reactions in clinical phase 3 trials that had been ongoing on FDA- or EMA-approved JAKs
for the treatment of dermatological conditions: ruxolitinib, upadacitinib, abrocitinib, baric-
itinib, deucravacitinib and ritlecitinib [27,40,41,44,47,48,61,63,74,75,86,92–96]. It is very
essential that dermatologists thoroughly conduct a subject and physical examination of
the patient. This will allow them to assess the patient’s comorbidities, current condition
and the medications he is taking. This knowledge will make it possible to estimate as
accurately as possible whether the introduction of JAKi into therapy in a given case will
bring more benefits or risks [27]. However, of great note is the fact that severe adverse
events during the use of JAKi in dermatoses are rare, and common side effects, which
include nasopharyngitis, nausea, headache and others are easily manageable and should
not pose a risk to the patient.
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Table 9. Selected side effects after the treatment of dermatological conditions using Janus kinase
inhibitors approved by the FDA or EMA.

Selected Side Effects after the Treatment of Dermatological Conditions of Oral Janus Kinase
Inhibitors

Infections Upper respiratory infections
Nasopharyngitis

Herpes Simplex reactivation
Herpes Zoster reactivation

Urinary tract infections
Serious infection

Gastrointestinal disorders Nausea
Diarrhea

Neurological disorders Headache
Dizziness

Skin side effects Acne
Itching

Folliculitis

Laboratory abnormalities Elevated creatine phosphokinase levels
Increased levels of cholesterol and low- and

high-density lipoproteins
Neutropenia

Thrombocytosis

Venous thromboembolism

Tumors

Selected side effects after the treatment of dermatological conditions of topical Janus kinase
inhibitors

Neutropenia

Oral herpes

Application site pain

Application site pruritus

Skin bacterial infection

Alopecia

Application site erythema

Skin papilloma

6. Conclusions

The JAK-STAT pathway plays a huge role in the pathogenesis of many conditions,
including dermatological diseases. Awareness of the importance of this pathway has
led to the development in recent years of a new class of drugs—Janus kinase inhibitors.
Undoubtedly, JAK Inhibitors expand the range of available therapeutic options for many
dermatological conditions. It is important to remember that dermatological diseases are
not only an aesthetic problem, but mainly, and perhaps primarily, conditions that reduce
quality of life, satisfaction with one’s appearance and sense of self-confidence. This can
be associated with impaired social functioning and depressed mood in these patients, so
effective treatment appears to be crucial to maintaining the physical and psychological
well-being of patients. JAKinibs represent a promising class of drugs due to the fact that
they tend to act quickly, their route of administration is not injection, they have a relatively
favorable safety profile and, most importantly, they serve as an effective alternative for
patients among whom other therapies have failed. As we have shown above, numerous
studies are currently underway to expand the indications for the use of currently approved
JAKi, as well as to introduce new Janus kinase inhibitors, creating new opportunities to
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provide therapy in atopic dermatitis, psoriasis, alopecia areata and non-segmental vitiligo.
Moreover, numerous studies on the effectiveness of this group of drugs in hidradenitis
suppurativa, dermatomyositis and others are enthusiastically underway. This gives hope to
patients for effective treatment of their form of the disease. The increase in the prevalence
of the dermatological conditions we have described in this article, as well as other diseases,
will drive scientific efforts on the efficacy, use and safety of JAK inhibitors in the coming
years. They will undoubtedly find a place in the treatment process, either used in high
doses during active treatment, in lower doses as chronic treatment or in combination with
other drugs. Of course, it should be kept in mind that, as in all of medicine, drugs used
to treat dermatological conditions, in our case, Janus kinase inhibitors, have their side
effects, so it seems important to scientifically determine the dosage and safety profile to
achieve an optimal therapeutic effect. However, it needs to be added that due to the fact
that JAKi are relatively new drugs, a huge role is played by healthcare providers, who
should carefully analyze each patient’s risk factors before introducing such therapy and
follow strict guidelines. Ongoing research on JAKinibs will allow further development
of this branch of pharmacotherapy. We believe that despite the fact that some time has
passed since the FDA approved the first JAKi (ruxolitinib—November 2011), as well as the
first approval of JAKi for the treatment of dermatological conditions (ruxolitinib for the
treatment of atopic dermatitis; September 2021), JAKi are still drugs whose development
needs to be watched closely, as they may prove to be major players in the market among
dermatological patients.
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