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Abstract: Acid-base properties are the simplest expression of compounds’ coordinating ability. In the
present work, we studied in silico how the gas-phase Brønsted acidity (GA) of several polycyano-
substituted compounds change when cyano (CN) groups are replaced by 1,2,2-tricyanovinyl (TCNV)
groups in (iso)cyanic acid, dicyanoamine, cyanoform, and hydrogen tetracyanoborate. Different
tautomers and conformers/isomers are included in this study. Gas-phase acidity values are compared
with the acidities of various acids, including percyanated protonated monocarba-closo-dodecaborate
(carborane acid) and dodecaborate, as well as hydrogen cyanide and 1,2,2-tricyanoethene. An
estimation of acetonitrile (MeCN), dimethylsufoxide (DMSO), and 1,2-dichloroethane (DCE) acidities
is presented using the COSMO-RS method and correlation analysis. The strongest acid with four
TCNV groups shows remarkable acidic properties.

Keywords: cyanocarbon acids; tricyanovinyl; polycyano compounds; gas-phase acidity; COSMO-RS;
acid-base properties

1. Introduction

The gas-phase acidity (GA) of a neutral acid AH and proton affinity (PA) of the
corresponding anionic base A– refers to the following equation:

AH

PA
GA
� A− + H+ (1)

PA of an anionic base A− is defined as the enthalpy change (∆Hacid) for the gas-phase
reaction 1 between a proton and the anion to produce the neutral conjugate acid of the
anion. GA of an acid HA is the Gibbs free energy change (∆Gacid) on deprotonation of
the acid according to Equation (1). GA values include the entropy factor. GA is directly
measurable and comparable with experimental values, and therefore they will be used in
discussions in this work. Reaction 1 shows that the smaller the PA or GA value, the more
easily the proton is detached from the acid AH; therefore, the stronger the acid is. Acids
with GA values around 400–350 kcal/mol can be considered weak acids, acids having GA
values lower than 300 kcal/mol are superacids, while acids with a GA value lower than
250 kcal/mol are referred to as hyperacids.

Acid dissociation constant Ka (usually expressed as its negative logarithm pKa) is an
equilibrium constant that shows how strong an acid AH is according to Equations (2) and (3).
S refers to the solvent , A− refers to an acid anion, and a to an activity. The stronger the acid,
the lower the pKa value. The pKa value depends strongly on the solvent [1,2]. According
to the definition, a superacid is an acid that is stronger than sulfuric acid in the respective
solvent/medium. pKa values of superacids are lower than 9 in MeCN, 42 in DCE [3], and
around 1.4 pKa units in DMSO [4].

AH + S
Ka
� A− + SH+ (2)
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pKa = − log
a
(
SH+

)
·a
(
A−)

a(HA)
(3)

Cyanocarbon chemistry gained its first insights quite some time ago with the seminal
works by Webster, Middleton, and Engelhardt introducing different polycyanated com-
pounds such as polycyano cyclopentadienides [5], pentacyanopropenide [6], and other
compounds with tricyanovinyl substituents [7]. Already back then, the authors realized
that conjugate acids of anionic cyanocarbon compounds are very strong acids.

Although cyanocarbon acids are not applicable as pure acids, the anions still find
plenty of recognition. Computational acidity studies of cyanocarbons are not rare, and
have been conducted mainly by Vianello and Maksić [8–12], Leito and Koppel [13,14], and
others [15]. The high acidifying effect of the cyano (CN) group has been used to probe the
boundaries of the conventional acidity of superacids. It has been shown that the acidity
of different hydrocarbons can be increased by more than 100 kcal/mol by substituting
them extensively with CN groups [8]. The strongest organic cyanocarbon acids reach the
gas-phase acidity of 230 kcal/mol.

Substitution with multiple cyano groups has such an acidifying effect because the
anion formed after deprotonation is highly stabilized by efficient charge delocalization. The
negative charge is attracted by the CN groups both via strong inductive and mesomeric
(resonance) effects. Moreover, compared to -NO2 or -SO2CF3 groups, the CN group is very
compact, i.e., it has low steric demand. Because the CN group is stick-like, it cannot be
“twisted out of plane” of an aromatic system, which is a typical cause of weakening of
the acidifying effect of the nitro group, for example. Thus, it is possible to put numerous
CN groups into one molecule without creating extensive steric repulsion. For example,
pentacyanophenol (pKa(MeCN) = 4.2) is one of the strongest acids among phenols, leav-
ing 2,4,6-(SO2CF3)3-phenol behind by 1 pKa unit and 2,4,6-trinitrophenol by 7 pKa units
in acetonitrile (MeCN). Inserting five-SO2CF3 or nitro groups into the benzene moiety
proves impossible.

However, the CN group also has some disadvantages when it comes to creating
strong acids. From the acidity and coordination perspective, the lone pair of nitrogen
attracts all nucleophiles, including the proton. It has been shown computationally that
the monocarba-closo-dodecaborane acid (CB11H12H) becomes weaker when one of the
hydrogens is substituted with a CN group [16]. However, replacing all 12 positions
in the carborane moiety with the CN groups leads to an enormous acidity increase by
50 kcal/mol. Pentacyanocyclopentadienide C5(CN)5

− has been a notorious anion that
cannot be protonated even with perchloric acid [5]. Later, it was shown by C. A. Reed
that pentacyanocyclopendadiene HC5(CN)5 has a polymeric structure where anions are
bridged with protons [17]. The black-brown solid that was described to form is common
when trying to prepare the pure acid from polycyano anions.

The 1,2,2-tricyanovinyl group (TCNV) accommodates three CN groups. From the
point of view of the original acidity center, all CN groups are further away; therefore,
inductively, they have a lower influence on the acidity. However, the resonance possibility
creates additional acidity centers with the adjacent CN groups. The negative charge of
the anion has the possibility to further delocalize, stabilizing the anionic and giving the
possibility to create stronger acid compared to the system with only CN groups.

Isocyanic acid 1H, dicyanamine 3H, cyanoform 6H [18], and tetracyanoborate 10
are all well-known compounds and have been chosen as the base structures of current
work. Tetracyanoborate 10 is a weakly coordinating anion [19,20], a component for ionic
liquids [21–23], and its acid form is stable in the diluted solution [3]. The compounds sub-
stituted by TCNV groups could be prepared from the readily available tetracyanoethylene
(TCNE). Compound 2 can be prepared from TCNE by hydrolysis [6], 4 with ammonium
acetate [24], and 5 in liquid ammonia [6]. Compound 7 has been prepared by combin-
ing TCNE and malononitrile [6]. Synthesis methods for 8 are available by Webster [7].
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Compound 9 is not yet prepared, but the synthesis could be envisaged according to pub-
lished procedures [25]. Borates with TCNV groups 11–14 are not yet prepared.

Compounds under Study

Four base structures—(iso)cyanic acid 1H, dicyanamine 3H, cyanoform 6H, and hy-
drogen tetracyanoborate 10H—are denoted as initial compounds (either in acid or anionic
form). The CN groups of these compounds were stepwise replaced by TCNV groups
(steps 1 to 4), as shown in Table 1.

Table 1. Schematic presentation of the anions of title compounds studied in the current work. In the
text, anions’ conjugate acids are denoted as NumberH with tautomer number (T1–T6), if necessary.

Initial Compound Step 1 Step 2 Step 3 Step 4
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In each case, different tautomers were included in the calculations (Figure 1). If
compounds bearing only CN groups are considered, tautomers T1 and T2 exist. T2, T4,
and T5 are imino taoutomers. Tautomers T1–T5 have resonance structures written in
neutral form, and T6 can be written in zwitterionic form. In the case of central atom B, the
tautomers do not correspond to the structural formula in Figure 1 due to the peculiarity
of boron bonding; they correspond more to zwitterionic resonance structures rather than
neutral forms.

Altogether, 14 title compounds were studied. Additionally, to compare the acidities, five
related compounds were added to the study (Table 2). We look at each anion or acid from
the perspective of the central atom O, N, C, and B, sometimes in the text also referred to as X.
CN and TCNV groups are always looked at as substituents, even if protonated, without
further specification of their names.

In the case of each tautomer, different conformers and isomers (diastereomers, Figure 2)
were included in the calculations. The TCNV group is always planar in the case of anions
and tautomers T1, T2, and T4–T5. For anion and tautomers T1, T2, and T6, the free
rotation about the C-X bond can be envisaged. If the torsion angle between C-C-X-C is 0◦

(marked with red color in Figure 2), then the TCNV group is in syn conformation; when
the torsion angle is 180◦, the anti conformer exists. In the case of tautomers T3, T4, and T5,
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there is a formal double bond between C and X atoms; free rotation is impossible, and
therefore cis and trans isomers are distinguished. In the case of tautomer T3, where the
proton is attached to the terminal carbon atom, the carbon atom has sp3 character, and
the TCNV group is not planar. In there, the conformers can be distinguished as syn(H)
(torsion angle between H-C-C-X atoms is 0◦), anti(H) (180◦), and eclipsed(H) (≈90◦), as
shown in Figure 2. This type of distinction between different diastereomers has also been
used when X = B. Distinguishing between diastereomers and tautomers is only needed for
computations to see which form is more or less stable. In reality, a mixture of tautomers and
different conformers may exist. This fact is taken into account when solution pKa values
are calculated.
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Figure 1. Schematic presentation of tautomers calculated in the current work. T denotes a tautomer
which is referred to everywhere in the text. In case X = B, the tautomers are zwitterions rather than
neutral compounds.
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2. Results and Discussion
2.1. Gas-Phase Acidities

The final results and the experimental or theoretical literature data are presented in
Table 3. The whole set of calculations with the E, H, and G values and COSMO-RS pKa
values (see below) are available in Supplementary Materials and the data repository [26].

According to the workflow, the DFT BP86/def-TZVP method was used to carry out
gas-phase calculations (i.e., geometry optimization, and frequency calculations) for all the
tautomers and diastereomers. Altogether, approximately 400 gas-phase calculations were
carried out, and more than 300 GA values were obtained (Figure 3). GA values were always
calculated for the structurally most similar acid-base pairs. This means, for example, for
the syn-syn configuration acid, the syn-syn structured anion is used. Current GA values do
not contain information from different tautomers or conformers; they have been calculated
only using the most stable structurally similar forms.

After the most stable forms were received, other calculation methods were em-
ployed to evaluate the suitability of the def-TZVP method (Table 4). These different
methods were used only to calculate GA values for the most stable acid-base pairs result-
ing from the BP86/def-TZVP method. It was decided that GA values obtained from the
B3LYP/6-311 + G(d,p) method were to be used as selected GA values (Table 3 and Figure 4)
to make the results comparable with Maksic, Vianello, and Koppel’s work (e.g., [9,27]).
This calculation method has a sufficiently high precision to obtain data for larger molecules
and is generally accepted as a precise method for H and G values [28]. The G4(MP2)
method [29], known as the method obtaining exact energies and which matches generally
very well with the experimental data, was also tested among other accurate methods, such
as W1RO and CBS-APNO; however, all these methods are highly resource-consuming and
it was not possible to get results for all the compounds.

Table 3. Theoretical (DFT B3LYP/6-311 + G(d,p)) PA and GA values (kcal/mol). All literature values
are shown in brackets, whereas values in parentheses have a computational origin. Corrected COSMO-
RS pKa(MeCN) values, pKa(DMSO), and pKa(DCE) values are derived from correlation analysis.

No. Compd PA
[kcal/mol]

GA
[kcal/mol] pKa(MeCN) pKa(DMSO) pKa(DCE)

1H [CN-O]H T2 341.0 [341.2 a] 334.6 [334.7 a] 24.2 12.4 60.6

2H [O-TCNV]H T1 289.4 282.1 5.1 [4.39 e (3.1) f] −7.0 38.6 [36.3 i]

3H [(CN)2N]H T2 311.7 304.5 12.5 0.5 47.1

4H [CN-N-TCNV]H T2 290.4 283.5 5.7 −6.3 39.3

5H [N-TCNV2]H T1 276.4 [(278.0) b] 269.1 1.2 [(0.3) f] −11.0 34.1 [33.0 i]

6H [(CN)3C]H T2 293.0 [(293.7) b] 286.0 [294.8 c] 4.9 [5.0 f (5.1) f] −7.2 38.4 [38.6 i]

7H [(CN)2-C-TCNV]H T2 274.4 [(274.8) b] 266.6 −2.4 [(−2.8) f] −14.7 29.9 [29.7 i]

8H [CN-C-TCNV2]H T2 265.7 [(266.0) b] 258.6 −5.2 −17.5 26.7

9H [C-TCNV3]H T4 257.7 252.3 −7.6 −20.0 23.9

10H [(CN)4B]H T2 265.6 258.7 −3.5 [(−1.0) f] −15.8 28.7 [31.7 i]

11H [(CN)3-B-TCNV]H T2 260.7 253.9 −4.1 −16.4 28.0

12H [(CN)2-B-TCNV2]H T2 256.5 249.3 −4.9 −17.2 27.0

13H [CN-B-TCNV3]H T2 253.3 246.0 −5.9 −18.2 25.9

14H [B-TCNV4]H T6 236.2 229.3 −12.9 −25.3 17.9

15H HCN 349.3 [350.5 a] 341.9 [343.2 a] 28.4 [(23.40) g] 16.8 [12.9 h] 65.4

16H C(CN)2=CH(CN) 330.7 323.2 29.7 18.1 66.9

17H [B12(CN)12]H- 295.1 288.7 −8.1 −20.4 23.4

18H [B12(CN)12]H2 243.9 237.2 −11.4 −23.8 19.6

19H [CB11(CN)12]H 231.6 224.9 [(225.0) d] −14.2 −26.7 16.3

a Ref. [30] b Computational values from the ref. [9]. c Ref. [31]. d Ref. [32]. e Ref. [33]. f pKa(MeCN) values in
parentheses are not directly measured in MeCN, but in DCE, the values are derived from the correlation between
the pKa of DCE and MeCN [3]. g Ref. [34]. h Ref. [35]. i Ref. [36].
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Table 4. GA values obtained using different calculation methods. Assigned GA values are in bold.

Compound
Turbomole Gaussian

BP86/
def-TZVP

BP86/
def2-TZVPP

BP86/
def2-TZVPPD

B3LYP
/def2-TZVPPD

B3LYP/
6-311 + G(d,p) G4(MP2) W1RO CBS-APNO

[CNO]H 1H 338.3 340.3 338.1 342.8 334.6 335.2 335.1 335.4

[O-TCNV]H 2H 282.5 284.2 283.5 284.2 282.1 287.1 286.5 285.3

[(CN)2N]H 3H 307.1 308.6 307.7 306.7 304.5 303.8 303.6 303.7

[CN-N-TCNV]H 4H 285.0 286.4 285.9 285.5 283.5 283.9 283.5 282.9

[N-TCNV2]H 5H 269.8 270.1 270.3 270.7 269.1 274.6 271.5

[(CN)3C]H 6H 287.9 289.3 288.7 287.5 286.0 286.7 286.1 286.0

[(CN)2-C-TCNV]H 7H 268.1 269.5 268.7 268.0 266.6 267.8 265.9

[CN-C-TCNV2]H 8H 259.6 260.9 259.4 260.9 258.6 260.2 256.9

[C-TCNV3]H 9H 250.6 250.4 248.4 250.1 252.3 259.5

[(CN)4B]H 10H 261.1 262.2 261.7 260.4 258.7 258.8 258.7 258.9

[(CN)3-B-TCNV]H 11H 256.2 257.4 257.4 255.7 253.9 254.1 253.5

[(CN)2-sB-TCNV2]H 12H 251.9 253.0 252.6 251.1 249.3 249.8

[CN-B-TCNV3]H 13H 248.5 249.7 249.3 248.3 246.0 247.0

[B-TCNV4]H 14H 233.1 234.4 232.3 229.3

HCN 15H 341.9 340.2 341.9

C(CN)2=CH(CN) 16H 323.6 323.8 323.2

[B12(CN)12]H- 17H 291.5 292.3 288.7

[B12(CN)12]H2 18H 239.8 241.3 237.2

[CB11(CN)12]H 19H 228.0 229.1 224.9

All the GA values from all the tested calculation methods stay within 11 kcal/mol
(Table 4). Usually, they remain between 3 and 5 kcal/mol. The B3LYP/6-311 + G(d,p)
calculations result in the highest acidities (i.e., the lowest GA values); however, in most
cases, they match pretty well with G4(MP2) GA values. The most significant differences
are for the molecules that are extensively substituted with TCNV groups, where perhaps
the electron diffusion and its precision in the calculation may play a crucial role. BP86/def-
TVZP values, in fact, describe all the title compounds sufficiently well.

In Figure 3, all the GA values calculated in this work are depicted as circles, color-
coded based on different tautomers. It gives an excellent overview of how, moving down
to compounds with more TCNV groups, the GA values of different tautomers come closer
to each other. In the case of the first five compounds, groups of tautomers lay relatively far
from each other. In the case of C-centred molecules, the different GA values of different
tautomers are closer or even mixed. For acids 6H, 7H, and 8H, tautomer T2 is the most
stable form. For the acid 9H, the tautomers T1, T4, and T5 have very similar GA values,
while the GA values for tautomer T1 vary widely, ranging from 242 to 251 kcal/mol,
depending on the conformation. In all cases, the T6 tautomer is one of the least stable acids
except for hydrogen borates: the T6 tautomer will become more and more stable compared
to T4 and T5 tautomers, and when a single CN group is missing, the T6 tautomer is the
most stable acid form.

In general, when the anion contains a single CN group (T2), then it is the most basic
site of the anion. When the single CN group is missing, then in three cases out of four
(central atom O, N, and C), the T1 tautomer is the most stable neutral form. In the case
of hydrogen borates, T1 cannot be the most stable form; instead, tautomer T6 is the most
stable acid form.

Figure 4 presents the overview of the change in GA values during the replacement of
CN groups by TCNV groups of initial compounds (B3LYP/6-311 + G(d,p) basis set). It is
seen how every additional replacement increases acidity less than the first replacement. The
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only exception is hydrogen borates, where the initial three replacements increase acidity a
humble 3 to 5 kcal/mol, but the last replacement increase it almost to 17 kcal/mol. This
phenomenon comes from the fact that the protonation site changes from a relatively stable
T2 tautomer to T6.

Divalent oxygen substituted with the CN group exhibits two tautomers: OH-acid
(cyanic acid, 1H-T1) and 29.8 kcal/mol more stable NH-acid (isocyanic acid 1H-T2). Re-
placement of the CN group with the TCNV group in isocyanic acid 1H leads to an enormous
acidity increase by 52.6 kcal/mol, reaching the GA value of 282.1 kcal/mol for 2H-T1. Such
an impressive acidity increase comes from the fact that the size of the anion as well as the
charge delocalization possibility increases considerably. Small [CNO]− anion has a limited
ability to delocalize the negative charge, and therefore, the acid form does not deprotonate
easily. When the TCNV group replaces the CN group, the negative charge is stabilized by
extensive delocalization and induction by CN groups. Figure 5 also illustrates that CN
groups alone have a much higher negative charge concentration on the nitrogen (red color).
In other cases, the GA value decreases from the initial to the final compound (i.e., fully
substituted by TCNV groups) by around 35–30 kcal/mol. The more CN groups the initial
acid contains, the lower the acidity increase is. This indicates that only a certain number of
CN groups is necessary for a stable anion and strong acid.
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As a comparison, the GA values of hydrogen cyanide (HCN) 15H and its altered analog
[TCNV]H 16H are included. HCN is a weak acid in the gas phase, having practically the
same acidity as isocyanic acid [CNO]H 1H. The most stable T1 tautomer of [TCNV]H is
18.7 kcal/mol stronger acid than HCN. The most stable tautomers are both CH-acids; in
the case of 16H, the negative charge can delocalize into only one CN group.

The anionic acid B12(CN)12H– 17H is as strong as cyanoform. The B12(CN)12H2 18H
acid is almost as strong as [B-TCNV4]H, 14H. Carborane acid, 19H, with 12 CN groups, is
4.4 kcal/mol stronger acid than 14H.

Tricyanovinyl alcohol [O-TCNV]H 2H and cyanoform [(CN)3C]H 6H are considered
strong acids, and they have very similar acidities in the gas phase and the solution. Three
CN groups seem to work as efficiently even though the protonation site (O vs. N) and the
conformation are different.

2.2. Solution Phase Acidities

Computational solution phase pKa values in acetonitrile (MeCN) and dimethylsul-
foxide (DMSO) were obtained using the COSMO-RS approach [37–40]. COSMO-RS is
generally unsuitable to get absolute pKa values; therefore, COSMO-RS pKa values must be
corrected using experimental pKa values for similar acids [41]. For this reason, 12 auxiliary
acids, whose pKa values in MeCN are known, were used in the correlation to obtain cor-
rected pKa(MeCN) values for the title compounds (Table 5 and Figure 6). Most of the known
pKa(MeCN) values were, in fact, not directly measured in MeCN but were obtained from
the correlation between pKa(DCE) and pKa(MeCN) values [3]. It means that the literature
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pKa(MeCN) values are already obtained from the correlation. All 12 auxiliary acids were
2-substituted-1,1,3,3-tetracyanopropenes (2-X-TCNP); T4 tautomers of these acids were
the most stable forms and only those tautomers were used to calculate COSMO-RS pKa
values. In the case of 3,4-(MeO)2-C6H4- and CN-CH2-substituted TCNP-s, two different
conformers were used for COSMO-RS pKa values. For the title compounds, different
tautomers and conformers were used to calculate COSMO-RS pKa values.

Table 5. A list of auxiliary acids used to obtain corrected pKa(MeCN) values, 2H and 10H, is excluded
from the correlation. X-TCNP = 2-X-1,1,3,3-tetracyanopropene [3].

Compound LITERATURE
pKa(MeCN)

COSMO-RS
pKa(MeCN)

NH2-TCNP 3.30 4.9

3,4-(MeO)2-C6H3-TCNP 1.08 3.2

4-MeO-C6H4-TCNP 1.03 3.2

Ph-TCNP 0.28 2.5

3-CF3-C6H4-TCNP −0.50 1.5

H-TCNP −1.34 1.3

Br-TCNP −1.90 0.4

3,5-(CF3)2-C6H3-TCNP −1.84 0.4

Cl-TCNP −1.87 0.1

CN-CH2-TCNP −2.19 −0.1

CF3-TCNP −2.90 −0.5

Me-TCNP 0.39 3.3

[N-TCNV2]H 5H −0.96 0.3

[(CN)3C]H 6H 2.76 5.1

[(CN)2C-TCNV]H 7H −4.57 −2.8

[O-TCNV]H 2H 3.1 2.93

[(CN)4B]H 10H −1.0 −5.61
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Figure 6. Blue dots are used to create the correlation between literature and COSMO-RS computa-
tional values (Equation (4)) of the compounds listed in Table 5, whereas red points (2H and 10H)
have been omitted from the correlation.
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In addition to 12 auxiliary acids, 5 title compounds, whose literature pKa(MeCN)
values are also known, were also included in the correlation to correct COSMO-RS values.
As seen, two of those compounds, [O-TCNV]H 2H and [(CN)4B]H 10H, deviate significantly
from the correlation line (Figure 6). 2H is an OH acid, which does not suit the correlation
of NH-acids, and hydrogen borates, even though protonated on the CN group, can deviate
because of the peculiarity of the C-N-H fragment (see below).

pKa(MeCN) LITERATURE = 1.003 (0.052) · pKa(MeCN) COSMO-RS + 2.14 (0.11)
r2 = 0.966; S = 0.416; n = 15

(4)

Correlation 4 contains only CN acids, whose protonation site is in the CN group. It is
not the most proper way to correct pKa(MeCN) values for OH (2H) and CH (9H) acids, and
also, perhaps hydrogen borates (10H–14H) would need a different correlation; however, the
scarcity of data does not allow creating an individual specific correlation equation for every
group of compounds. Therefore, Equation (4) was used to obtain corrected computational
pKa(MeCN) values for all the studied compounds. Most of the values are consistent with
the literature data. It is assumed that even if the absolute corrected pKa(MeCN) values
deviate from the actual pKa values, then relative pKa values for hydrogen borates, as well
as cyclic carboranes and boranes, should be consistent with each other. It is also possible
that the literature pKa(MeCN) value of 10H is deviating since it is already in the literature
obtained from the correlation.

pKa(DMSO) values in the current work are obtained from pKa(MeCN) values by aver-
aging two different values calculated from previously published pKa(MeCN) vs pKa(DMSO)
correlation equations [34,42]. COSMO-RS pKa(DMSO) values are also available; the corre-
lation between acquired pKa(DMSO) values and COSMO-RS pKa(DMSO) values is very
good (see SM), and it could be used to correct COSMO-RS pKa values.

pKa values for 1,2-dichloroethane (DCE) were also obtained from the pKa(MeCN)
values using a previously published correlation [3,36].

It is seen from Table 3 that our method strongly downgrades the acidity of HCN in
MeCN (5 units) and DMSO (4 units) compared to the literature values. The literature
pKa value in MeCN is obtained computationally, and the pKa value in DMSO is directly
measured. The pKa value of HCN depends very strongly on the solvation because its
conjugate base is a very small anion. Computational methods that do not take solvation
specifically into account, as the method used in our work, can give considerably wrong
values. The pKa values of HCN should be under deeper investigation in the future.

2.3. Structural Details

In Figure 7, the structures of the initial anions and their conjugate acids are presented.
Anion 1 is stick-like, 3 is bent, 6 is planar, and 10 is a tetrahedron. The most stable tautomer
in the case of all initial acids is T2, i.e., the proton attached to the nitrogen on the CN group.
H-N-C is bent except for the hydrogen borates, where the angle is almost always close to 180◦.

The geometry of other anions corresponds to their parent initial anion. TCNV groups
are always planar, and the angles between substituents are close to the C-X-C angle shown
in Figure 7. Angles between TCNV groups are generally larger than the angles between
CN groups.

It is interesting to see how the most stable forms of anions that contain two TCNV
groups differ from each other (Figure 8). The more single CN groups are bound directly to
the central atom, the more the TCNV groups are compressed. The anti-anti conformer of
anion 5 is 4.2 kcal/mol (BP86/def-TZVP results) more stable than the syn-syn conformer.
Anti-syn 8 is 0.6 and 0.7 kcal/mol more stable than syn-syn and anti-anti, respectively. Syn-
syn 12 is only 0.1 kcal/mol more stable than anti-syn, but anti-anti conformer already has
0.8 kcal/mol higher energy. This shows that the fewer substituents the anion contains, the
more rigid the structure is. The most stable conformers of the corresponding conjugate
acids of the anions 5 and 8 are the same. For 12H-T2, the most stable conformer is anti-syn,
and other conformers are 1.1 kcal/mol less stable.
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Figure 7. Geometries of initial anions 1, 3, 6, and 10, and their most stable acid forms. H-N-C angles
are included. ∆G values (kcal/mol) show how much the T2 tautomer is more stable relative to the T1
tautomer at BP86/def-TZVP level. Here and in other figures (also in Supplementary Materials) red
color corresponds to oxygen, green to carbon, blue to nitrogen and pink to boron atoms.
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Figure 8. The most stable conformers of anions 5, 8, and 12 containing two TCNV groups.

In Figure 9, the geometries of the bulkiest anions are shown. The C-C-C angles of
the symmetrical anion 9 are all 119.9◦, and the central part containing four carbon atoms
is planar; only TCNV groups are bent out of the plane at 39.6◦. Tetrahedral anion 14 has
C-B-C angles all between 109.2 and 109.7◦. The surface of the charge density shows that
the negative charge concentration is highest on the N atoms of CN groups, but the charge
is very effectively delocalized.
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Further analysis of the structures and energetics for each compound group is presented
in the Supplementary Material.

3. Materials and Methods

QM calculations were carried out using TURBOMOLE 7.2 [43] and Gaussian 16
(T = 298.2 K, p = 1.0 atm) [44] The geometries of all compounds were created and opti-
mized using the DFT method at the BP86/def-TZVP level. For all optimized geometries,
vibrational spectra were computed to ensure that the optimized geometries correspond
to the true energy minima. Imaginary frequencies in some could not be removed by re-
optimization and were ignored. For the most stable compounds, other basis sets (see
Table 4) were also used, geometries were optimized, and frequency calculations were
carried out with the same level. A conformational search was carried out with COSMO-
conf 2021 (version 21.0) [45], and pKa values were computed using COSMOthermX19
(version 19.0.4) [45] software. Computational methods were used in this work and are
described in detail in Supplementary Material.

4. Conclusions

GA values for more than 300 different tautomers and conformers of polycyanated
compounds were calculated using the DFT BP86/def-TZVP method. Final “selected
GA values”, provided only for the most stable acid-base pairs, are calculated at the
B3LYP/6-311 + G(d,p) level to be able to compare the GA values with previous works.

The most stable tautomers of initial CN-substituted compounds are tautomers proto-
nated on the terminal CN group. These are isocyanic acid 1H, iminomethylenecyanamide
3H, 2-(iminomethylene)propanedinitrile 6H, and hydrogen tetracyanoborate 10H. The
extensive substitution of CN groups by TCNV groups leads to the compounds having
increased acidity for 30–50 kcal/mol in the gas phase, reaching nearly 230 kcal/mol. The
acidity increase in MeCN is 9 to 19 pKa units reaching −13. The most stable tautomers
are now the compounds protonated on the central atom (O, N, C) or the CN group closest
to the central atom (B). [B-TCNV4]H is almost as strong as fully cyanated carborane acid,
being approximately only a 5 kcal/mol weaker acid. The strongest acids in the current
work can be considered super- and hyperacids.

Supplementary Materials: The following supplementary material can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28248157/s1. A detailed description of calcula-
tion methods for gas phase and solution; Figure S1: Correlation between pKa(DMSO) values listed in
Table S2 and computationally obtained COSMO-RS pKa(DMSO) values according to Equation (S5);
Structural details (contain Figures S2–S14, Tables S1–S7). Table S8: pKa values in different sol-
vents used for final results; Table S9. The total molecular energies, PA and GA values, and a
number of imaginary frequencies (N imag) of the studied molecules.; Table S10: DataDOI data
repository filenames of title compounds in referred folders. See http://dx.doi.org/10.23673/re-436,
accessed on 24 November 2023; Table S1: DataDOI data repository filenames of auxiliary acids in the
COSMO-RS folder.
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