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Abstract: Thirty-eight new 4-amino-3,5-dicholo-6-(1H-indazolyl)-2-picolinic acids and 4-amino-3,5-
dicholo-6-(2H-indazolyl)-2-picolinic acids were designed by scaffold hopping and synthesized to
discover potential herbicidal molecules. All the new compounds were tested to determine their
inhibitory activities against Arabidopsis thaliana and the root growth of five weeds. In general, the
synthesized compounds exhibited excellent inhibition properties and showed good inhibitory effects
on weed root growth. In particular, compound 5a showed significantly greater root inhibitory activity
than picloram in Brassica napus and Abutilon theophrasti Medicus at the concentration of 10 µM.
The majority of compounds exhibited a 100% post-emergence herbicidal effect at 250 g/ha against
Amaranthus retroflexus and Chenopodium album. We also found that 6-indazolyl-2-picolinic acids could
induce the up-regulation of auxin genes ACS7 and NCED3, while auxin influx, efflux and auxin
response factor were down-regulated, indicating that 6-indazolyl-2-picolinic acids promoted ethylene
release and ABA production to cause plant death in a short period, which is different in mode from
other picolinic acids.

Keywords: 2-picolinic acid; scaffold hopping; herbicidal activity; mode of action; auxin genes

1. Introduction

The production loss caused by diseases, pests, and weeds in different crops and regions
ranges from 30% to more than 90% [1]. At present, about 250 plant species classified as
weeds in arable land influence the normal growth of crops through competing limited
land, water, and other nutrients. Application of synthetic herbicides is the most widely
used and effective method to control weeds [2], and has been used for more than 70 years.
Currently, herbicides account for more than 40% of the global pesticide market; however,
weed damage still results in 8–13% global crop losses every year [3,4]. Furthermore, the
long-term and extensive application of herbicides has triggered the exponential increase in
some herbicide-resistant weeds, seriously threatening the productivity and profitability of
the farms or companies. Until now, at least 60 countries have reported herbicide-resistant
weed biotypes, including more than 500 herbicide combinations, and the annual cost of
treating herbicide-resistant weeds is about USD 4 billion worldwide [5–8].

Synthetic auxinic herbicides mimic the natural plant hormone indole-3-acetic acid
(IAA) and some have already been used for decades, but the weeds generate corresponding
resistance against them much slower than others, which can be attributed to the potential
multiple sites of actions and complex action mechanism of this kind of herbicides [6,7,9,10].
Synthetic auxinic herbicides contain several structural skeletons, in particular 2-picolinic
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acid. During the 1940s, Corteva (former Dow AgroSciences) discovered a series of herbi-
cides containing structural skeleton 2-picolinic acid, such as picloram, clopyralid, aminopy-
ralid, halauxifen-methyl (ArylexTM active) and florpyrauxifen-benzyl (RinskorTM active).
In recent years, the last two were launched following intensive research on the structure–
activity relationship and soil metabolites (Figure 1) [11–14].
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Figure 1. Commercial 2-picolinic acid and 2-picolinate herbicides from 1940s.

Many of the researchers also tended to introduce heterocycles or bicyclic heterocycles
at the 6 position of 2-picolinic acid to develop highly active and environment-friendly
herbicides. For instance, Bayer Crop Science, Corteva Agriscience, etc., introduced benzoth-
iazole, benzofuran, indole, isoxazoline and other heterocycles at the 6 position of 2-picolinic
acid [15–17]. In our group, we used the 1H-pyrazole group to replace the chlorine atom at
the 6 position of clopyralid and picloram to obtain new chemotype compounds (Figure 2),
and some of the resulted compounds displayed a wider herbicidal spectrum and good crop
safety [18,19].
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Figure 2. Structures of herbicidal compounds 6-phenylpyrazolyl-2-picolinic acids [18,19].

Indazole is a 10π electron aromatic heterocyclic ring with a unique electronic structure
and chemical properties [20,21] and is a potential fragment in herbicidal compounds [22–24].
In our previous study, some 6-(5-substitued phenylpyrazolyl)-2-picolinic acids were found
to have herbicidal activities. In addition, modifying 2-picolinic acid could alter the bind-
ing mode of lead compounds at the auxinic herbicide binding pocket. To discover po-
tential herbicidal molecules with low resistance, we further modified 6-(5-substitued
phenylpyrazolyl)-2-picolinic acids by replacing the pyrazolyl group with an indazolyl
group (Figure 3).
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Figure 3. Design strategy of new 6-indazolyl-2-picolinic acid target compounds.

The method of exploring the expression of auxin-related genes gave rise to researchers’
extensive attention to study active compounds’ action mechanism. In 2000, BASF [25]
reported that the 1-aminocyclopropane-1-carboxylic acid synthase (ACS) activity, level
of 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene significant increase in
Galium spurium within 2 h after the application of high concentrations of IAA and picloram.
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The treatment also aroused the up-regulation of 9-cis-epoxy urea dioxygenase (NCED),
which triggered abscisic acid (ABA) to increase 24 times compared to the control group after
24 h. Jiaqi Xu et al. [26] also found that halauxifen-methyl induced over expressions of ACS
and NCED genes. Upregulated genes destroyed the homeostasis of IAA and stimulated
the excessive production of ethylene and ABA, eventually leading to plant death. In 2019,
Lei et al. [27] reported that genes IAA5 (auxin-induce gene), GH3.3 (auxin-regulate gene)
and AUX1 (auxin-influx gene) were up-regulated after Arabidopsis thaliana (A. thaliana) was
treated by a synthetic compound [28–31]. Therefore, the response of auxin-related genes
was used for the initial investigation of the mechanism of action of 6-indazolyl-2-picolinic
in this study.

2. Results and Discussion
2.1. Chemistry

A series of new 6-indazolyl-2-picolinic acids 1A–7d (Table 1) were provided via the
route illustrated in Scheme 1 (some of them are mixtures). All the obtained compounds
were characterized via 1H NMR, 13C NMR, and HRMS.

Table 1. The structures of new compounds.

No. Compd. R No. Compd. R

1A IV H 3c V 6-NH2
2A IV 4-CH3 3d V 7-NH2
2B IV 5-CH3 4a V 4-OCH3
3A IV 4-NH2 4b V 5-OCH3
3C IV 6-NH2 4c V 6-OCH3
4A IV 4-OCH3 4d V 7-OCH3
4B IV 5-OCH3 5a V 4-F
4C IV 6-OCH3 5b V 5-F
5A IV 4-F 5d V 7-F
5B IV 5-F 6a V 4-Cl
6A IV 4-Cl 6b V 5-Cl
6B IV 5-Cl 6d V 7-Cl
7A IV 4-Br 7a V 4-Br
7B IV 5-Br 7b V 5-Br
1a V H 7d V 7-Br
2a V 4-CH3 2Cc IV+V 6-CH3
2b V 5-CH3 5Cc IV+V 6-F
2d V 7-CH3 6Cc IV+V 6-Cl
3a V 4-NH2 7Cc IV+V 6-Br

The substituted indazoles as intermediates were synthesized in two steps: (1) sub-
stituted o-fluorobenzaldehyde reacts with hydrazine hydrate in tetrahydrofuran to gen-
erate corresponding crude substituted benzylidenehydrazine; (2) intermediate indazole
forms in the presence of two equivalents of sodium bicarbonate. At the beginning, sub-
stituted salicylaldehydes were used as starting materials, and intermediate benzylidene-
hydrazine could be easily obtained. However, the subsequent cyclization reaction for
forming indazole could not proceed. Instead, when o-fluorobenzaldehyde was used as
the starting material, the cyclization reaction could proceed smoothly by using 100% hy-
drazine hydrate as a solvent [32]. 1H-Indazole and 2H-indazole are tautomeric isomers,
and 1H-indazole is the most significant one, since it is thermodynamically more stable
than 2H-indazole. In the coupling reaction of 1H-indazole and 4-amino-3,5,6-chloro-2-
picolinonitrile, sodium salt of 1H-indazole would inevitably transform to sodium salt
of 2H-indazole at room temperature or above; thus, the isomer 4-amino-3,5-dichloro-6-
(2H-indazolyl)-2-picolinonitrile could form alongside the designed product 4-amino-3,5-
dichloro-6-(1H-indazolyl)-2-picolinonitrile.
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Scheme 1. Synthetic route to 6-indazolyl-2-picolinic acids. Reagent and conditions: (a) NH2-
NH2·H2O, THF, 65 ◦C, 2 h; (b) NaHCO3, NH2-NH2·H2O, 100 ◦C, 4 h; (c) NaH, extra dry 1,4-dioxane,
100 ◦C, 12 h; (d) 80% H2SO4, H2O, 100 ◦C, 3 h.

When the substituent is at the 7 position of the indazole ring, only compound V con-
taining 2H-indazolyl formed probably due to the steric effect. And when the R substituents
CH3, F, Cl and Br were at the 6 position of 1H-indazole, the obtained product isomers were
difficult to separate by column chromatography, and their biological activities were tested
with their mixtures.

The preliminary results of the subsequent biological assay to inhibit A. thaliana
root growth showed that the biological activity of the new compounds containing the
1H-indazolyl fragment was better than those with the 2H-indazolyl fragment. Thus, we
attempted to optimize the conditions of the coupling reaction for the synthesis of 6-(1H-
indazolyl)-2-picolinonitrile (r1) (Scheme 2).
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The results in Table 2 showed that inorganic bases potassium carbonate, potassium
hydroxide and sodium hydroxide were uncapable of converting 1H-indazole to its salt due
to the weak alkalinity or low solubility. Cesium carbonate with its better solubility could
make the reaction proceed despite the fact that the starting materials could not be fully
converted. We also found that the reaction temperature of salt formation influences the
ratio of r1 and r2. For instance, the proportion of compound r1 can be significantly increased
with the decreasing in T1, but the proportion of r1 cannot be increased by reducing T2.
In order to further increase the proportion of r1, the solvent was changed to acetonitrile,
of which the melting point is much lower than that of 1,4-dioxane. However, the lower
boiling point acetonitrile limited the temperature of the reaction and thus resulted in lower
conversion. The ratio of r1 was increased to 82.9% when 1,2-dimethoxyethane, which has
a higher boiling point, was employed as solvent and cesium carbonate was used as the
base, but 4-amino-3,5,6-trichloro-2-picolinonitrile could still not be fully consumed. When
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changing the solvent to 1,2-diethoxyethane with a much higher boiling point, more r2 was
generated and the reaction was still incomplete, albeit less amounts of 5-bromo-1H-indazole
and 4-amino-3,5,6-trichloro-2-picolinonitrile were left compared to other conditions.

Table 2. Reaction condition optimization for increasing the percentage of r1 in the product.

Solvent Base Temperature
(T1) a

Temperature
(T2) b

Reaction Progress
Conversion/Ratio of r1:r2

Extra dry dioxane NaH 50 ◦C 100 ◦C Complete/r1:r2 = 1:1
Extra dry dioxane NaH 25 ◦C 100 ◦C Incomplete (5%) c/r1:r2 = 1:1
Extra dry dioxane K2CO3 50 ◦C 100 ◦C No reaction
Extra dry dioxane KOH 50 ◦C 100 ◦C No reaction
Extra dry dioxane NaOH 50 ◦C 100 ◦C No reaction
Extra dry dioxane CsCO3 50 ◦C 100 ◦C Incomplete (10%) c/r1:r2 = 2.5:1
Extra dry dioxane CsCO3 25 ◦C 100 ◦C Incomplete (15%) c/r1:r2 = 3.4:1
Extra dry dioxane CsCO3 25 ◦C 50 ◦C Incomplete (20%) c/r1:r2 = 1.3:1

Acetonitrile CsCO3 −13 ◦C 80 ◦C Incomplete (25%) c/r1:r2 = 3.9:1
1,2-Dimethoxyethane CsCO3 −10 ◦C 85 ◦C Incomplete (15%) c/r1:r2 = 4.9:1
1,2-Diethoxyethane CsCO3 −10 ◦C 110 ◦C Incomplete (5%) c/r1:r2 = 2.25:1

a 3-h reaction time at T1 temperature. b 12-h reaction time at T2 temperature. c Percentage of unreacted 4-amino-
3,5,6-trichloropicolinonitrile.

In the above-mentioned experiments, it was unable to obtain a single isomer as the
product, and the reaction could also not be completed. Finally, sodium hydride was em-
ployed as the base, and the obtained r1 and r2 were separated by column chromatography.
For cases in which r1 and r2 cannot be easily separated, the mixture of r1 and r2 was used
in biological activity investigation.

2.2. Phenotypic Study of Arabidopsis thaliana and SAR Analysis

All new compounds were tested against A. thaliana root growth at concentrations from
200 µmol/L to 3 µmol/L. When the inhibition at a certain concentration (µmol/L) is greater
than 80%, the test was continued at half the concentration used. The inhibition effect of
some new compounds, picloram and DMSO (solvent), at different concentrations against
A. thaliana root growth is shown in Figure 4.
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The results from Figure 4a show that compounds 5a, 6Cc, and 7Cc displayed significant
inhibitory activity against A. thaliana root growth and were better than the commercial
herbicide picloram at the concentrations 50 and 25 µM. Figure 4b shows that 7Cc at 3 µM
had the same inhibition effect with picloram at 12.5 µM. Structure–activity relationship
analysis revealed that the electron-donating substituents amino and methoxy in indazolyl
decreased the inhibition activity of new compounds; when the substituents are proton,
methyl, and halide atoms, the inhibition activity of compound IV was better than that of
compound V; when the substituents are at positions 4, 6 and 7 on the indazole ring, the
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new compounds have similar inhibition activity, and their inhibition activity was better
than those at positions 5; when the indazole ring was substituted by electron-withdrawing
groups, the inhibition activity was significantly improved. The influence of halide atoms
on inhibition activity was related to their electronegativity and weaker electronegativity
resulted in higher inhibition activity. Overall, the substituents in indazole ring improve the
inhibition activity of the compounds in the following order: bromine > chlorine > fluorine
≈ methyl > amino > methoxy.

2.3. Evaluation of Herbicidal Activity
2.3.1. Root Growth Inhibition of Weeds in Petri Dishes

The herbicidal activity of new compounds was evaluated according to a reported
procedure [18], in which picloram was used as the control, and each experiment had
three replicates. Compounds 1A–7d were tested to evaluate their effect to control the
root growth of five grass seeds including Echinochloa crusgalli (EC), Amaranthus retroflexus
(AR), Chenopodium album (CA), Abutilon theophrasti Medicus (AM) and Brassica napus (BN) at
concentrations of 500 µM (Figure 5) and 250 µM (Figure 6).
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The results showed that most compounds have a certain inhibitory effect on the
roots of weeds but their inhibitory activity on EC was generally weak. The relationship
of structure–activity showed that the positions of substituents are related with the root
inhibitory activity of weeds. The inhibitory effect is much better with substituents on the
4 position of the indazole ring, while the 5 position substitution results in poor inhibitory
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activity. In addition, compounds with electron-withdrawing substituents on the indazole
ring showed better activity. There is no significant difference in inhibitory activities between
1H- and 2H-indazolyl isomers.

Moreover, compound 5a had a similar inhibitory effect compared to picloram, and their
root growth inhibition on four dicotyledonous grasses at 10 µM/L was tested (Figure 7).

Molecules 2024, 29, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 7. The weed root growth inhibition activity. ((a): 5a; (b): picloram; (c): water). 

Compound 5a had a higher inhibitory activity on the root growth of BN (like A. tha-
liana, a member of the Cruciferae family) compared to picloram when the concentration 
was decreased to 10 µM, and the inhibitory activity of compound 5a on the roots of AM 
was also significantly higher than picloram. For CA and AR, two species of weeds in the 
Amaranthaceae family, the inhibitory effect of compound 5a was not as good as that of 
picloram. 
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Compound 5a had a higher inhibitory activity on the root growth of BN (like A. thaliana,
a member of the Cruciferae family) compared to picloram when the concentration was
decreased to 10 µM, and the inhibitory activity of compound 5a on the roots of AM was
also significantly higher than picloram. For CA and AR, two species of weeds in the
Amaranthaceae family, the inhibitory effect of compound 5a was not as good as that
of picloram.

2.3.2. Herbicidal Activity

In addition, the herbicidal activities of the 38 new compounds against the four di-
cotyledonous weeds and one monocotyledonous weed were tested in a glasshouse. The
test was carried out at a range of concentrations (from high to low) until the visual injury
effect was less than 60%. Some results are displayed in Table 3 and Figure 8, and the full
results can be found in Table S1.
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Table 3. Herbicidal activities of some compounds against five weeds.

Compound Dosage
(g ha−1) BN (%) AM (%) CA (%) AR (%) EC (%)

1a
1000 100 30 100 100 0
500 100 / 100 100 0
250 100 / 15 100 0

2b
1000 100 100 100 100 0
500 100 45 70 100 0
250 100 / 45 100 0

2d
1000 100 100 100 100 0
500 80 40 100 100 0
250 60 / 100 100 0

3d
1000 100 0 100 100 0
500 100 / 100 100 0
250 100 / 30 80 0

4A
1000 100 100 100 100 0
500 100 0 70 100 0
250 100 / 10 100 0

4d
1000 100 80 100 100 0
500 100 70 65 100 0
250 100 10 30 95 0

5A
1000 100 100 100 100 0
500 100 5 100 100 0
250 100 / 75 100 0

5a
1000 100 100 100 100 0
500 65 10 100 100 0
250 15 / 40 75 0

6A
1000 100 85 100 100 0
500 100 10 100 100 0
250 100 / 45 85 0

6a
1000 100 80 100 100 0
500 20 5 100 100 0
250 / / 45 90 0

6b
1000 100 10 80 100 0
500 100 / 60 100 0
250 100 / 10 100 0

6d
1000 100 70 100 100 0
500 50 25 100 100 0
250 / / 65 90 0

7a
1000 100 70 100 100 0
500 100 0 100 100 0
250 100 / 50 80 0

7d
1000 100 75 100 100 0
500 40 5 100 100 0
250 / / 30 85 0

Picloram
1000 100 100 100 100 10
500 100 65 100 100 0
250 100 40 80 85 0

Most compounds exhibit excellent herbicidal activity at 1000 g/ha, and some of
them (as shown in Table 3) could completely control BN, CA and AR at a dosage of
250 g/ha. The herbicidal activities of new compounds containing a 4 position substituent
were superior to those containing the 7 position substituent and to those with substituent at
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the 5 and 6 position. The electronic properties of the substituent did not have a significant
effect on the activity.
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2.4. The Response of Auxin Relative Genes

Compound 7Cc had superior inhibitory activity against the root growth of A. thaliana
compared to picloram, and the evaluation of auxin-related gene response was carried out by
treating A. thaliana with compound 7Cc (Figure 9a). The results showed that compound 7Cc
did not upregulate AUX1 (auxin-influx gene), PIN2 (auxin-efflux gene) [33], GH3.3 (auxin-
regulate gene), or ARF2 (auxin response factor) as picloram did (Figure 9b), but upregulated
the expression of ACS7 and NCED3 genes and promoted the production of ethylene and
ABA, which affect the physiological processes of plant growth. In order to figure out the
impact of each isomer of 7Cc on the auxin gene response (Figure 9b), compounds 5A and
5a were employed to explore the auxin-related gene response, respectively.
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The AUX1, PIN2, and ARF2 genes’ expression of A. thaliana treated with compounds
5A and 5a (Figure 9c,d) remained down-regulated, implying that they are unable to be
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transported via carrier proteins as traditional commercial picolinic herbicides, and they are
unable to bind auxin receptor proteins TIR1 and AFBs to release ARFs [34,35]. Compound
5a induced a higher level of ACS7 and NCED3 expression compared to 5A, explaining why
it inhibited A. thaliana root growth better than compound 5A.

The new synthesized compounds also contain the 2-picolinic acid skeleton, promote
ethylene release and ABA production by causing up-regulation of ACS and NCED genes,
leading to the death of the treated plant in a short time. Such an action mechanism is
different from those of other 2-picolinic acid herbicides, which might mitigate the potential
growth of resistance. However, the exact mechanism of action remains unclear.

3. Materials and Methods
3.1. Chemicals, Experimental Instruments and Plant Materials

Solvents and reagents were provided by Bide Pharmatech (Beijing, China). The
commercial herbicide picloram was provided by Nutrichem Company Ltd. (Beijing, China).
Arabidopsis thaliana (A. thaliana ecotype Columbia-0, Col-0) and weed seeds were provided
by the Laboratory of National Forestry and Grassland Administration on Pest Chemical
Control, China Agricultural University, Beijing, China. 1H NMR and 13C NMR spectra were
obtained at 500 MHz using a Bruker AVANCE NOE500 spectrometer (Billerica, MA, USA)
in DMSO-d6 solution. HRMS was performed using an Agilent 6540 Q-TOF instrument
(Santa Clara, CA, USA) instrument. The A. thaliana and weed root growth data were
obtained using IMAGEJ software (https://imagej.nih.gov/ij/).

3.2. Synthesis
3.2.1. General Synthetic Procedure of Intermediates II

Compound I (100 mmol) and tetrahydrofuran (250 mL) were added into a 500 mL
three-mouth round-bottom flask at 25 ◦C, and 80% hydrazine hydrate (110 mmol) was
added drop-wise to the reaction solution under stirring. Subsequently, the reaction mix-
ture was heated to 65 ◦C and maintained at this temperature for 2 h. Then, the mixture
was cooled to 25 ◦C, and concentrated under a vacuum to obtain the crude-substituted
benzylidenehydrazine. This crude intermediate was dissolved in 100% hydrazine hydrate
(100 mL), Na2CO3 (200 mmol) was then added under stirring at 25 ◦C, and the reaction
mixture was heated to 100 ◦C and maintained at this temperature for 4 h. After the reac-
tion was completed, the mixture was cooled to 25 ◦C, quenched and acidified to pH 5–6
with an aqueous hydrochloric acid solution, and extracted using ethyl acetate (3 × 15 mL).
The combined organic phase was dried over anhydrous sodium sulfate, filtered, and con-
centrated under a vacuum. The residue was purified via flash column chromatography
(n-hexane/ethyl acetate = 15:1) to afford intermediate II (yields 78.5–90.3%).

3.2.2. General Synthetic Procedure of Intermediate III

In a 50 mL three-mouth round-bottom flask, sodium hydride (60%, 8.96 mmol) was
added to extra dry 1,4-dioxane (15 mL), and compound II (5.60 mmol) in extra dry
1,4-dioxane (10 mL) was added drop-wise under stirring at 25 ◦C. The reaction mixture
was heated to 50 ◦C and maintained at this temperature for 3 h. Then, 4-amino-3,5,6-
trichloropicolinonitrile (5.60 mmol) was added under stirring and heated to 100 ◦C for
12 h. The reaction solution was cooled to 25 ◦C, and was quenched with water. The solid
was filtered to provide a mixture of compound III 1 and compound III 2, which were
separated via flash column chromatography (n-hexane/ethyl acetate = 10:1) to obtain
compounds III 1 (yields 37.6–42.4%) and compounds III 2 (yields 35.2–45.0%).

3.2.3. General Synthetic Procedure of Product

In a 25 mL round-bottom flask, compound III (1.067 mmol) was dissolved in 80%
aqueous sulfuric acid (10 mL), and was heated to 100 ◦C and maintained at this temperature
for 2 h. The reaction solution was cooled to 25 ◦C, and quenched with water. A white solid
was collected through filtration to obtain the product (yields 90.1–99.0%).

https://imagej.nih.gov/ij/
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Compound 1A 4-amino-3,5-dichloro-6-(1H-indazol-1-yl)-2-picolinic acid. White solid;
181.9–182.7 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.86 (s, 1H), 8.40 (s, 1H), 7.89 (d,
J = 8.1 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.50–7.45 (m, 1H), 7.30–7.26 (m, 3H). 13C NMR
(126 MHz, DMSO-d6) δ 166.09, 151.20, 146.84, 146.40, 139.92, 136.57, 127.93, 124.58, 122.49,
121.62, 111.93, 111.48, 110.45. HRMS calcd. For C13H7Cl2N4O2 ([M – H]−), 320.9946;
found, 320.9945.

Compound 1a 4-amino-3,5-dichloro-6-(2H-indazol-2-yl)-2-picolinic acid. White solid;
185.1–185.6 ◦C; H NMR (500 MHz, DMSO-d6) δ 13.88 (s, 1H), 8.77 (s, 1H), 7.80 (d, J = 8.5 Hz,
1H), 7.71 (d, J = 8.8 Hz, 1H), 7.41 (s, 2H), 7.34 (dd, J = 6.9, 1.6 Hz, 1H), 7.13 (dd, J = 6.9,
1.6 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 165.90, 151.00, 149.08, 147.30, 146.75, 127.52,
125.98, 122.75, 121.69, 118.07, 112.44, 110.58. HRMS calcd. For C13H7Cl2N4O2 ([M – H]−),
320.9946; found, 320.9947.

Compound 2A 4-amino-3,5-dichloro-6-(4-methyl-1H-indazol-1-yl)-2-picolinic acid.
White solid; 195.2–196.4 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.95 (s, 1H), 8.81 (s, 1H),
7.51 (d, J = 8.7 Hz, 1H), 7.42 (s, 2H), 7.24 (dd, J = 8.8, 6.7 Hz, 1H), 6.88 (d, J = 6.7 Hz, 1H),
2.53 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 166.09, 151.15, 146.87, 146.50, 139.89, 135.54,
131.68, 128.03, 124.90, 122.34, 111.44, 110.53, 109.25, 18.63. HRMS calcd. For C14H9Cl2N4O2
([M – H]−), 335.0103; found, 335.0103.

Compound 2a 4-amino-3,5-dichloro-6-(4-methyl-2H-indazol-2-yl)-2-picolinic acid.
White solid; 198.9–201.1 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.31 (s, 1H), 8.81 (s, 1H),
7.57 (d, J = 7.0 Hz, 1H), 7.51 (d, J = 8.8 Hz, 1H), 7.41 (s, 2H), 7.23 (dd, J = 8.8, 6.7 Hz,
1H), 6.91–6.85 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ 168.24, 153.85, 146.47, 143.92,
138.24, 134.72, 130.70, 129.35, 126.83, 120.32, 114.89, 110.58, 105.08, 20.43. HRMS calcd. For
C14H9Cl2N4O2 ([M − H]−), 335.0103; found, 335.0104.

Compound 2B 4-amino-3,5-dichloro-6-(5-methyl-1H-indazol-1-yl)-2-picolinic acid.
White solid; 190.8–192.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 12.74 (s, 1H), 8.30 (d,
J = 0.7 Hz, 1H), 7.65–7.62 (m, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.31 (dd, J = 8.7, 1.3 Hz, 1H),
7.28 (s, 2H), 2.44 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 166.10, 151.17, 146.79, 146.48,
138.60, 136.05, 131.59, 129.77, 124.99, 120.49, 111.74, 111.32, 110.19, 21.29. HRMS calcd. For
C14H9Cl2N4O2 ([M − H]−), 335.0103; found, 335.0103.

Compound 2b 4-amino-3,5-dichloro-6-(5-methyl-2H-indazol-2-yl)-2-picolinic acid.
White solid; 193.6–192.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.63 (s, 1H), 7.61
(d, J = 8.9 Hz, 1H), 7.52 (s, 1H), 7.39 (s, 2H), 7.18 (dd, J = 8.9, 1.4 Hz, 1H), 2.39 (s, 3H). 13C
NMR (126 MHz, DMSO-d6) δ 165.91, 150.98, 148.15, 147.29, 146.72, 131.65, 130.47, 124.91,
121.96, 119.36, 117.84, 112.28, 110.41, 21.84. HRMS calcd. For C14H9Cl2N4O2 ([M − H]−),
335.0103; found, 335.0101.

Compound 2Cc (mixture) 4-amino-3,5-dichloro-6-(6-methyl-1H-indazol-1-yl)-2-picolinic
acid and 4-amino-3,5-dichloro-6-(6-methyl-2H-indazol-2-yl)-2-picolinic acid (1: 1.27). Yellow
solid; 149.5–160.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.27 (s, 1H), 8.34 (s, 1H), 7.93 (s,
1H), 7.83 (s, 1H), 7.30 (s, 2H), 2.45 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.83, 151.00,
146.53, 145.97, 136.24, 131.04, 125.24, 124.92, 124.26, 122.30, 115.36, 111.65, 110.16, 23.06; 1H
NMR (500 MHz, DMSO-d6) δ 12.76 (s, 1H), 8.72 (s, 1H), 8.04 (s, 1H), 7.77 (s, 1H), 7.41 (s, 2H),
2.42 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 166.01, 151.27, 148.74, 146.95, 146.65, 139.18,
131.11, 125.88, 121.80, 121.10, 120.79, 112.61, 110.52, 23.48. HRMS calcd. For C14H9Cl2N4O2
([M − H]−), 335.0103; found, 335.0105.

Compound 2d 4-amino-3,5-dichloro-6-(7-methyl-2H-indazol-2-yl)-2-picolinic acid.
White solid; 190.8–191.6 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.94 (s, 1H), 8.73 (s, 1H),
7.60 (d, J = 8.4 Hz, 1H), 7.41 (s, 2H), 7.10 (d, J = 6.6 Hz, 1H), 7.03 (dd, J = 8.4, 6.7 Hz, 1H),
2.53 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.92, 150.95, 149.55, 147.48, 146.78, 127.66,
126.15, 126.12, 123.01, 121.46, 118.99, 112.41, 110.76, 17.29. HRMS calcd. For C14H9Cl2N4O2
([M − H]−), 335.0103; found, 335.0101.

Compound 3A 4-amino-3,5-dichloro-6-(4-amino-1H-indazol-1-yl)-2-picolinic acid. Pale
yellow solid; 170.5–171.4 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.34 (s, 1H), 8.39 (s, 1H),
7.24 (s, 2H), 7.08 (dd, J = 8.0, 7.5 Hz, 1H), 6.58 (d, J = 8.2 Hz, 1H), 6.28 (d, J = 7.5 Hz,
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1H). 13C NMR (126 MHz, DMSO-d6) δ 166.17, 151.01, 146.90, 143.01, 141.58, 135.01, 129.44,
114.30, 111.13, 110.55, 103.73, 98.37. HRMS calcd. For C13H8Cl2N5O2 ([M − H]−), 336.0055;
found, 336.0056.

Compound 3a 4-amino-3,5-dichloro-6-(4-amino-2H-indazol-2-yl)-2-picolinic acid. Pale
yellow solid; 179.3–180.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 14.03 (s, 0H), 11.14 (s, 1H),
8.98 (s, 2H), 7.82 (dd, J = 8.2, 0.9 Hz, 1H), 7.07 (dd, J = 8.2, 8.1 Hz, 1H), 6.60 (s, 2H), 6.35
(dd, J = 8.1, 0.8 Hz, 1H). 13C NMR (126 MHz, DMSO-d6)13C NMR (126 MHz, DMSO-d6) δ
171.14, 166.86, 151.82, 149.35, 148.38, 145.27, 143.65, 133.20, 109.89, 106.39, 105.05, 100.59,
99.87. HRMS calcd. For C13H8Cl2N5O2 ([M − H]−) 336.0055; found, 336.0057.

Compound 3C 4-amino-3,5-dichloro-6-(6-amino-1H-indazol-1-yl)-2-picolinic acid. Pale
yellow solid; 172.3–173.3 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.42 (s, 1H), 8.02 (s, 1H), 7.46
(d, J = 8.6 Hz, 1H), 7.23 (s, 2H), 6.59 (dd, J = 8.6, 1.5 Hz, 1H), 6.44 (s, 1H). 13C NMR (126 MHz,
DMSO-d6) δ 166.18, 150.93, 149.54, 147.06, 142.29, 136.33, 121.69, 116.36, 113.50, 111.06,
110.82, 92.11. HRMS calcd. For C13H8Cl2N5O2 ([M − H]−), 336.0055; found, 336.0060.

Compound 3c 4-amino-3,5-dichloro-6-(6-amino-2H-indazol-2-yl)-2-picolinic acid. Pale
yellow solid; 158.9–160.0 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.35 (s, 1H), 8.92 (s, 1H),
7.99 (d, J = 8.9 Hz, 1H), 7.73 (s, 1H), 7.46 (s, 2H), 7.10 (dd, J = 8.9, 1.4 Hz, 1H). 13C NMR
(126 MHz, DMSO-d6) δ 165.83, 151.03, 148.01, 146.90, 146.75, 131.20, 127.30, 124.22, 120.75,
118.79, 112.72, 111.92, 110.63. HRMS calcd. For C13H8Cl2N5O2 ([M − H]−), 335.0055;
found, 336.0062.

Compound 3d 4-amino-3,5-dichloro-6-(7-amino-2H-indazol-2-yl)-2-picolinic acid. Yel-
low solid; 214.2–214.9 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.23 (s, 1H), 8.55 (s, 1H), 7.39 (s,
2H), 6.91 (d, J = 8.0 Hz, 1H), 6.85 (dd, J = 8.3, 7.1 Hz, 1H), 6.33 (d, J = 6.9 Hz, 1H). 13C NMR
(126 MHz, DMSO-d6) δ 166.00, 150.87, 147.53, 146.88, 142.90, 138.72, 125.29, 124.53, 122.48,
112.21, 110.66, 107.65, 104.43. HRMS calcd. For C13H8Cl2N5O2 ([M − H]−), 335.0055;
found, 336.0057.

Compound 4A 4-amino-3,5-dichloro-6-(4-methoxy-1H-indazol-1-yl)-2-picolinic acid.
White solid; 199.1–201.6 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.36 (s, 1H), 9.16 (s, 1H), 7.95
(d, J = 8.3 Hz, 1H), 7.38 (dd, J = 8.9, 8.4 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 6.72 (s, 2H), 3.81 (s,
3H). 13C NMR (126 MHz, DMSO-d6) δ 169.31, 166.67, 158.44, 148.88, 148.62, 145.36, 140.35,
132.17, 112.99, 111.66, 105.79, 105.48, 99.33, 56.46. HRMS calcd. For C14H9Cl2N4O3 ([M −
H]−), 351.0052; found, 351.0052.

Compound 4a 4-amino-3,5-dichloro-6-(4-methoxy-2H-indazol-2-yl)-2-picolinic acid.
White solid; 221.3–222.5 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.56 (s, 1H), 7.95 (s, 1H), 7.18
(dd, J = 8.0, 7.9 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H), 6.47 (s, 1H), 6.46 (s, 2H), 3.84 (s, 3H). 13C
NMR (126 MHz, DMSO-d6) δ 169.12, 157.35, 150.28, 145.45, 142.77, 135.39, 131.83, 128.28,
124.79, 118.32, 112.67, 105.39, 101.68, 56.92. HRMS calcd. For C14H9Cl2N4O3 ([M − H]−),
351.0052; found, 351.0050.

Compound 4B 4-amino-3,5-dichloro-6-(5-methoxy-1H-indazol-1-yl)-2-picolinic acid.
White solid; 179.8–180.5 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.72 (s, 1H), 8.28 (s, 1H),
7.53 (d, J = 9.1 Hz, 1H), 7.31 (d, J = 2.3 Hz, 1H), 7.28 (s, 2H), 7.13 (dd, J = 9.1, 2.4 Hz, 1H),
3.83 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 166.12, 155.49, 151.19, 146.89, 146.42, 135.98,
135.62, 125.25, 119.32, 113.20, 111.16, 109.80, 101.16, 55.96. HRMS calcd. For C14H9Cl2N4O3
([M − H]−), 351.0052; found, 351.0051.

Compound 4b 4-amino-3,5-dichloro-6-(5-methoxy-2H-indazol-2-yl)-2-picolinic acid.
White solid; 223.0–224.3 ◦C; 1H NMR (500 MHz, DMSO-d6) δ13.67 (s, 1H), 8.58 (d, J = 0.9 Hz,
1H), 7.62 (d, J = 9.3 Hz, 1H), 7.38 (s, 2H), 7.05 (d, J = 2.4 Hz, 1H), 7.02 (dd, J = 9.3, 2.4 Hz, 1H),
3.80 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 168.10, 157.32, 150.76, 148.85, 142.45, 130.63,
129.46, 125.82, 120.97, 115.23, 110.35, 104.74, 100.38, 55.52. HRMS calcd. For C14H9Cl2N4O3
([M − H]−), 351.0052; found, 351.0056.

Compound 4C 4-amino-3,5-dichloro-6-(6-methoxy-1H-indazol-1-yl)-2-picolinic acid.
White solid; 193.1–194.4 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 12.98 (s, 1H), 11.51 (s, 1H),
8.77 (d, J = 2.5 Hz, 1H), 7.94 (d, J = 8.9 Hz, 1H), 6.76 (s, 2H), 6.57 (dd, J = 8.9, 2.6 Hz, 1H),
3.82 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 170.35, 166.52, 164.08, 148.87, 148.77, 145.82,
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144.15, 133.37, 107.49, 107.27, 106.68, 102.96, 100.25, 55.63. HRMS calcd. For C14H9Cl2N4O3
([M − H]−), 351.0052; found, 351.0056.

Compound 4c 4-amino-3,5-dichloro-6-(6-methoxy-2H-indazol-2-yl)-2-picolinic acid.
White solid; 244.6–245.0 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.05 (s, 1H), 8.59 (s, 1H), 7.65
(d, J = 9.1 Hz, 1H), 7.07 (s, 2H), 6.99 (s, 1H), 6.77 (dd, J = 9.1, 2.1 Hz, 1H), 3.83 (s, 3H). 13C
NMR (126 MHz, DMSO-d6) δ 166.95, 159.22, 150.34, 150.09, 146.92, 125.71, 122.50, 117.79,
117.45, 110.77, 108.33, 94.92, 55.60. HRMS calcd. For C14H9Cl2N4O3 ([M − H]−), 351.0052;
found, 351.0054.

Compound 4d 4-amino-3,5-dichloro-6-(7-methoxy-2H-indazol-2-yl)-2-picolinic acid.
White solid; 203.0–203.7 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.97 (s, 1H), 8.71 (s, 1H),
7.41 (s, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.03 (dd, J = 8.3, 7.5 Hz, 1H), 6.68 (d, J = 7.3 Hz, 1H),
3.93 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.90, 150.97, 150.50, 147.32, 146.76, 142.78,
125.92, 123.51, 123.42, 113.20, 112.37, 110.60, 104.23, 55.70. HRMS calcd. For C14H9Cl2N4O3
([M − H]−), 351.0052; found, 351.0060.

Compound 5A 4-amino-3,5-dichloro-6-(4-fluoro-1H-indazol-1-yl)-2-picolinic acid. White
solid; 161.2–162.3 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 12.80 (s, 1H), 8.55 (d, J = 0.8 Hz, 1H),
7.50 (td, J = 8.0, 5.1 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.35 (s, 2H), 7.09 (dd, J = 10.2, 7.6 Hz,
1H). 13C NMR (126 MHz, DMSO-d6) δ 165.80, 156.63, 154.62, 151.19, 151.15, 151.02, 146.96,
146.77, 127.88, 127.83, 123.63, 123.59, 114.64, 114.60, 113.42, 113.26, 112.79, 110.85, 105.48,
105.35. HRMS calcd. For C13H6Cl2FN4O2 ([M − H]−) 338.9852; found, 338.9859.

Compound 5a 4-amino-3,5-dichloro-6-(4-fluoro-2H-indazol-2-yl)-2-picolinic acid. White
solid; 177.9–178.5 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.78 (s, 1H), δ 8.99 (d, J = 0.9 Hz,
1H), 7.57 (d, J = 8.7 Hz, 1H), 7.46 (s, 2H), 7.34 (ddd, J = 8.8, 7.5, 5.4 Hz, 1H), 6.91 (dd, J = 10.7,
7.4 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 165.98, 156.14, 154.15, 151.24, 146.87, 145.92,
142.43, 142.36, 132.50, 129.47, 129.41, 114.41, 114.23, 111.98, 110.82, 108.43, 108.40, 107.01,
106.86. HRMS calcd. For C13H6Cl2FN4O2 ([M − H]−) 338.9852; found, 338.9858.

Compound 5B 4-amino-3,5-dichloro-6-(5-fluoro-1H-indazol-1-yl)-2-picolinic acid. White
solid; 197.8–198.4 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.23 (s, 1H), 8.40 (d, J = 0.9 Hz, 1H),
7.69 (dd, J = 8.9, 2.5 Hz, 1H), 7.66 (dd, J = 9.2, 4.4 Hz, 1H), 7.39 (ddd, J = 9.1, 2.5, 2.3 Hz, 1H),
7.33 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ 166.01, 159.20, 157.32, 151.28, 146.74, 146.13,
136.95, 136.43, 136.38, 124.86, 124.78, 117.29, 117.08, 113.73, 113.66, 111.61, 110.25, 105.98,
105.79. HRMS calcd. For C13H6Cl2FN4O2 ([M − H]−), 338.9852; found, 338.9850.

Compound 5b 4-amino-3,5-dichloro-6-(5-fluoro-2H-indazol-2-yl)-2-picolinic acid. White
solid; 193.5–194.8 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 14.02 (s, 1H), 8.77 (s, 1H), 7.81 (dd,
J = 9.4, 4.7 Hz, 1H), 7.54 (dd, J = 9.4, 2.2 Hz, 1H), 7.44 (s, 2H), 7.28 (ddd, J = 9.3, 2.4, 2.2 Hz,
1H). 13C NMR (126 MHz, DMSO-d6) δ 165.83, 159.17, 157.27, 150.98, 146.93, 146.61, 146.55,
126.48, 126.41, 120.88, 120.78, 120.64, 120.56, 119.35, 119.12, 112.60, 110.49, 104.08, 103.89.
HRMS calcd. For C13H6Cl2FN4O2 ([M − H]−), 338.9852; found, 338.9850.

Compound 5Cc (mixture) 4-amino-3,5-dichloro-6-(6-fluoro-1H-indazol-1-yl)-2-picolinic
acid and 4-amino-3,5-dichloro-6-(6-fluoro-2H-indazol-2-yl)-2-picolinic acid (1: 0.47). Yellow
solid; 160.1–167.9 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.94 (s, 1H), 8.77 (s, 1H), 7.80
(dd, J = 9.4, 4.7 Hz, 1H), 7.53 (dd, J = 9.4, 2.4 Hz, 1H), 7.43 (s, 2H), 7.28 (ddd, J = 9.4, 2.5,
2.2 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 166.00, 157.33, 151.30, 146.75, 146.15, 136.40,
124.87, 124.78, 120.78, 120.70, 117.28, 117.06, 113.70, 111.61, 111.23, 105.96, 105.77; 1H NMR
(500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.40 (s, 1H), 7.68 (dd, J = 8.9, 2.5 Hz, 1H, 7.65 (dd,
J = 8.9, 2.5 Hz, 1H), 7.39 (td, J = 9.1, 2.5 Hz, 1H), 7.33 (s, 2H). 13C NMR (126 MHz, DMSO-
d6) δ 165.85, 159.22, 151.04, 147.08, 146.61, 136.97, 126.43, 126.36, 120.89, 120.80, 119.24,
119.01, 113.77, 112.53, 110.50, 104.04, 103.84. HRMS calcd. For C13H6Cl2FN4O2 ([M − H]−),
338.9852; found, 338.9852.

Compound 5d 4-amino-3,5-dichloro-6-(5-fluoro-2H-indazol-2-yl)-2-picolinic acid. White
solid; 203.6–204.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.62 (s, 1H), 8.24–8.15 (m, 1H), 7.60
(d, J = 8.0 Hz, 1H), 7.18 (dd, J = 11.4, 7.6 Hz, 1H), 7.09 (ddd, J = 7.8, 4.5, 4.4 Hz, 1H). 13C
NMR (126 MHz, DMSO-d6) δ 165.84, 153.62, 151.61, 151.04, 146.97, 146.77, 140.21, 140.08,
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127.33, 124.89, 124.84, 122.78, 122.73, 118.18, 118.15, 112.77, 110.78, 110.40, 110.27. HRMS
calcd. For C13H6Cl2FN4O2 ([M − H]−), 338.9852; found, 338.9851.

Compound 6A 4-amino-3,5-dichloro-6-(4-chloro-1H-indazol-1-yl)-2-picolinic acid.
White solid; 195.3–195.8 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.28 (s, 1H), 8.50 (s, 1H),
7.57 (d, J = 8.4 Hz, 1H), 7.49 (dd, J = 7.5, 0.9 Hz, 1H), 7.38 (d, J = 7.3 Hz, 2H), 7.38 (s, 1H).
133C NMR (126 MHz, DMSO-d6) δ 165.99, 151.27, 146.85, 145.89, 140.99, 134.46, 129.09,
125.58, 123.34, 122.15, 112.08, 111.03, 110.87. HRMS calcd. For C13H6Cl3N4O3 ([M − H]−),
354.9556; found, 354.9559.

Compound 6a 4-amino-3,5-dichloro-6-(4-chloro-2H-indazol-2-yl)-2-picolinic acid.
White solid; 206.2–207.3 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.98 (s, 1H), 8.93 (s, 1H),
7.73 (d, J = 8.8 Hz, 1H), 7.48 (s, 2H), 7.36 (dd, J = 8.7, 7.2 Hz, 1H), 7.25 (d, J = 7.1 Hz,
1H). 13C NMR (126 MHz, DMSO-d6) δ 165.78, 151.03, 149.42, 146.93, 146.84, 128.13, 125.62,
125.25, 122.11, 121.65, 117.34, 112.77, 110.74. HRMS calcd. For C13H6Cl3N4O3 ([M − H]−),
354.9556; found, 354.9532.

Compound 6B 4-amino-3,5-dichloro-6-(5-chloro-1H-indazol-1-yl)-2-picolinic acid. White
solid; 198.5–199.1 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.17 (s, 1H), 8.41 (d, J = 0.7 Hz,
1H), 8.00 (d, J = 1.7 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H), 7.51 (dd, J = 8.9, 2.0 Hz, 1H), 7.36 (s,
2H). 13C NMR (126 MHz, DMSO-d6) δ 165.83, 151.05, 147.36, 146.92, 146.71, 128.59, 127.20,
126.18, 122.01, 120.45, 120.24, 112.67, 110.53. HRMS calcd. For C13H6Cl3N4O3 ([M − H]−),
354.9556; found, 354.9555.

Compound 6b 4-amino-3,5-dichloro-6-(5-chloro-2H-indazol-2-yl)-2-picolinic acid.
White solid; 204.2–205.3 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.40 (s, 1H), 8.80 (s, 1H),
7.92 (d, J = 1.3 Hz, 2H), 7.78 (d, J = 9.2 Hz, 1H), 7.46 (s, 2H), 7.34 (dd, J = 9.2, 2.0 Hz,
1H). 13C NMR (126 MHz, DMSO-d6) δ 165.83, 151.05, 147.36, 146.94, 146.74, 128.58, 127.18,
126.20, 122.01, 120.46, 120.27, 112.63, 110.52. HRMS calcd. For C13H6Cl3N4O3 ([M − H]−),
354.9556; found, 354.9554.

Compound 6Cc (mixture) 4-amino-3,5-dichloro-6-(6-chloro-1H-indazol-1-yl)-2-picolinic
acid and 4-amino-3,5-dichloro-6-(6-chloro-2H-indazol-2-yl)-2-picolinic acid (0.48: 1). Yellow
solid; 158.0–171.4 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.27 (s, 1H), 8.91 (s, 1H), 7.92 (d,
J = 9.0 Hz, 1H), 7.88 (s, 1H), 7.48 (s, 2H), 7.18 (dd, J = 8.9, 1.6 Hz, 1H). 13C NMR (126 MHz,
DMSO-d6) δ 165.96, 151.34, 146.67, 145.92, 140.33, 133.40, 132.33, 123.38, 123.26, 123.21,
112.63, 111.85, 110.59; 1H NMR (500 MHz, DMSO-d6) δ 13.27 (s, 1H), 8.49 (s, 1H), 7.96
(d, J = 8.6 Hz, 1H), 7.79 (s, 1H), 7.37(s, 2H), 7.36 (dd, J = 8.5, 1.7 Hz, 1H). 13C NMR
(126 MHz, DMSO-d6) δ 165.83, 151.05, 149.05, 147.00, 146.78, 136.73, 127.06, 123.87, 123.86,
120.21, 116.87, 111.82, 110.54. HRMS calcd. For C13H6Cl3N4O2 ([M − H]−), 338.9556;
found, 338.9555.

Compound 6d 4-amino-3,5-dichloro-6-(7-chloro-2H-indazol-2-yl)-2-picolinic acid.
White solid; 211.5–212.1 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.89 (s, 1H), 8.94 (s, 1H),
7.81 (d, J = 8.1 Hz, 1H), 7.48 (dd, J = 6.8, 0.4 Hz, 1H), 7.46 (s, 2H), 7.13 (dd, J = 8.4, 7.2 Hz,
1H). 13C NMR (126 MHz, DMSO-d6) δ 165.84, 151.02, 147.06, 146.82, 146.41, 127.88, 126.94,
123.24, 122.98, 122.28, 121.11, 112.79, 110.89. HRMS calcd. For C13H6Cl3N4O3 ([M − H]−),
354.9556; found, 354.9555.

Compound 7A 4-amino-3,5-dichloro-6-(4-bromo-1H-indazol-1-yl)-2-picolinic acid. Yel-
low solid;181.5–182.3 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.51 (s, 1H), 8.39 (s, 1H), 7.61 (d,
J = 8.4 Hz, 1H), 7.53 (d, J = 7.4 Hz, 1H), 7.42 (dd, J = 7.8, 0.4 Hz, 1H), 7.37 (s, 2H). 13C NMR
(126 MHz, DMSO-d6) δ 165.95, 151.29, 146.93, 145.95, 140.68, 135.85, 129.39, 125.36, 125.18,
113.85, 111.98, 111.53, 110.83. HRMS calcd. For C13H6BrCl2N4O3 ([M − H]−), 398.9051;
found, 398.9055.

Compound 7a 4-amino-3,5-dichloro-6-(4-bromo-2H-indazol-2-yl)-2-picolinic acid. Yel-
low solid; 206.4–207.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.60 (s, 1H), 8.83 (s, 1H), 7.76 (d,
J = 8.7 Hz, 1H), 7.45 (s, 2H), 7.41 (d, J = 7.1 Hz, 1H), 7.30 (dd, J = 8.6, 7.2 Hz, 1H). 13C NMR
(126 MHz, DMSO-d6) δ 165.77, 151.03, 148.90, 146.92, 146.69, 128.56, 126.92, 125.51, 123.40,
117.74, 113.30, 112.79, 110.76. HRMS calcd. For C13H6BrCl2N4O3 ([M − H]−), 398.9051;
found, 398.9054.
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Compound 7B 4-amino-3,5-dichloro-6-(5-bromo-1H-indazol-1-yl)-2-picolinic acid. Yel-
low solid; 207.5–208.6 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.45 (s, 1H), 8.41 (s, 1H), 8.15 (s,
1H), 7.66–7.57 (m, 2H), 7.35 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ 165.98, 151.29, 146.81,
145.97, 138.76, 135.95, 130.68, 126.27, 124.03, 114.75, 114.04, 111.76, 110.43. HRMS calcd. For
C13H6BrCl2N4O3 ([M − H]−), 398.9051; found, 398.9056.

Compound 7b 4-amino-3,5-dichloro-6-(5-bromo-2H-indazol-2-yl)-2-picolinic acid. Yel-
low solid; 209.9–210.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.39 (s, 1H), 8.79 (s, 1H), 8.08
(s, 1H), 7.71 (d, J = 9.2 Hz, 1H), 7.44–7.42 (m, 3H). 13C NMR (126 MHz, DMSO-d6) δ 165.81,
151.06, 147.39, 146.95, 146.77, 130.78, 126.02, 123.85, 122.87, 120.48, 115.36, 112.60, 110.52.
HRMS calcd. For C13H6BrCl2N4O3 ([M − H]−), 398.9051; found, 398.9053.

Compound 7Cc (mixture) 4-amino-3,5-dichloro-6-(6-bromo-1H-indazol-1-yl)-2-picolinic
acid and 4-amino-3,5-dichloro-6-(6-bromo-2H-indazol-2-yl)-2-picolinic acid (1: 1.03). Yellow
solid; 143.7–158.9 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.73 (s, 1H), 8.86 (s, 1H), 8.01 (s,
1H), 7.86 (d, J = 8.5 Hz, 1H), 7.43 (s, 2H), 7.43 (dd, J = 8.5, 1.5 Hz, 1H). 13C NMR (126 MHz,
DMSO-d6) δ 165.83, 149.59, 146.99, 146.80. 146.78, 140.68, 127.12, 123.60, 120.90, 120.32,
112.62, 110.58; 1H NMR (500 MHz, DMSO-d6) δ 13.11 (s, 1H), 8.44 (s, 1H), 7.90 (s, 1H), 7.82
(d, J = 8.9 Hz, 1H), 7.33 (s, 2H), 7.25 (d, J = 9.0 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ
165.96, 151.34, 151.05, 146.68, 145.91, 136.78, 126.14, 125.73, 123.98, 123.46, 121.53, 120.19,
114.80, 111.85. HRMS calcd. For C13H6BrCl2N4O3 ([M − H]−), 398.9051; found, 398.9050.

Compound 7d 4-amino-3,5-dichloro-6-(7-bromo-2H-indazol-2-yl)-2-picolinic acid. Yel-
low solid; 212.3–213.2 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.21 (s, 1H), 8.97 (s, 1H), 7.85 (d,
J = 8.4 Hz, 1H), 7.65 (d, J = 7.1 Hz, 1H), 7.46 (s, 2H), 7.07 (dd, J = 7.0, 1.0 Hz, 1H). 13C NMR
(126 MHz, DMSO-d6) δ 165.85, 151.01, 147.47, 147.07, 146.83, 130.35, 128.01, 123.67, 122.52,
121.63, 112.78, 110.99, 110.92. HRMS calcd. For C13H6BrCl2N4O3 ([M − H]−), 398.9051;
found, 398.9053.

3.3. Determination of the Biological Activities
3.3.1. Phenotypic Study for the Inhibition of A. thaliana Root Growth

Seeds of Col-0 were surface-sterilized using 1% sodium hypochlorite solution, and were
sown onto 1/2 Modified Medium (with vitamins, sucrose and phytagel) with compounds
at 200, 100, 50, 25, 12, 6 and 3 µM in Petri dishes. Subsequently, seeds were incubated at
4 ◦C for two days under darkness, and were cultured on vertically oriented Petri dishes at
22 ◦C for 7 d under light/dark (16 h/8 h) cycling in a plant incubator. The taproot length
of 7-day-old seedlings was measured using IMAGEJ software. The inhibition percentage of
A. thaliana root growth was calculated based on the following equation:

P0 =
La0 − La

La0
× 100%

where P0 is the inhibition percentage, and La and La0 are the average lengths of the roots if
A. thaliana in the presence of compounds and untreated controls, respectively.

3.3.2. Evaluation of the Herbicidal Activity

The herbicidal activity of synthetic compounds was evaluated according to a reported
procedure, and picloram was used as the positive control and the results represent the
bioactivity triplicate [18]. Preliminary herbicidal activities of synthetic compounds against
BN, AM, EC, AR and CA were screened at concentrations of 500 and 250 µM in Petri dish
tests. Emulsions of new compounds and picloram were prepared by dissolving them in
the mixture of DMSO (0.1 mL) and Tween-80 (0.1 mL) followed by dispersing in deionized
water (10 mL). A mixture of the same amount of water, DMSO and Tween-80 was used as
the untreated control. The seeds were soaked in warm water (25 ◦C) for 15 h before use,
and about 10 seeds of BN, AM, AR, CA and EC were placed onto germinating paper (6 cm)
wetted with 5 mL emulsions in a 6 cm Petri dish. The plates were placed in a dark room
and allowed to germinate for 36 h at 25 ± 1 ◦C, then transferred to 22 ◦C for four to seven
days under light/dark (16 h/8 h) cycling. The lengths of five BN, AM, AR, CA and EC
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root radicles randomly selected from each plate were measured, respectively. The average
of the root lengths was calculated, and the inhibition percentage was calculated using the
following equation:

P1 =
Lw0 − Lw

Lw0
× 100%

where P1 is the inhibition percentage, and Lw and Lw0 are the average lengths of the five
weed’s roots in the presence of compounds and untreated controls, respectively.

Furthermore, the vivo post-emergence herbicidal activity of new compounds against
four dicotyledonous weeds, BN, AM, AR and CA, and one monocotyledonous weed,
EC, was tested at a dosage of 1000, 500 and 250 g ha−1 in a glasshouse (Xian Zheng Fei
Greenhouse, Science and Technology Park, China Agricultural University, Beijing, China).
The plant growth medium was obtained by mixing peat soil, flower soil and vermiculite at
a mass ratio of 1:3:2. Preparation of the emulsions of new compounds and picloram was the
same for tests in Petri dishes. The emulsions were sprayed using a spray bottle at a dosage
of 1000, 500 and 250 g ha−1 after the plants reached the two-leaf stage. Subsequently, the
seedings grew in the greenhouse (natural environment, no additional lighting, 25–35 ◦C).
Weed growth and toxic symptoms were observed regularly after treatment and the growth
inhibitory activities of each compound were visually evaluated 14 d after treatment based
on the following index: all dead: 100%; stems atrophy and dead leaves: 80%; stems atrophy
and partially dead leaves: 60%, normal stems and partially dead leaves: 40%; normal stems
and partially curled leaves: 20%, and normal stems and leaves = 0.

3.4. Quantitative Real-Time PCR

A. thaliana was cultured on 1/2 Modified Medium (with vitamins, sucrose, and phy-
tagel) in Petri dishes (10 × 10 cm), and placed in a plant incubator after the seeds were
incubated at 4 ◦C for two days under darkness. The seeds were cultured on vertically
oriented Petri dishes at 22 ◦C for two weeks under light/dark (16 h/8 h) cycling. Seedlings
then were carefully placed on filter paper wetted with the solution of compound 7Cc, 5A,
5a, picloram at a concentration of 100 µM and deionized water in a Petri dish (10 × 10 cm),
respectively. After 12 h, 24 h and 72 h, the whole seedlings were rapid frozen with liquid
nitrogen, collected and stored at −80 ◦C. Detailed steps are described in the Supporting
Information.

4. Conclusions

In this study, based on scaffold hopping, 38 4-amino-3,5-dicholor-6-(1H-indazol-1-yl)-
2-picolinic acid and 4-amino-3,5-dicholor-6-(2H-indazol-1-yl)-2-picolinic acid compounds
were designed and synthesized via a four-step synthetic route with good yields. The
results of primary bioassay on the root growth inhibition of A. thaliana demonstrated that
most compounds had an excellent inhibitory effect, especially with substituents at the
4, 6, 7 position and electron-withdrawing groups on the indazole ring. Compound 5a
had a comparable performance against the commercial herbicide picloram, while 7Cc
was superior to picloram. The herbicidal activity in Petri dishes showed that most of the
compounds were able to inhibit root growth in five weeds, while compound 5a showed
significantly better activity than picloram in the root inhibition assay of BN and AM at a
concentration of 10 µM. Most of the compounds exhibited excellent herbicidal activity in
post-emergence at 1000 and 500 g/ha, while compound 5a also had an injurious effect on AR
and CA at 250 g/ha. Overall, 6-indazolyl-2-picolinic acids with an electron-withdrawing
substituent on the indazole ring and substituent at the 4 position exhibited excellent root
inhibitory and herbicidal activities. Compounds 7Cc, 5A, and 5a did not arouse the up-
regulation of auxin-related gene as picloram did, but they promoted ethylene release and
ABA production through the up-regulation of ACS and NCED genes to cause plant death
in a short period of time. These results provide new perspectives and insights for the future
design of compounds with similar structures.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29020332/s1, Figure S1: The root inhibition of compounds on EC
at 500 µM and 250 µM; Figure S2: The root inhibition of compounds on AR at 500 µM and 250 µM;
Figure S3: The root inhibition of compounds on CA at 500 µM and 250 µM; Figure S4: The root inhibit
ion of compounds on AM at 500 µM and 250 µM; Figure S5: The root inhibition of compounds on BN
at 500 µM and 250 µM; Figure S6: Summary of the visual injury percentages resulting from treatment
of the five dicotyledonous weeds 14 days with the compounds at concentrations 1000 g/ha; Table S1:
Herbicidal activities of some compounds against five weeds (reflected in terms of the visual injury
effect %); Table S2: Primers for real-time PCR used in this study; Additional Experimental Details for
qPCR; The1H and 13C NMR spectra of compounds 1A–7d.
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