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Abstract: The water–gas shift (WGS) performance was investigated over 5%Ni/CeO2, 5%Ni/Ce0.95

Pr0.05O1.975, and 1%Re4%Ni/Ce0.95Pr0.05O1.975 catalysts to decrease the CO amount and generate
extra H2. CeO2 and Pr-doped CeO2 mixed oxides were synthesized using a combustion method.
After that, Ni and Re were loaded onto the ceria support via an impregnation method. The structural
and redox characteristics of monometallic Ni and bimetallic NiRe materials, which affect their water–
gas shift performance, were investigated. The results show that the Pr addition into Ni/ceria increases
the specific surface area, decreases the ceria crystallite size, and improves the dispersion of Ni on
the CeO2 surface. Furthermore, Re addition results in the enhancement of the WGS performance of
the Ni/Ce0.95Pr0.05O1.975 catalyst. Among the studied catalysts, the ReNi/Ce0.95Pr0.05O1.975 catalyst
showed the highest catalytic activity, reaching 96% of CO conversion at 330◦. It was established
that the occurrence of more oxygen vacancies accelerates the redox process at the ceria surface. In
addition, an increase in the Ni dispersion, Ni surface area, and surface acidity has a positive effect on
hydrogen generation during the water–gas shift reaction due to favored CO adsorption.

Keywords: Re; hydrogen production; water–gas shift; bimetallic catalyst

1. Introduction

Water–gas shift (WGS) reaction is an industrial technology that involves the reaction
of water vapor and carbon monoxide to generate H2 and CO2. The water–gas shift reaction
takes place according to the following equation:

CO + H2O ⇆ H2 + CO2 ∆H298 = −41.2 kJ/mol (1)

The development of H2 and fuel cell technologies provides numerous advantages such
as high-efficiency power, environmentally friendliness, and sustainability. WGS reactions
have received widespread attention to increase the H2 concentration in the syngas. Hydro-
carbon reforming can produce syngas that consists of CO, H2, H2O, and CO2. However,
a trace concentration of CO poisons the catalysts utilized in fuel cells [1]. Precious metal-
based proton exchange membrane fuel cell anodes require a carbon monoxide amount
in the inlet gas below 10–20 ppm; otherwise, the anode is poisoned [2]. A purification
process is required to decrease the CO concentration lower than the cell tolerance level
after hydrogen is produced via the reforming process of carbon-containing molecules (such
as hydrocarbons or alcohols). The advantage of using the WGS reaction is to reduce CO
content while generating more hydrogen as fuel for the H2 fuel cell. The appearance of a
suitable catalyst in the WGS reaction can reduce the CO content to 10 ppm.

The support plays a critical role in oxidation reactions such as water–gas shift reactions
or CO oxidation. The utilization of redox-active oxides such as CeO2 as a support material
leads to superior catalytic efficiency compared to the use of other oxide support such as
alumina or silica [3–6]. Due to its redox characteristics, CeO2 can promote vacancy genera-
tion and water dissociation, which plays an important role in the catalytic performance of
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water–gas shift reactions. However, pure CeO2 has some disadvantages, like deactivation
of the Ce4+/Ce3+ redox couple and thermal sintering, resulting in a reduction in its oxy-
gen storage capacity (OSC) and catalytic performance [7]. Thus, many efforts have been
dedicated to improving the reducibility and catalytic performance of CeO2 by doping it
with other cations to generate more oxygen vacancies and develop its resistance to thermal
sintering [8,9]. In this part, doping CeO2 with aliovalent (such as Eu3+, La3+, Gd3+, and
Sm3+) cations [10–12] or isovalent (such as Zr4+, Hf4+, and Ti4+) cations [13,14] has been
well described in the literature. The incorporation of an aliovalent cation into the CeO2
lattice produces oxygen vacancies by charge compensation on the final oxide materials [15].
Conversely, the CeO2 doping with isovalent cations also results in the enhancement of
the redox properties of CeO2. Therefore, the partial substitution of Ce4+ by Zr4+ causes a
deformation in the CeO2 lattice because of the lower ionic radius of isovalent cations such
as Zr4+, deriving an enhancement in the OSC of CeO2. Moreover, these two effects can
also be combined in a single study when doping CeO2 with variable oxidation states of
lanthanide elements. In such cases, Tb [16] and Pr [17,18] are the most studied ones. The
Pr addition into the CeO2 lattice enhances both oxygen desorption and oxygen vacancy
generation compared to pure CeO2. This result is due to the lower binding energy of oxygen
anions in Ce-Pr mixed oxides and the higher reduction potential of Pr4+/Pr3+ compared
to Ce4+/Ce3+. Therefore, the Zr dopant induces a limited amount of oxygen vacancies
into the CeO2 lattice [19,20], whereas the Pr dopant leads to a greater concentration of
oxygen vacancies [21]. These behaviors result in redox properties in the Ce-Pr mixed oxides
being superior to those of other mixed oxides. In previous works, Ce-Pr-O mixed oxide
supports were studied for WGS reaction. It was found that the optimum promoting effect
of Pr appears at a low loading of 5 %wt. [22,23]. In addition, the catalytic activity of such
oxides can be obviously improved by adding a small amount of transition metals (cobalt,
chromium, copper, and nickel) [24–26]. Nickel combined with CeO2-based oxides are cost-
effective alternatives to expensive noble metal catalysts and are often more reactive than
noble metals [27]. However, CO and CO2 methanation are very common side reactions for
these catalysts [28,29]. This behavior is usually tempered by the incorporation of a second
active metal like platinum [30,31]. Rhenium might be a good choice for replacing Pt catalyst
because of its good electrochemical properties, its cheaper price compared to platinum,
and its sustainable source. Re is widely used as a second metal to form bimetallic catalysts.
In recent years, the use of bimetallic catalysts has attracted much attention due to their
excellent efficiency and capability [32–34]. The effect of rhenium on the WGS performance
of Pt/TiO2 and Pt/ZrO2 catalysts has been investigated, and the results exhibited that
rhenium addition induces an increase in the WGS activity of Pt catalysts. Rhenium acts as
an anchor for the platinum particles to enhance the Pt dispersion. In addition, the redox
process between Re4+ and Re7+ over the WGS reaction would promote CO oxidation on
the Pt catalyst [35,36]. Our initial studying found that rhenium also enhanced the WGS
activity when it was doped on Ni/CeO2–based oxides [11,37,38]. Apart from enhancing
the performance of the WGS reaction, Pt–Re/carbon has also been reported to be active in
several reactions, such as the reforming process [23] and glycerol to syngas conversion [39].
Furthermore, in studying the catalytic activity of ReCo/Al2O3 for the Fischer–Tropsch
reaction found that Re addition increased the reaction rate of the Co catalyst. Re has
been shown to be a good promoter by facilitating the reduction rate of cobalt species and
producing more available active Co metal sites to participate in the reaction [40].

In this work, the performance of Ni/CeO2 and Ni/Ce0.95Pr0.05O1.975 catalysts for the
water–gas shift reaction was studied. Additionally, the role of rhenium addition on the
water–gas shift performance of Ni/Ce0.95Pr0.05O1.975 catalyst was also observed. Therefore,
the utilization of Pr as a dopant and Re as a metal additive in this work to maximize
the WGS performance. The physicochemical properties of monometallic and bimetal-
lic catalysts were examined to clarify the key factors in increasing the catalytic activity
using the following techniques: X-ray diffraction, BET surface area, NH3 temperature
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programmed desorption, H2 temperature programmed reduction, Raman spectroscopy,
and chemisorption techniques.

2. Results and Discussion
2.1. Catalysts Characterization

X-ray diffraction patterns of CeO2, 5%Ni/CeO2, 5%Ni/Ce0.95Pr0.05O1.975, and 1%Re4%
Ni/Ce0.95Pr0.05O1.975 were illustrated in Figure 1. It suggests that the diffraction peaks
of all catalysts correspond well to CeO2 phases with a cubic structure (Joint Committee
on Powder Diffraction File No. 43-1002). In addition, the weak peaks at 2θ about 37.1◦,
43.2◦ and 63.2◦ attributed to the NiO phases of Ni-based catalysts, suggesting that there
was a small proportion of nickel oxide. The CeO2 crystallite size of supported Ni catalysts
was determined using the Debye–Scherrer equation (Table 1). The calcination of Ni/CeO2
catalyst at a high temperature (650 ◦C) after impregnation of Ni onto ceria support leads to
the aggregation of ceria crystallites; thereby, the surface area decreases with a growth in
CeO2 crystallite size. However, Pr addition into 5%Ni/CeO2 results in a decrease in the
ceria crystallite size together with an increase in a specific surface area. The diffraction peaks
of Ni/Ce0.95Pr0.05O1.975 and ReNi/Ce0.95Pr0.05O1.975 appeared at lower diffraction angles
compared with the diffraction peaks of Ni/CeO2, indicating that Pr incorporation in the
CeO2 lattice enlarged unit cell. The enhancement of the unit cell for Ni/Ce0.95Pr0.05O1.975
when compared with Ni/CeO2 is due to Ce4+ ions (0.097 nm) being replaced by larger
Pr3+ ions (0.112 nm). Therefore, an oxygen vacancy is expected to be formed because Pr3+

incorporation in the CeO2 lattice produces unbalanced charges and strain. On the other
hand, the diffraction peaks of Ni/CeO2 appeared at higher diffraction angles compared
with the diffraction peaks of pure CeO2 because of the lattice contraction after calcination
at high temperatures. Nickel could not be incorporated into CeO2 lattice due to the
nature of impregnation synthesis but the reduction in the cell dimension because of the
decomposition of surface hydroxyls during calcination at 650 ◦C.
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Figure 1. XRD patterns of Ni catalysts and CeO2 support.

H2 chemisorption analysis was used to determine the Ni dispersion of supported Ni
catalysts. It was found that an addition of Pr to Ni/CeO2 increases Ni dispersion on the
catalyst surface. Moreover, rhenium impregnation onto Ni/Ce0.95Pr0.05O1.975 tremendously
enhanced the dispersion and surface area of metallic nickel. This result may be due to the
movement of electrons between Re, Ni, and CeO2, which results in the formation of strong
interaction between Ni metal and support; thereby, the metal dispersion and metal surface
coverage enhances, whereas particle size reduces. 1%Re4%Ni/Ce0.95Pr0.05O1.975 exhibited
the highest Ni surface area and dispersion among all the catalysts. Usually, a greater metal
surface area provides more surface active sites exposed to reactants [36,37].
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Table 1. BET surface area, crystallite size of CeO2, Ni dispersion, and Ni surface area of Ni-based
catalysts.

Catalysts Crystallite
Size a (nm)

BET Surface
Area b (m2/g)

Ni
Dispersion c

(%)

Ni Particle
Size c (nm)

Ni Surface
Area c (m2/g)

CeO2 9.8 68 - - -

5%Ni/CeO2 13.35 45 0.17 35.1 0.95

5%Ni/CePrO 8.55 64 0.30 19.6 1.70

1%Re4%Ni/CePrO 8.01 60 1.15 5.50 6.08
a Calculated from the 111 diffraction peak broadening. b Estimated from N2 adsorption at −196 ◦C. c Estimated
from H2-chemisorption.

The chemical analysis by SEM micrographs with the corresponding elemental map-
ping was conducted to investigate the elemental distribution and the homogeneity of
the supported Ni catalyst. As presented in Figure 2, Ce, Pr, and Ni elements were uni-
formly distributed on 5%Ni/Ce0.95Pr0.05O1.975 catalysts. The highly dispersed Ni suggests
a strong metal–support interaction, and the enhancement in Ni dispersion would provide
more active sites that are exposed to reactants, which is beneficial to the increase in WGS
performance.
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Raman spectroscopy was performed to quantify oxygen vacancies in the catalyst. CeO2
catalyst initiates the water–gas shift process via a redox mechanism at high temperatures.
CO adsorbs on the catalyst surface and subsequently oxidizes it with CeO2 lattice oxygen to
generate carbon dioxide and oxygen vacancy. H2O oxidizes reduced CeO2 again to produce
H2. A mechanism for increasing the catalytic performance of CeO2 is the incorporation of
dopant ions, with Pr3+ as a promising candidate dopant [41]. It is widely regarded that
when doping CeO2 with a trivalent cation, two Ce4+ ions in the CeO2 lattice are substituted
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by the dopants, and then an O ion is eliminated to conserve the charge [15]. Therefore,
oxygen vacancy is directly related to catalytic activity in water–gas shift reaction.

As shown in Figure 3, a Raman peak near 460 cm−1 was attributed to a triple degener-
acy active mode (F2g peak), which represents the symmetrical stretching vibration generated
by eight O atoms bound to one Ce atom. Secondary peaks at around 240 and 320 cm−1

characteristics of CeO2 nanostructures are also found in 1%Re4%Ni/Ce0.95Pr0.05O1.975. In
addition, another broad peak near 570 cm−1 (denoted by D peak) was associated with oxy-
gen vacancies in CeO2 [42,43]. The oxygen vacancies concentration can be represented by
the ratio of ID/IF2g [44]. The intensity of the D peak in 1%Re4%Ni/Ce0.95Pr0.05O1.975 catalyst
is stronger than that of other catalysts, indicating that higher oxygen vacancy concentration
can be obtained by the addition of Re onto Ni/Ce0.95Pr0.05O1.975 catalyst. Moreover, the
presence of Ce3+ in the CeO2-based catalyst can be demonstrated by a red shift of the F2g

peak, which is due to the lattice expansion when Ce4+ ions (ionic radius 0.097 nm) are
replaced by Ce3+ ions (ionic radius 0.114 nm) for oxygen vacancy formation [43,45]. The
enhancement of oxygen vacancy concentration in the 1%Re4%Ni/Ce0.95Pr0.05O1.975 catalyst
enables the interaction between rhenium, nickel, and CeO2 to drive the metal dispersion
and prevent the sintering of metal particles. This result indicates that the addition of Re to
the Ni/Ce0.95Pr0.05O1.975 catalyst improves the reducibility and stability.
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The H2-TPR profiles of CeO2, 5%Ni/CeO2, 5%Ni/Ce0.95Pr0.05O1.975, and 1%Re4%Ni/
Ce0.95Pr0.05O1.975 catalysts are shown in Figure 4. The H2-TPR of CeO2 exhibits two broad
peaks at 500 ◦C and 750 ◦C. The peak at 500 ◦C is assigned to the reduction of surface-
capping oxygen of CeO2, and the peak at 750 ◦C is assigned to the bulk CeO2 reduction.
The TPR profile of the Ni/CeO2 catalyst is characterized by a low-temperature peak at
272 ◦C, medium temperature at 345 ◦C, and bulk reduction at 830 ◦C. The reduction peak
at 272 ◦C is assigned to the reduction of nickel oxide species. The consumption peak at
345 ◦C is assigned to the Ni-catalyzed reduction of the CeO2 surface [46,47]. It is interesting
to note that the incorporation of Ni to CeO2 support significantly shifts the reduction peak
of surface CeO2 from 500 ◦C to 345 ◦C. The H2-TPR of Ni/Ce0.95Pr0.05O2−δ presented
two nickel oxide reduction peaks at 220 ◦C and 278 ◦C, which was due to the different
environments of Ni. The peak at 220 ◦C is probably due to the reduction of Ni in the
vicinity of CeO2, whereas the consumption peak at 278 ◦C is due to the presence of Pr.
The reduction peak of surface and bulk species of Ni/Ce0.95Pr0.05O1.975 appeared at the
same position as the reduction of Ni/CeO2. This indicated that the addition of Pr to
Ni/CeO2 alters the NiO reduction behavior. The H2-TPR profile of the bimetallic ReNi
is different from those of monometallic Ni supported on Pr-doped CeO2. In this case,
electron density transfers between Re, Ni, Ce, and Pr may occur. As the result of electron
density transfer, a concurrent reduction of metal oxide species was found, and reduction
of metal oxide is easier. A stronger interaction between nickel and CeO2 is expected to
tune the nickel dispersion. The reduction peak appearing at a higher temperature normally
means that it is more difficult to reduce with stronger metal–support interactions [48].
For the 1%Re4%Ni/Ce0.95Pr0.05O1.975 catalyst, stronger metal-support interactions are
presented, which proved that the reduction of the surface shell of CeO2 occurred at a higher
temperature. The stronger interaction between metal and support is beneficial to maintain
the metal dispersion and hinder its aggregation.
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The surface acidity of the prepared catalysts was studied using temperature-programmed
desorption of ammonia (Figure 5), and the total acidity was estimated from the area under
the NH3 desorption peak. NH3-TPD analysis was carried out in order to clarify the
effect of the acidity of ReNi/Ce0.95Pr0.05O1.975 and Ni/Ce0.95Pr0.05O1.975 on the catalytic
performance in the water–gas shift reaction. The peaks were assigned to weak, medium, or
strong acid sites when falling in the 100–200 ◦C, 200–450 ◦C, or 450–700 ◦C temperature
range, respectively. Increased surface acidity enabled a higher content of CO adsorption on
the catalyst surface since a CO reactant in the WGS process is a weak base, explaining the
observed increase in catalyst activity. Furthermore, the acidic character of the Ni catalyst
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surface proved to be beneficial for CO2 desorption, leaving behind free active sites for
carbon monoxide and H2O adsorption in subsequent reaction cycles [49]. The result from
NH3-TPD analysis indicates that the addition of Re onto Ni/Ce0.95Pr0.05O1.975 increases
the concentration of weak-strength acid sites (peak area increases at <200 ◦C). In addition,
the total concentration of surface acid sites can be estimated by integrating the NH3-TPD
curves, and it was found to be 41 and 28 mols/g for 1%Re4%Ni/Ce0.95Pr0.05O1.975 and
5%Ni/Ce0.95Pr0.05O1.975, respectively. The obtained results could imply a higher tendency
for carbon monoxide adsorption and subsequently easier CO2 desorption on the bimetallic
ReNi supported by Pr-doped CeO2 surface, thereby the overall water–gas shift reaction
rate over ReNi/Ce0.95Pr0.05O1.975 may be enhanced.
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XPS characterization was used to investigate the surface chemical states of the catalysts.
Figure 6a shows the O 1s XPS spectra of 5%Ni/Ce0.95Pr0.05O1.975 and 1%Re4%Ni/Ce0.95Pr0.05
O1.975 catalysts. Three different types of oxygen species were detected in all samples. The
detected peaks near 529 eV (OL), 532 eV (OA), and 533 eV (OH) are attributed to lattice
oxygen in metal oxide, chemically adsorbed oxygen on the surface, and a surface hydroxyl
oxygen species, respectively. The ratios of OA/OL, which are calculated from the area of
each peak, are an indicator of active oxygen vacancies on the surface [50,51]. XPS results
indicated that active oxygen vacancies were higher for the 1%Re4%Ni/Ce0.95Pr0.05O1.975
(OA/OL = 0.28) compared to 5%Ni/Ce0.95Pr0.05O1.975 catalysts (OA/OL = 0.24). Therefore,
the bimetallic ReNi catalyst tended to display greater activity due to it producing more
vacancies or defects.

5%Ni/Ce0.95Pr0.05O1.975 and 1%Re4%Ni/Ce0.95Pr0.05O1.975 illustrated Ni 2p spectra
mainly contributed by Ni2+ species at around 855 and 856 eV with a minor content of
Ni0 species at around 853 eV (Figure 6b). All samples were reduced with 5%H2/N2 at
400 ◦C for 1 hour before XPS measurement. Ni species in the reduced catalysts were in the
form of metallic Ni. Furthermore, the different Ni species co-existed due to the interaction
with CeO2-based materials. Metallic Ni0 was indicated to be the dominant active species in
accelerating the reactants with content of 36.6% and 23.3% in 1%Re4%Ni/Ce0.95Pr0.05O1.975
and 5%Ni/Ce0.95Pr0.05O1.975 catalysts, respectively. Therefore, the increase in metallic Ni
amount in the bimetallic ReNi catalyst implies a superior catalytic performance of Ni
catalyst by the addition of Re.
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SEM analysis (shown in Figure 7) confirms there was almost no carbon deposition on
the surface for the used 1%Re4%Ni/Ce0.95Pr0.05O1.975 catalyst. Wang et al. [52] reported that
more carbon was deposited and accumulated on the surface of monometallic Ni catalysts
during steam reforming of biomass tar, whereas bimetallic NiFe catalysts suppressed
the carbon deposition on the surface of the reacted catalyst. Therefore, using bimetallic
catalysts could prevent coke formation on the catalysts by providing oxidation of the
accumulated carbon.
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The carbon deposition of the spent catalysts was evaluated by TG analysis (Figure 8).
The oxidation of the carbon deposition in the air leads to weight loss. Small weight
loss at low temperatures (below 200 ◦C) was ascribed to the elimination of moisture and
volatile species [53]. The mass loss in the range of 200–400 ◦C was ascribed to the thermal
decomposition of physisorbed carbonaceous species or soft-coke. A major weight reduction
between 400 and 600 ◦C was due to the bulky carbonaceous products or hard coke on
the used catalysts. The weight loss percentages of the bulky carbonaceous species on
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monometallic Ni and bimetallic NiRe catalysts were 11.6% and 6.2% for 5%Ni/CeO2 and
1%Re4%Ni/Ce0.95Pr0.05O1.975, respectively, indicating that carbon decomposition decreases
when use Pr as dopant and Re as metal additives.
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2.2. Water–Gas Shift Activity and Stability

Figure 9 exhibits the %CO conversion of Ni/CeO2, Ni/Ce0.95Pr0.05O1.975, and ReNi/
Ce0.95Pr0.05O1.975. From previous studies, it was found that further addition of Re does
not further raise the rate of water–gas shift reaction, and the optimal content of Re that is
enough to maximize the water–gas shift rate is 1 %wt. [54]. When attention is drawn to the
variation in Sm amount [12], it appears that the Ni catalyst with 5%Sm-doped CeO2 gives
the highest water–gas shift activity. The enhancement of Sm content to 15 wt.% leads to
a lowering of nickel dispersion. This result is due to the agglomeration of samarium at a
high amount. Therefore, 5% doping amount and 1% of Re metal additives were used in
this work to maximize the WGS performance. For Ni/CeO2, the CO conversion started
above 150 ◦C and ascended slowly to reach the maximum conversion of 84% at 350 ◦C. As
observed, the highest CO conversion was achieved over a bimetallic NiRe/CePrO catalyst,
reaching 96% CO conversion at 330 ◦C with a WGS activity higher than the activities of
the monometallic catalysts. NiRe/Ce0.95Pr0.05O1.975 has been determined as an excellent
catalyst due to its high surface acidity, nickel metal dispersion, and nickel surface area
which can enhance the concentration of CO adsorption on the catalyst surface. Furthermore,
the NiRe/Ce0.95Pr0.05O1.975 catalyst produced more oxygen vacancies, which could increase
the redox ability, causing higher WGS activity.

Figure 10 presents the CO2 and CH4 selectivity of Ni/Ce0.95Pr0.05O1.975 and ReNi/Ce0.95
Pr0.05O1.975 in the temperature range of 300–500 ◦C. 1%Re4%Ni/Ce0.95Pr0.05O1.975 was ex-
hibited to be an excellent catalyst in terms of WGS activity and selectivity of CO2 and
CH4. Methane is an unwanted product because it is a precursor for coke formation and
competes against H2 generation. As observed, 5%Ni/Ce0.95Pr0.05O1.975 generates CH4 at
low temperatures, whereas 1%Re4%Ni/Ce0.95Pr0.05O1.975 is highly selective toward the
WGS reaction throughout the investigated temperature. Thus, the incorporation of Re
onto Ni/Ce0.95Pr0.05O1.975 increased CO conversion at the same time that it suppressed
CH4 formation.
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The water–gas shift stability has been performed on the most active catalyst, ReNi/Ce0.95
Pr0.05O1.975, under the feed mixture containing 5% CO, 10% H2O, and 85% N2 at 300 ◦C.
As shown in Figure 11, the ReNi/Ce0.95Pr0.05O1.975 catalyst retained a high CO conversion
of about 89% during the first 20 h on stream. Then, the CO conversion slightly decreases
to 82% after 60 h of reaction. Hence, the bimetallic ReNi supported by Pr-doped CeO2 is
resistant toward deactivation during a water–gas shift reaction.
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Figure 11. Long-term stability test at 300 ◦C of 1%Re4%Ni/Ce0.95Pr0.05O1.975.

3. Experimental Procedure
3.1. Catalysts Preparation

A combustion technique was used to synthesize pure CeO2, and ceria–praseodymia
mixed oxides supports with Ce(NO3)3.6H2O (Sigma-Aldrich, Pte. Ltd., Singapore) and
Pr(NO3)3.6H2O (Sigma-Aldrich, Pte. Ltd., Singapore) as starting materials. Urea was
utilized as a fuel to ignite the reaction. The redox reactions between NH2CONH2 and metal
nitrates provide the exothermicity essential for the nucleation and growth of the metal
oxide powders [55]. Metal nitrate was mixed with urea using a stoichiometry between urea
and metal nitrates as 1:2.5. Stirring a mixture obtained a homogeneous solution and then
heating with a Bunsen burner until autoignition occurred. CeO2 and ceria–praseodymia
mixed oxides powders were obtained by the thermal decomposition of nitrate and other
organic compounds [56].

Ni(NO3)2.6H2O (Alfa Aesar, Thermo Fisher Scientific Inc, Seoul, Republic of Korea)
and NH4ReO4 (Sigma-Aldrich, Pte. Ltd., Singapore) were used as the metal precursors
for the preparation of Ni/CeO2, Ni/Ce0.95Pr0.05O1.975, and ReNi/Ce0.95Pr0.05O1.975 via
impregnation method. A solution of nickel and rhenium was added to ceria and ceria–
praseodymia mixed oxides powders. All catalysts were dried at 100 ◦C for 12 h and calcined
at 650 ◦C for 8 h.

3.2. Catalyst Characterization

The specific surface areas of all catalysts were measured by N2 adsorption–desorption
isotherms at 77 K using the BELSORP-MAX instrument (ITS Co. Ltd., Bangkok, Thailand).
The samples were outgassed at 300 ◦C for 3 hours before the analysis. The Brunauer–
Emmett –Teller method was utilized to estimate the specific surface areas of the catalysts.

X-ray powder diffraction (XRD) was performed using a PANalytical X’Pert Pro diffrac-
tometer (Malvern Panalytical Ltd., Malvern, UK) with the filtered radiation of a copper
anode in the range temperature of 20–80◦. The X-ray diffractograms were collected using
the current of 40 mA and 40 kV with 0.02◦ per step and 0.5 s per step. The crystallite sizes of
CeO2 were estimated from the full width at half maximum of the strongest (111) reflection
using the Debye–Sherrer equation.

Raman spectra were collected on Perkin-Elmer System 2000 FTIR/FT-Raman (Perkin
Elmer, Rodgau, Germany) with argon ion laser irradiation at 532 nm wavelength and
10 mW maximum power. The spectra were recorded over the range of 100–1000 cm−1

using an operating spectra resolution of 1.0 cm−1 of Raman shift.
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The H2 chemisorption, Temperature Programmed Desorption of Ammonia (NH3-TPD),
and H2-Temperature Programmed Reduction (H2-TPR) were performed using a catalyst
analyzer BELCAT-B instrument (ITS Co. Ltd., Bangkok, Thailand) equipped with a thermal
conductivity detector. The reduction behavior of the samples was studied by H2-TPR. The
catalyst was first heated from room temperature to 120 ◦C in the He flow, maintained at
120 ◦C for 30 min, and cooled down to 50 ◦C under the He flow. The TPR measurement
was performed from 50 ◦C up to 1000 ◦C with the rate of 10 ◦C/min under 5%H2 in argon
flow. NH3-TPD analysis was performed to investigate catalyst acidity. The catalyst was
first heated from room temperature to 500 ◦C in argon flow and cooled down to 50 ◦C
under argon. The catalyst was then exposed to pulse titration by using a loop of a known
volume of NH3 in Ar flow until saturation. NH3-TPD was finally carried out from 50 to
800 ◦C with a heating rate of 10 ◦C/min under argon flow. The H2 chemisorption was
performed to determine the surface area, particle size, and dispersion of Ni metal. The
sample was evacuated in the He flow at 40 ◦C and then reduced at 400 ◦C for 1 h under H2
flow (30 mL/min). The reduced catalyst was cooled down to 40 ◦C under helium flow and
followed by volumetric H2 chemisorption with pure hydrogen. The Ni surface area (SNi),
Ni dispersion (D), and Ni particle size (dNi) were obtained from the instrument software
based on the calculation by the following equation [57,58].

D (%) = VH × MNi × F/Vm × W × 100 (2)

SNi (m2/g) = Vm × NA × F × ANi/Vmolar (3)

dNi = 60 × W/ρ × SNi (4)

where VH is the chemisorbed H2 volume (mL/g), Vm is the molar volume of H2 (mL/mol),
W is % wt. of nickel, MNi is the atomic weight of nickel (g/mol), ANi is the cross-sectional
area of nickel atom (m2/atom), ρ is the density of Ni (g/mL), NA is Avogadro’s number,
and F is the stoichiometry factor (the number of active metal atoms to which one adsorbate
gas molecule can attach).

Scanning electron microscopy (SEM) was performed on an FE-SEM (HITACHI SU-8030,
Hitachi High-Technologies Corporation, Tokyo, Japan) with high vacuum mode using sec-
ondary electrons and an acceleration of 30 kV. Energy dispersive X-ray spectroscopy (EDX)
was used in conjunction with scanning electron microscopy for the elemental analysis.

Thermo-gravimetric analysis was performed using a Perkin-Elmer TGA/DTA 6300
instrument (Perkin Elmer, Rodgau, Germany) under an airflow rate of 100 mL/min. The
content of carbon deposition on the used catalysts was investigated. The mass change in
Ni-based catalysts was measured as a function of temperatures up to 800 ◦C with a heating
rate of 20 ◦C/min.

3.3. Water–Gas Shift Activity

The water–gas shift activity was measured at the temperature from 100 to 500 ◦C. The
catalyst (150 mg) was placed inside a fixed bed flow reactor (310 stainless steel, 0.6 cm
outside diameter) between two layers of quartz wool. The catalyst was reduced under
5% H2 in N2 flow at 300 ◦C for an hour before the WGS activity testing. H2O was fed
through a pre-heater using a syringe pump, whereas the flow rates of CO and N2 were
controlled by a mass flow controller. A mixed gas containing 5% CO, 10% H2O, and 85%
N2 was fed into the reactor. The total flow rate was maintained at 100 mL/min in all testing
conditions. The composition of the gas mixture leaving the reactor was determined using
an online Shimadzu GC-14B gas chromatography equipped with a thermal conductivity
detector (TCD) and a ShinCarbon ST column. Argon is used as the eluent for a ShinCarbon
ST column to detect the H2, CO, and CH4 at the rate of 50 mL/min. The concentration
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of CO, CO2, and CH4 at the outlet was repeated at least four times for each analysis. The
water–gas shift activities can be calculated according to the following equation:

%CO conversion =
COin − COout

COin
× 100 (5)

where COin is the inlet molar flow rate of CO (mol s−1) and COout is the outlet molar flow
rate of CO (mol s−1).

4. Conclusions

The influence of Re and Pr on the catalytic activity of Ni/CeO2 was studied. The
incorporation of Re and Pr into Ni/CeO2 increased the WGS efficiency when compared
with Ni/CeO2. An addition of Pr to Ni/CeO2 reduced the crystallite size of CeO2, in-
creased the BET surface area, and promoted higher dispersion of nickel on the CeO2
surface. Furthermore, the role of rhenium on the water–gas shift performance of supported
Ni catalyst was also considered. The results revealed that the addition of rhenium onto
Ni/Ce0.95Pr0.05O1.975 increased the catalytic performance toward the water–gas shift reac-
tion and suppressed CH4 formation. The role of rhenium in improving the catalytic activity
was due to an increase in surface acidity, Ni surface area, and Ni dispersion, which facilitate
CO adsorption on the catalyst surface. Additionally, the acidic character of the catalyst
can accelerate CO2 desorption, leaving behind free active sites for the adsorption of CO
and H2O reactants in subsequent reaction cycles. Moreover, the enhancement of oxygen
vacancy concentrations alerts the redox processes at the catalyst surface, which contributes
to improving the WGS rate.
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