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Abstract: ReaxFF-lg molecular dynamics method was employed to simulate the decomposition
processes of IHEM−1 nanoparticles at high temperatures. The findings indicate that the initial
decomposition paths of the nanoparticles with different sizes at varying temperatures are similar,
where the bimolecular polymerization reaction occurred first. Particle size has little effect on the
initial decomposition pathway, whereas there are differences in the numbers of the species during
the decomposition and their evolution trends. The formation of the hydroxyl radicals is the dom-
inant decomposition mechanism with the highest reaction frequency. The degradation rate of the
IHEM−1 molecules gradually increases with the increasing temperature. The IHEM−1 nanoparticles
with smaller sizes exhibit greater decomposition rate constants. The activation energies for the
decomposition are lower than the reported experimental values of bulk explosives, which suggests a
higher sensitivity.

Keywords: reactive molecular dynamics; IHEM−1 nanoparticles; decomposition mechanisms; high
temperatures; reaction kinetics

1. Introduction

The design and application of insensitive energetic compounds are essential in the
fields of defence and civil industry, particularly in nuclear weapons and space explo-
ration, due to the unique application environment. 3,5-Diamino-6-hydroxy-2-oxide-4-
nitropyrimidone (IHEM−1) [1] is an ideal compound since it has numerous advantages,
including its simple preparation, high yield, high density, low solubility in aqueous so-
lution, and good detonation properties. Considering its comparable safety and synthetic
feasibility with 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), as well as its higher energy
density, IHEM−1 could be a viable alternative to TATB [1]. Hence, obtaining a credible
description of its thermal decomposition kinetics becomes crucial to preventing or control-
ling the explosion of explosives. Additionally, this research will aid in comprehending the
ignition, combustion, and detonation mechanisms [2].

The rapid reaction process of the explosives involves short time scales and complex
chemical reaction kinetics. Moreover, the reaction usually occurs under extreme conditions.
It proves difficult for existing experimental techniques and traditional simulation methods
to ascertain the detailed reaction mechanisms. Hence, this poses a significant challenge to
the application and development of the explosives. In previous decades, some researchers
experimentally investigated the thermal decomposition properties of the explosives. For
example, Khichar et al. [3] investigated the detailed thermal decomposition mechanisms
of liquid-phase RDX via FTIR spectrometry, and the results showed that their proposed
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liquid-phase decomposition mechanisms of RDX-based single-component propellant are
applicable to the operating pressure of rocket motors. In recent years, the computational
method has become a powerful tool to simulate the decomposition of the explosives. Based
on the density-functional tight-binding molecular dynamics (DFTB-MD) method with a
multiscale shock technique (MSST), Zhang [4] studied the decomposition mechanisms
and hydrogen transfer process of CL-20/TNT cocrystal under shock loading. The results
indicated that the increasing volume reduction led to higher temperature and pressure
when the system suffered from a stronger shock strength. Zhang et al. [5] simulated the
pyrolysis mechanism of RDX via ab initio kinetic calculations. The simulation results show
that the decomposition of RDX is mainly through the cleavage of the N-NO2 bond to
form RDXR.

The computational complexity of ab initio calculations limits its application to large-
scale systems despite the fact that its computational accuracy is relatively high. However,
recently, reactive molecular dynamics (RMD) has emerged as a practical approach to sim-
ulate the reaction processes of explosives under extreme circumstances on a large scale.
Reactive Force Field Molecular Dynamics (ReaxFF-MD) simulations are widely used for
evaluating reactivity [6]. This technique enables direct observation of the evolution of
chemical reactions at a microscopic level, achieving atomic-level insight at relevant spatial
and temporal scales for researchers [7–9]. RMD has been successfully used to model the
thermal decomposition reactions of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) [10], 1,3,5
hexanitrohexaazoisovuttzane (CL-20) [11], 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) [12],
TATB [13], pentaerythritol tetranitrate (PETN) [14], dihydroxylammonium 5,5′-bistetrazole-
1,1′-diolate (TKX-50) [15], and so on. Furthermore, Wang et al. [16] have developed the
ReaxFF reactive force field for hydrocarbons and have studied the thermal decomposition
of isooctane. More recently, Sultan et al. [17] investigated the thermal decomposition
mechanism of CL-20/DNT cocrystal at different high temperatures using ReaxFF-MD sim-
ulations. These successes show that the ReaxFF reactive force field can not only afford the
computational cost of studying large models but also maintain near-quantum-mechanical
accuracy. Liu et al. [18] subsequently refined the ReaxFF force field by addressing long-
range interactions to obtain an improved ReaxFF-lg force field, which provides crystal
densities that are more close to the experimental data. Recently, numerous researchers
have conducted extensive studies on the decomposition of explosives in various states by
utilizing RMD with an improved ReaxFF-lg force field [19–24].

Understanding the decomposition mechanisms of explosives under extreme condi-
tions is crucial for the design of new high explosives [25]. Before the decomposition, the
explosives will undergo changes in molecular and crystal structures and phase transi-
tion [6,26–30]. The decomposition mechanisms of the explosives are often affected by
molecular stacking patterns, crystal morphology, particle sizes, defects, etc.; therefore, it
is very important in terms of the effects of these factors on the decomposition process.
Recently, ReaxFF/lg force field MD was used to investigate the effects of particle sizes, crys-
talline phases, and defects on the decomposition of RDX [31–33], nitromethane (NM) [34],
2,2′,4,4′,6,6′-hexanitrostilbene (HNS) [35], composition B melt-cast explosive [36], plastic-
bonded explosives (PBXs) [37], and nano ε-CL-20 [38]. These studies have demonstrated
the dependability and efficacy of ReaxFF-lg MD in studying the thermal decomposition of
energetic materials.

Nanomaterials have attracted much attention in the field of explosives due to their
special properties. They have many features such as small size effect, surface effect,
quantum size effect, and macroscopic quantum tunnelling effect, which makes them possess
unique properties. In order to develop new energetic materials, an in-depth study on the
behaviors of nano explosives is needed.

In this work, the thermal decomposition of nano IHEM−1 particles at different tem-
peratures from 2000 to 3500 K was simulated using RMD with the ReaxFF-lg force field.
This study explores the initial decomposition pathways, the evolution of intermediates
and final products, and reaction kinetics. Additionally, the effects of nanoparticle size
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on thermal decomposition were examined. This work may contribute to establishing a
theoretical comprehension of the decomposition process of nano-explosives.

2. Results and Discussion
2.1. Early Evolution of the IHEM−1 Molecules

Figure 1 depicts the numbers of the IHEM−1 molecules during the initial decom-
position stage for the three IHEM−1 nanoparticles at high temperatures with time. As
seen in Figure 1a, it is apparent that the reactants decayed to zero in 3.54, 1.885, 1.255, and
0.745 ps for M1 at 2000, 2500, 3000, and 3500 K, respectively. Similarly, Figure 1b shows that
the reactants decayed to zero in 4.965, 2.56, 1.485, and 1.15 ps for M2 at the four reaction
temperatures, respectively. Likewise, the reactants for M3 decayed to zero in 7.785, 3.765,
1.915, and 1.195 ps at four varying reaction temperatures, respectively. These findings
show that the decomposition of the reactants becomes faster and faster as the reaction
temperature increases.
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Figure 1. Evolution of the numbers of the IHEM−1 molecules in the M1 (a), M2 (b), and M3
(c) systems during the initial decomposition stages of the three models at different temperatures.

Table 1 outlines the time taken for the reactants to decompose to zero for the three
models at varying temperatures. As the particle size increases, the decay time increases in
the order of M1, M2, and M3. The decay rate of IHEM−1 significantly increases with the
increasing temperature. This suggests that the reactivity of IHEM−1 is higher at higher
temperatures. In addition, smaller IHEM−1 nanoparticles display higher decay rates
during decomposition. These findings correspond with the nanocrystal size effects in RDX
established in Zheng’s theoretical studies [39]. Furthermore, Huang’s experiments suggest
that a reduction in the average particle size of nano-FOX-7 leads to a very high rate of
decomposition [40]. Additionally, our results are in line with the nano size effects in other
inorganic nanomaterials [41–43].
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Table 1. Decay time (t, ps) to zero of the reactants in the decomposition of the three models at different
temperatures.

T (K) Model 1 Model 2 Model 3

2000 3.54 4.96 7.785
2500 1.885 2.56 3.765
3000 1.255 1.485 1.915
3500 0.745 1.15 1.195

2.2. Evolution of Total Species

Figure 2 illustrates the evolution of the total species in the decomposition of the three
nanoparticles of IHEM−1 at 2000, 2500, 3000, and 3500 K. As illustrated in Figure 2, the total
quantity of three species within M1, M2, and M3 increases with the increasing temperature.
When the temperature is fixed, increasing nanoparticle diameter leads to an increase in
the total number of species in the system. This trend is evident. Additionally, the higher
the temperature is, the shorter the time required for total numbers of species to peak.
The influence of the nanoparticle’s diameter on the total quantity of the species is more
pronounced within the system in comparison to the temperature. The findings indicate
that enhancing temperature expedites the breakdown of the IHEM−1 molecules, resulting
in an increase in the quantity of products. It is worth noting that at the point where the
overall number of the species in the system reaches a maximum, the numbers of the species
in the system experience a small decline prior to reaching a specific value. This pattern
indicates that the overall numbers of the species in the system also maintain a stable state
after reaching equilibrium.
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2.3. Initial Decomposition Pathway

To investigate the thermal decomposition mechanisms of the IHEM−1 molecules, we
analyzed the trajectory files of M1-M3 using the post-processor developed by Zeng [44].
It is found that the initial decomposition pathways for the three systems are similar at
different temperatures, and the differences lie in the numbers of the species produced
during decomposition and their evolution trend. The sizes of the IHEM−1 nanoparticles
have no effect on the initial decomposition pathway. Therefore, we chose M3 as an illus-
tration to analyze its first 10 ps trajectory file at 3000 K. The simulation results reveal that
there are a total of 17 potential decomposition channels during the initial decomposition
of M3, as detailed in Table 2. They include intramolecular hydrogen transfer (paths 1 and
2), intermolecular hydrogen transfer (paths 3 and 4), the formation of hydroxyl radicals
(path 5), the formation of amino radicals (paths 6 and 8), the formation of nitro radicals
(path 7), the formation of hydroxyl radicals (paths 9 and 10), the formation of water
molecules (path 11), carbon–nitrogen bond breaking in the ring (paths 12–15), rearrange-
ment of NO2 groups (path 16), and bimolecular polymerization reaction (path 17).

Table 2. Detailed initial reaction pathways in the decomposition of the three models at different
temperatures. The cyan, white, blue and red spheres stand for C, H, N, and O atoms, respectively.

Path No. Type Reactant Product

Path 1 Intramolecular H transfer
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Table 2. Cont.

Path No. Type Reactant Product

Path 8 Small moleculeformation (NH2)
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next one is the formation of hydroxyl radicals (Mechanism 2: C4N5O5H5→C4N5O4H4 +
OH). The following one is a hydrogen transfer (Mechanism 3: H + NO2→HNO2), a process
that produces the third and fourth occurrence of major intermediates, C4N5O5H4 and
C4N5O5H6. The C-NO2 bond undergoes homogeneous breakage, subsequently releasing
NO2, named Mechanism 4 (C4N5O5H5→C4N4O3H5 + NO2). Finally, Mechanism 5 involves
the dissociation of the C-N bond in the ring. The occurrence frequency of the five primary
decomposition pathways of IHEM−1 is in the order of Mechanism 1 > Mechanism 2 >
Mechanism 3 > Mechanism 4 > Mechanism 5. Next, throughout the decomposition of
IHEM−1, the occurrence frequency of the main decomposition products over time will be
analyzed to detail the thermal decomposition mechanisms.

2.4. Evolution of Main Intermediates

Figure 3 illustrates the evolution of the numbers of the major intermediate and sec-
ondary products during the thermal decomposition of M3. It is found that the appearance
of C4N4O5H3 (C4N5O5H5→C4N4O5H3 + NH2) is late and its yield is low, suggesting
that the formation of the NH2 group is not the main decomposition mechanism. The
primary products C4N5O4H4 and C4N5O5H4 will further decompose to produce secondary
products C4N5O4H2 and C4N5O5H3. Meanwhile, by analyzing the trajectory files, it is
known that the main intermediates produced by the C-N bond breaking in the ring are
CNO2, CNO, and CNO2H, and their related reactions are C4N5O4H2→C3N4O3H2 + CNO,
C4N5O5H3→C3N4O3H3 + CNO2, and C4N5O5H5→C3N4O3H4 + CNO2H.
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The peak values of the numbers of CNO2, CNO and CNO2H become increasingly
large with increasing temperature. The earliest pathway for the formation of water is
through the H atom of the amino group in the IHEM−1 molecule attracted by the O atom
of the hydroxyl group. NO2 comes mainly from the breaking of the C-NO2 of IHEM−1, and
NO comes mainly from the rearrangement of the NO2 group and the further decomposition
of the intermediates (-CNO and -CNO2). For most nitro explosives, the frequency of C-NO2
cleavage is higher than that of the -NO2 rearrangement [45], consistent with the conclusions
drawn from our simulations. The succeeding primary decomposition process involves the
reactions between small molecule products.

2.5. Evolution of Small Molecule Products

Figure 4 shows the evolution of the number of small molecule products produced
during the thermal decomposition of the three models. The small molecule products are CO,
NO2, and NO, and the free radicals NH2, NH3, OH, HNO2, and H. It can be seen in Figure 4
that the size of the nanoparticle significantly influences the evolution of the number of
NH3, whereas the temperature has a minor effect. Additionally, the amount of CO increases
as both the temperature and particle size increase. The amount of hydrogen radicals is
the least, which were formed by the N-H dissociation of the amino group moiety. The
hydrogen radicals continued to be involved in the reaction of paths 1–4 (H + NO2→HNO2,
O + H→OH), where HNO2 will further decompose to produce OH and NO. Therefore, the
evolution trend of the number of HNO2 in Figure 4 is consistent with that of small radicals
OH, NH2, NO, and NO2, which show a trend of increasing to a peak and then decreasing.

In all three systems, OH is the first decomposition product to appear. The nanoparticles
of IHEM−1 with larger diameters generate a larger number of OH at higher temperatures.
OH originates from two paths: one is the decomposition of the HNO2 radical, and the
other is produced by the reaction O + H→OH, which has a large change in the number
depending on the temperature and diameter of the nanoparticle. Specifically, at 3500 K, the
amount of OH in M1, M2, and M3 at the equilibrium are around 10, 20, and 50, respectively.

Figure 5 illustrates the peak values (bar graphs) and corresponding times (line graphs)
of the major products OH, NO2, HONO, and NO during the thermal decomposition of M3.
The peak values of the number of NO2 are larger than those of NO when the temperatures
are 2000 and 2500 K, whereas the cases are the opposite at 3000 and 3500 K. This may be
because there are three production pathways of NO, one is the decomposition of HNO2,
the second is through the rearrangement of -NO2, and the third is through the further
reaction of -CNO. NO2 mainly comes from the C-NO2 cleavage of the IHEM−1 molecules.
Since high temperature promotes the decomposition of the third pathway, more NO was
produced at higher temperatures.

As the temperature increases, the time required for the number of the major products
OH, NO2, HONO, and NO to reach their peak values gradually decreases, but their peak
values become more and more large. It means that the temperature can accelerate the
decomposition of the reactants and thus promote the formation of the intermediates. The
peak value of the number of HNO2 at 3500 K is slightly smaller than that at 3000 K. It may
be speculated that the C-NO2 bond is easier to break at 3500 K, in agreement with previous
report that higher temperatures are more conducive to the production of NO2 [46], which
reduces the possibility of hydrogen transfer.
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2.6. Evolution of Final Products

Figure 6 shows the evolution of the numbers of the final products H2O, CO2, H2 and
N2 during the decomposition of the three models at different temperatures. The evolution
trends of the numbers of the four final products are consistent: their amounts increase
first, then reach their peaks, and finally attain their equilibrium. The amount of H2O, CO2,
H2 and N2 in the three systems is in the order of M3 > M2 > M1. Therefore, the larger
the nanoparticle’s size is, the larger the numbers of the final products in the system are.
As seen in Figure 6a–c, the numbers of H2O in the system increase with the increasing
temperature at the early decomposition stage (about before 4.5 ps), but after 4.5 ps, they
decrease gradually at 3500 K. This indicates that higher temperatures inhibit the production
of H2O. A possible reason is that high temperature promotes the participation of H2O as a
reactant in more secondary and intermediate reactions, leading to a slight decrease in the
number and eventually reaching an equilibrium. In addition, the higher the temperature is,
the greater the promotion effect is. As shown in Figure 6d–f, during 0–40 ps, the amount
of CO2 increases with increasing temperature. Afterwards, this evolution trend no longer
exists at 3000 and 3500 K. The possible reason is that the effects of the temperature on the
total number of species at the equilibrium stage are very small.
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The amount of H2O, CO2, H2, and N2 in the three models are in the sequence of
N2 > H2O > CO2 > H2. The amount of H2 is smaller compared to CO2, H2O, and N2.
The formation rates of H2 are similar for the three systems (Figure 6g–i). At different
temperatures, the formation rates of N2 in the three systems are in the order of M3 > M2 > M1
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(Figure 6j–l). High temperatures have a significant effect on their formation, and the higher
the temperature is, the greater the promotion is. Among all the final products, the number
of N2 is the largest, mainly from the secondary reaction of nitrogen dioxide and NO, and
its formation mechanism is the reaction of nitrogen dioxide or NO with carbon-containing
fragments to produce N2, consistent with the results achieved in previous studies [25].

2.7. Decomposition Reaction Kinetics

In order to further investigate the effects of temperature and particle size on the
initial decomposition, we quantitatively measured the instantaneous decomposition rate
constants of the IHEM−1 nanoparticles with different sizes at different temperatures. The
decay rate constant k can be calculated via the first-order expression (1) [35].

N(t) = N0 · exp[ − k(t − t0)] (1)

where N0 is the initial amount of reactants, t0 is the onset time of initial decomposition,
and k is the initial reaction rate. It can be seen in Table 3 that the decomposition rate of the
IHEM−1 nanoparticles gradually accelerates with the increasing temperature during the
initial decomposition stage. Therefore, an increase in the temperature accelerates the initial
decomposition of the reactants. At the same temperature, it is observed that the system
with smaller particle’s size has a higher rate constant (kM1 > kM2 > kM3). This implies that
the kinetic decay rate of the IHEM−1 nanoparticles with smaller size is faster.

Table 3. Activation energies (Ea, kJ·mol−1), pre-exponential factors (lnA, ps−1), and rate constants
(k, ps−1) for the decomposition reactions of the three models at different temperatures.

T (K) kM1/ps−1 kM2/ps−1 kM3/ps−1

2100 4.44 3.52 2.70
2400 6.92 5.95 4.26
2700 9.66 7.91 6.11
3000 12.51 8.36 8.27

Ea (kJ·mol−1) 40.03 34.81 43.06
lnA (ps−1) 3.88 3.40 3.56

In order to obtain the pre-exponential factor and activation energy of the decomposi-
tion reaction, we fitted linear Equation (2).

ln(k) = ln(A) − Ea/RT (2)

where A represents the pre-exponential factor, Ea is the activation energy, and R is the
ideal gas constant. Figure 7 shows the logarithmic values of the initial decomposition rate
(lnk) versus the inverse temperature (1/T) for the three IHEM−1 nanoparticles at different
temperatures. The fitted values are also listed in Table 3. The activation energy determined
via the simulations represents the apparent activation energy of the decomposition reaction.
The obtained activation energies (34–44 kJ·mol−1) are significantly lower than those of
bulk explosives (211 kJ·mol−1) [47] and the experimental values of IHEM−1 (220.3 and
219 kJ·mol−1) [1]. This indicates that nanocrystal explosives have significantly high sensi-
tivity, which is also proven in the experimental results [39–43].
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3. Computational Methods

All molecular dynamics simulations were conducted using the ReaxFF-lg reactive
force field [18], as implemented in the LAMMPS software package (Version: 5 Jun 2019) [48].
OVITO software package (Version: 3.6.0) [49] was employed for crystal visualization. The
initial crystal structure of IHEM−1 was taken from the Cambridge Crystallographic Data
Centre (CCDC code: 2062676). IHEM−1 possesses an orthorhombic Pcab space group
containing eight molecules in a unit cell with lattice vectors of a = 14.16278 Å, b =13.8636 Å,
and c = 6.8291 Å. Subsequently, each unit cell was duplicated in all three directions to build
a large super cell. Finally, three IHEM−1 nanoparticles were constructed with varying
diameters, as shown in Figure 8. The nanoparticles were placed within the simulation box’s
center. The three systems comprise 4864 atoms (Model 1, 4.38 nm), 11,476 atoms (Model 2,
5.84 nm), and 38,760 atoms (Model 3, 8.76 nm), respectively. Model 1, Model 2, and Model
3 are shortened as M1, M2, and M3, respectively. Detailed parameters of the three IHEM−1
models are shown in Table 4.

Andersen and Nosé–Hoover thermostats were used to regulate the pressure and
temperature, respectively. RMD simulations were conducted over 200 ps using a time step
of 0.1 fs. The trajectory files of atoms, molecular species, and their bonds were recorded
every 10 fs. Heating was performed at 2000, 2500, 3000, and 3500 K for each system prior to
conducting isothermal–isochoric MD (NVT MD) simulations at these temperatures with
a damping constant of 10 fs. A bond order of 0.3 was used to determine the formation of
chemical bonds [50]. The output files provide detailed information regarding reactants and
products. Consequently, the fitting of the kinetic parameters can be achieved using the
Arrhenius equation.
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Table 4. Detailed parameters of the three IHEM−1 models.

Model Atoms Molecules Length of Box (Å) Particle Diameter (nm)

1 4864 256 43.883 4.38
2 11,476 604 58.511 5.84
3 38,760 2040 87.767 8.76

4. Conclusions

In this study, the effects of the particle’s size and temperature on the decomposition
mechanisms of the IHEM−1 nanoparticles were simulated using the ReaxFF-lg molecu-
lar dynamics method. The results show that the initial decomposition pathways of the
IHEM−1 molecules are similar for the nanoparticles with different sizes at different tem-
peratures. The bimolecular polymerization reaction is the first step in the decomposition
process. There are some differences in the quantity of the species generated during de-
composition and its evolution trends, while the size of the nanoparticle does not affect
the initial decomposition pathway. The formation of the hydroxyl radicals is the main
decomposition mechanism with the highest reaction frequency. The degradation rate of
the IHEM−1 molecules gradually rises with the increasing temperature. The IHEM−1
nanoparticles with smaller sizes exhibit greater decomposition rate constants. The activa-
tion energies for the decomposition are lower than the reported experimental values of
bulk explosives, which suggests a higher sensitivity. Our study uncovers the nano effects
on the thermal decomposition of nano-explosives, shedding light on the crucial facets of
the decomposition process. These results could provide a valuable reference for the design
of new nano-explosives.
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