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Abstract: 1H-NMR spectroscopy of lanthanide complexes is a powerful tool for deriving spectral–
structural correlations, which provide a clear link between the symmetry of the coordination envi-
ronment of paramagnetic metal centers and their magnetic properties. In this work, we have first
synthesized a series of homo- (M = M* = Dy) and heteronuclear (M ̸= M* = Dy/Y and Dy/Tb) triple-
decker complexes [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc], where BuO- and 15C5- are, respectively,
butoxy and 15-crown-5 substituents on phthalocyanine (Pc) ligands. We provide an algorithmic
approach to assigning the 1H-NMR spectra of these complexes and extracting the axial component
of the magnetic susceptibility tensor, χax. We show how this term is related to the nature of the
lanthanide ion and the shape of its coordination polyhedron, providing an experimental basis for
further theoretical interpretation of the revealed correlations.

Keywords: phthalocyanine; triple-decker complex; heteronuclear complexes; terbium; dysprosium;
solvation-induced switching; paramagnetic NMR; axial magnetic anisotropy

1. Introduction

Single-molecule magnetism (SMM) is one of the most intriguing manifestations of the
anisotropic coordination environment of paramagnetic lanthanides in sandwich complexes
with tetrapyrrolic ligands, which was actually first described for this family of elements
using the example of terbium(III) bisphthalocyaninate, Tb(Pc)2. Since the seminal report by
Ishikawa et al. two decades ago [1], numerous examples of sandwiches containing mainly
Tb3+ and Dy3+ metal centers have been synthesized and extensively studied in terms of
magnetic relaxation dynamics, and the potential for fabrication of spintronic devices based
on them has been clearly demonstrated [2–4].

Among such complexes, we can distinguish a prominent class of triple-decker ph-
thalocyaninates, in which two metal ions bind three ligands, providing a wide range of
combinations of different macrocycles and metal centers to achieve desired functional
characteristics [5–7]. While the synthesis and properties of a large number of heteroleptic
triple-deckers have been reported [8], the family of heteronuclear derivatives containing
two different rare-earth elements (REEs) is still relatively underexplored. At the same
time, such a combination provides unique possibilities for studying the subtle effects of
intramolecular interactions between paramagnetic ions separated by a distance of only
3.4–3.5 Å.

The first vivid contribution to such studies was made by Ishikawa et al., who synthe-
sized three series of heteroleptic triple-deckers [(BuO)8Pc]M*(Pc)M(Pc), where [(BuO)8Pc]2−
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and (Pc)2− were octa-butoxy-substituted and unsubstituted phthalocyaninato ligands, re-
spectively [9,10]. One series consisted of homonuclear complexes with M* = M = Tb3+,
Dy3+, Ho3+, Er3+, Tm3+ and Yb3+, and the other two families were isomeric heteronuclear
complexes containing a diamagnetic Y3+ ion at either the M* or M site, while the other
site was occupied by one of the listed lanthanides. A comparison of the temperature
dependence of magnetic susceptibilities between homo- and heteronuclear complexes has
provided the first detection and characterization of the dipolar f -f interactions between
Ln3+ ions.

Later, the influence of these interactions on the behavior of SMMs based on triple-
deckers was revealed. It was demonstrated that heteronuclear complexes containing
one dia- and one paramagnetic ion, Tb3+ and Y3+, acted as field-induced SMMs, while
the homonuclear di-terbium complexes showed slow magnetic relaxation even in a zero
dc field. Such a behavior was attributed to the f -f interactions acting as an exchange
bias that suppresses the undesired quantum tunneling mechanism of magnetic relax-
ation [11–13]. This effect was first demonstrated on the examples of the aforementioned
[(BuO)8Pc]M*(Pc)M(Pc) complexes [14], and a deeper insight into this phenomenon was
gained with the 15-crown-5-substituted sandwiches [(15C5)4Pc]M*[(15C5)4Pc]M(Pc) re-
ported by R. Holmberg et al. [15]. In both cases, M* = M = Tb or M* ̸= M = Tb/Y.

The synthesis of heteronuclear trisphthalocyaninates is relatively straightforward. It
implies raise-by-one-story reactions of bisphthalocyaninates bearing one metal center with
monophthalocyaninates bearing another metal center. The latter precursors can be either
synthesized beforehand [16–18] (Figure 1a), generated in situ from metal-free ligands [9]
(Figure 1b) or by transmetalation of other complexes [15,19] (Figure 1c).
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of dilithium phthalocyaninate (c) [20]. 

Figure 1. Summary of synthetic raise-by-one-story approaches to heteronuclear trisphthalocyani-
nates via addition of a pre-synthesized monophthalocyaninate to a double-decker complex (a) [16];
generation of monophthalocyaninates in situ from a metal-free ligand (b) [9]; and transmetalation of
dilithium phthalocyaninate (c) [20].

In general, these approaches can be used to obtain thermodynamically and kineti-
cally stable heteronuclear triple-deckers with any pair of middle and late lanthanide ions,
including complexes with two paramagnetic ions. Such an interplay between different
combinations of nonequivalent magnetically active nuclei placed in well-defined positions
can be used to study f -f interactions and provides a tool for fine-tuning the SMM behavior
of such complexes. A rare example of such complexes—[(n-C8H13)8Pc]Tb(Pc)Dy(Pc)—has
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been reported by Lan et al. [20]. A weak but significant interaction between the two lan-
thanides was clearly detected, modifying the magnetic behavior of the single lanthanide as
observed in the parent mononuclear complexes.

Trisphthalocyaninates also attract attention as conformationally flexible scaffolds
where the twist angle between the ligands can be controlled by various inter- and in-
tramolecular factors, including host–guest interactions [21,22], solvation [23,24] and redox
transformations [25,26]. The variation in the twist angle inevitably changes the symmetry
of the coordination polyhedron of the lanthanide ion sandwiched between these ligands,
which has a profound effect on its magnetic properties due to the influence of this symmetry
on magnetic anisotropy [27] and energetic characteristics and preferable mechanisms of
magnetic relaxation [11,28,29].

Recently, we reported a series of works on conformationally flexible triple-decker com-
plexes composed of butoxy- and crown-substituted phthalocyaninato ligands [(BuO)8Pc]M
[(BuO)8Pc]M*[(15C5)4Pc], including homonuclear complexes M = M* = Tb3+ and Y3+ [23]
and their heteroleptic counterparts M ̸= M* = Tb3+ and Y3+ [24]. We showed that the
pairwise conformations of the ligands are solvation-dependent: in halogenated alkanes, the
pair of BuO- and 15C5-substituted ligands adopts the staggered conformation with a twist
angle of ~45◦, while the pair of BuO-substituted ligands forms the gauche conformation
with a twist angle of ~22◦ (Figure 2). In turn, it provides metal centers M* and M with
square-antiprismatic (SAP) and distorted prismatic (DP) coordination surroundings, respec-
tively. In contrast, solvation with aromatic solvents leads to the stabilization of staggered
conformations for both ligand pairs, so that both metal centers exist in SAP environments.
The stabilization of certain conformers was explained by X-ray diffraction analysis of the sol-
vates with dichloromethane and toluene, where weak contacts with the solvent molecules
were found and analyzed in terms of the quantum theory of atoms in molecules [23]. More-
over, these conformations were stable not only in the crystalline state but also in solution,
which was confirmed by 1H-NMR characterization of Tb3+ complexes—their magnetic
anisotropy χax strongly increases upon lowering the coordination symmetry from SAP to
DP, as evidenced from the structure-based analysis of lanthanide-induced shifts.
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Figure 2. Conformationally flexible trisphthalocyaninates, [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc] (or
[B4]M[B4]M*[C4] for brevity) capable of site-selective solvation-induced conformational switching.
Pairs of neighboring ligands from X-ray structures of solvates of [B4]Y[B4]Y[C4] with dichloromethane
(CCDC FIJTEB) and toluene (CCDC FIJXOP) show the square-antiprismatic and distorted prismatic
conformers, respectively.

In the present work, we extended the developed synthetic and analytical approaches
to Dy3+ complexes, including a homonuclear triple-decker with M = M* = Dy3+ and
pairs of isomeric heteronuclear analogues with M/M* = Dy3+/Y3+ and Y3+/Dy3+, as
well as Dy3+/Tb3+ and Tb3+/Dy3+. For the sake of brevity, we will henceforth refer to
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butoxy- and crown-substituted ligands as [B4] and [C4], respectively, following our previous
notation [23,24] (Figure 2). Assuming that the axial anisotropy of the magnetic susceptibility
tensor χax deduced from NMR correlates with ligand field parameters [30–34], which, in
turn, determine SMM behavior [26,35], these studies serve to verify the theoretical models
and to design molecular magnets with improved characteristics [36].

2. Results
2.1. Synthesis and Characterization

The synthesis of the [B4]M[B4]M*[C4] complexes with the aforementioned combi-
nations of metal centers followed the procedure reported for Y3+ and Tb3+ complexes
(Figure 3). It started with the preparation of bis(octa-n-butoxyphthalocyaninates) M[B4]2,
M = Tb3+, Dy3+ and Y3+ by the interaction of H2[B4] with the corresponding metal acetates
in a refluxing mixture of 1-chloronaphthalene (CN) and 1-octanol (OctOH) and DBU. Previ-
ously, we demonstrated that the use of this mixture is beneficial for the fast and efficient
conversion of the starting ligand into metal complexes [23].
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The resulting complexes underwent a reaction with tetra-15-crown-5-phthalocyanine,
H2[C4], in the presence of acetylacetonates M*(acac)3·nH2O in a refluxing mixture of
1,2,4-trichlorobenzene (TCB) and 1-octanol. Rapid conversion of the starting reagents
into the desired triple-deckers was observed using UV-vis spectroscopy, and the target
complexes were isolated by column chromatography on alumina. Due to the difference in
polarity, [B4]M[B4]M*[C4] could be easily separated from the unreacted M[B4]2 and the
side homoleptic products M*2[C4]3.

UV-vis spectra measured in toluene and chloroform demonstrate that dysprosium-
containing complexes exhibit pronounced solvatochromism, similarly to the previously
reported Tb- and Y-containing [B4]M[B4]M*[C4] complexes [23,24] (Figure 4). In particular,
the spectra of the newly synthesized complexes in toluene contain intense Q-bands with
well-resolved splitting (642–643 and 695–698 nm) and less intense Soret and N-bands at
363–364 and 292–294 nm, while in the spectra in chloroform, the Q-bands are severely
broadened, although the maxima of the Q-bands in the two different solvents are very
close. This has been previously explained by the difference in the conformational state of
molecules, as in the spectrum of the conformer with DP/SAP coordination polyhedral,
more electronic transitions are symmetrically allowed in comparison with the SAP/SAP
conformer [25,37]. Since the positions and splitting of Q-bands in the UV-vis spectra of
sandwich complexes are governed by the interligand distances, which in turn depend on the
size of the metal centers [19,37,38], the faintly small difference in the spectral appearances
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of the synthesized complexes in each of the solvents is explained by the similarity of the
radii of Y3+, Tb3+ and Dy3+ ions [39].
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The very weak absorption of lanthanide ions in the synthesized complexes could not
be detected due to the much stronger absorption of tetrapyrrolic ligands. Also, we could
not detect f -luminescence of Tb3+ and Dy3+ ions due to reabsorption of weak lanthanide-
centered emission by tetrapyrrolic ligands, which have absorption bands with extinction
coefficients of 1.4−2.0 × 104 L mol−1 cm−1 in the range of 400–600 nm, where the emission
of these ions is typically observed in coordination compounds with colorless or weakly
absorbing ligands [40]. Nevertheless, there are reports of f -luminescence observed in
the near-IR for Nd(III), Ho(III), Er(III) and Yb(III) and complexes where Pcs and related
macrocycles typically do not absorb light [41].

While optical methods are not suitable to confirm the presence of lanthanides in
complexes with phthalocyanine ligands, the chemical composition of the synthesized
triple-deckers is unambiguously confirmed by MALDI-TOF mass spectrometry due to the
good agreement between the calculated and experimentally observed isotopic distributions
(Figures S1–S5). The exact arrangement of the ligands and metal centers is determined by
NMR spectroscopy, as discussed in the following sections.

2.2. Analysis of Lanthanide-Induced Shifts in 1H-NMR Spectra

The 1H-NMR spectra of lanthanide complexes typically have strikingly different
appearances from the spectra of diamagnetic organic compounds since the presence of
paramagnetic metal centers causes up- or downfield shifts of resonance signals by tens or
even hundreds of ppm. The signs and magnitudes of these lanthanide-induced shifts (LISs)
depend on both the nature of the lanthanide ion [42–45] and the overall geometry of the
complex [46,47].

Thus, for the k-th proton, the LIS can be expressed as the difference between its
chemical shifts in isostructural para- and diamagnetic complexes (1):

∆δk = δ
para
k − δdia

k (1)



Molecules 2024, 29, 510 6 of 18

On the other hand, the LIS can be presented as the sum of typically negligible contact
(through-bond, δcon

k ) and predominant dipolar (through-space, δ
dip
k ) contributions:

∆δk = δcon
k + δ

dip
k ≈ χax

12π
·Gk, Gk =

3 cos2 θk − 1
r3

k
(2)

Here, Gk is a geometrical parameter depending on the distance rk between the k-th
proton and the lanthanide ion, and θk is the angle between the vector (Hk; Ln3+) and the
main symmetry axis, D4 in our case (Figure 5a). The spectral–structural correlation (2)
renders lanthanide ions as perfect probes for the elucidation of the solution structures, for
example, in structural biology [48,49].
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tensor. Thus, the observation of lanthanide-induced shifts in NMR spectra is a manifesta-
tion of lanthanide magnetic properties associated with crystal field parameters [42–
44,46,47], and the value of 𝜒௔௫ complements the easily affordable NMR with much more 
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53]. 

The dipolar approximation of the LIS using Equation (2) suggests that the ratio of 
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Figure 5. Explanation of values of rk and θk included in the geometric parameter Gk according
to Equation (2) (a). Labels of protons: black labels indicate protons used for further analysis (b).
1H-NMR spectra of [B4]Dy[B4]Y[C4] (c,d) and [B4]Y[B4]Dy[C4] (e,f) in CDCl3 (upper row) and
toluene-d8 (lower row). Dots show the positions of chemical shifts calculated with Equation (4) vs.
the experimental values (axes x). Grey lines show the least-squares fits between the calculated and
experimental values. The complete assignment of NMR spectra for all complexes is presented in the
Materials and Methods section and the Electronic Supporting Information (Figures S7–S14).

The proportionality factor χax is the axial component of the magnetic susceptibility
tensor. Thus, the observation of lanthanide-induced shifts in NMR spectra is a manifestation
of lanthanide magnetic properties associated with crystal field parameters [42–44,46,47],
and the value of χax complements the easily affordable NMR with much more sophisticated
time- and resource-consuming magnetochemical measurements [10,31,50–53].

The dipolar approximation of the LIS using Equation (2) suggests that the ratio of LISs
for the pair of k-th and l-th protons can be approximated with the ratio of their geometrical
parameters, Rkl :

∆δk
∆δl

≈ Rkl , Rkl =
Gk
Gl

(3)

A combination of Equations (1) and (3) written for a pair of protons gives Equation (4),
which can be used to estimate the positions of the resonance signals in the 1H-NMR spectra
of paramagnetic complexes using the spectrum of a diamagnetic complex with a well-
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established structure and the shift of at least one firmly assigned resonance signal in the
spectrum of a paramagnetic complex:

δ
para
k ≈ δdia

k + ∆δl ·Rkl (4)

Yttrium(III) complexes are typically used as diamagnetic references, providing δdia
k

values, and the ratio of geometrical parameters Rkl can be taken from the structural models
obtained from either X-ray characterization or DFT modeling [22].

The almost perfect agreement of the UV-vis spectra of the newly synthesized com-
plexes with those reported previously (Figure 4) suggests an analogy in the solution
structure of the entire series of [B4]M[B4]M*[C4], which is generally expected given the
close values of the ionic radii of Y3+ (1.019 pm), Tb3+ (1.040 pm) and Dy3+ (1.027 pm) [39],
together with the similarity of their coordination chemistry [4]. This conclusion justifies
the following application of the previously determined X-ray structures of [B4]Y[B4]Y[C4]
solvated either with dichloromethane (DP/SAP conformer) or with toluene (SAP/SAP
conformer) [23] for the analysis of 1H-NMR spectra of paramagnetic complexes containing
Tb3+ and Dy3+ ions using Equation (4).

It is worth noting that the X-ray structures of the solvates with CHCl3 are not yet avail-
able, although we attempted to grow single crystals by diffusion of acetonitrile, heptane or
vapors of pentane into [B4]Y[B4]Y[C4] solutions in CHCl3 but failed to obtain material of
sufficient quality to perform XRD experiments with the required precision. On the other
hand, we previously demonstrated that chloroform also stabilizes staggered and gauche
conformers of 15C5- and BuO-substituted triple-deckers, similarly to dichloromethane
(see Figure S6 for more details). Moreover, we previously showed that the spectra of
[B4]Tb[B4]Tb[C4] in CDCl3 and CD2Cl2 are almost indistinguishable [23]. Altogether, this
suggests that the X-ray structure of the DP/SAP conformer solvated with CH2Cl2 is a
reasonable structural model for the analysis of LISs measured in chloroform.

2.2.1. Analysis of Lanthanide-Induced Shifts in 1H-NMR Spectra of Heteronuclear
Complexes [B4]Dy[B4]Y[C4] and [B4]Y[B4]Dy[C4]

The 1H-NMR spectra of the pair of isomeric trisphthalocyaninates [B4]Dy[B4]Y[C4]
and [B4]Y[B4]Dy[C4] measured in CDCl3 and toluene-d8 evidence that the spectral range
(SR) from the most upfield-shifted to the most downfield-shifted signals depends on both
the position of the Dy3+ ion and the solvent applied (Figure 5b,c).

Only aromatic protons and methylene protons proximal to the Pc ligands—1i,o-CH2
groups of butoxy-substituents and αo-CH2 groups of crown-ether rings (black labels in
Figure 5b)—were taken for further analysis as they refer to the most rigid part of the
molecules, assuring the consistency between the X-ray and solution structures [23,24].
Although CH2 groups can rotate around single σ-bonds, the interconversion between the
exo- and endo-H protons of the considered methylenes is slow on the NMR timescale; their
resonances appear as pairs of signals separated by ca. 10 ppm and coupled in 1H-1H
COSY spectra. Such hindered rotation can be explained by numerous weak interactions
of the aliphatic substituents with the substituents in the neighboring ligands [23] and
solvent molecules [25]. Similar splitting patterns were reported previously by Enders
and Yamashita et al. [26,54], Jiang et al. [55] and Ishikawa et al. [56], together with our
publications [19,23,24].

The splitting is much smaller for more distant methylene groups (grey labels in
Figure 5b), and it almost vanishes for the 3i,o-CH2 and CH3 groups, suggesting that these
groups rotate nearly freely around the corresponding sigma bonds. Thus, these distant
protons were not taken into consideration so that the deduced χax value is not disturbed
by the conformational flexibility of the peripheral substituents. Good correlations between
the experimentally observed chemical shifts and the shifts calculated from X-ray data
(Figure 5c–f) validate the applied assumptions and approximations.

The multidirectional nature of LISs observed in Figure 5c–f in such complexes origi-
nates from the fact that different protons have either positive or negative Gk depending
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on the location of these protons in the principle magnetic framework of the Dy3+ ion
(Figure 6b,c), and the largest absolute value of Gk deduced from X-ray data corresponds
to the aromatic proton of the inner BuO-substituted ligand bHPc

i [24]. This observation
allowed us to assign the resonance signals of the other protons using Equation (4), which
was confirmed by further 1H-1H COSY spectra (Figures S7–S14).
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Plotting LIS from NMR spectra vs. the geometrical parameters found from X-ray data,
followed by linear regression analysis, afforded axial anisotropies of Dy3+ ions in different
coordination surroundings (Figure 6a). This analysis demonstrates that the magnetic
properties of this ion are sensitive to the symmetry of the coordination surrounding. Thus,
switching from an SAP to a DP polyhedron in toluene and chloroform, respectively, causes
a notable increase in axial anisotropy, similar to the results reported previously for Tb3+

ions in isostructural complexes.

2.2.2. Analysis of Lanthanide-Induced Shifts in 1H-NMR Spectra of the Homonuclear
Complex [B4]Dy[B4]Dy[C4]

Due to the presence of two structurally nonequivalent paramagnetic centers in [B4]Dy
[B4]Dy[C4], Equation (4) cannot be applied for the assignment of its 1H-NMR spectra,
as these centers might give different contributions to the total LIS value. Therefore, in
the present case, the assignment is made by approximating the chemical shift of the k-th
proton in the homonuclear complex with the sum of the shifts of analogous protons in the
heteronuclear complexes according to Equation (5) [56].

δ
[B4]Dy[B4]Dy[C4]
k ≈ δ

[B4]Dy[B4]Y[C4]
k + δ

[B4]Y[B4]Dy[C4]
k (5)

The assignment is confirmed by 1H-1H COSY. In addition, due to the proximity of all
the considered protons to the Dy3+ ions, their signals are the most broadened, providing
additional verification of their correct assignment.

A comparison of the 1H-NMR spectra of the homonuclear complex [B4]Dy[B4]Dy[C4]
measured in CDCl3 and toluene-d8 (Figure 7a,b) suggests that switching from the SAP/SAP
conformer to the DP/SAP conformer also causes an increase in anisotropy, as evidenced by
the broadening of the spectral range. To confirm this conclusion, we assumed that each
of the Dy3+ ions has its own χax value in accordance with Equation (6); thus, we used
two-dimensional minimization of the Wilcott factor (AF, Equation (7)) across the various
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pairs of χax to find the best agreement between the calculated and experimental LIS values
(Figure 7c,d).

∆δ
[B4]Dy[B4]Dy[C4]
k ≈

[ χax

12π
·Gk

][B4]Dy[B4]Y[C4]
+

[ χax

12π
·Gk

][B4]Y[B4]Dy[C4]
(6)

AF =

√√√√√∑k

(
δcalc

k − δ
exp
k

)2

∑k δ
exp
k

2
(7)
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Plotting the contour maps of Δ𝛿௞௣௔௥௔ for the molecules of the [B4]Dy[B4]Dy[C4] com-
plex in CDCl3 and toluene-d8 using the derived 𝜒௔௫ values explains why all signals in the 
spectra have shifts of the same sign—all protons fall into the region with the same sign of 
the net 𝐺(𝜃, 𝑟) function, in contrast to the heteronuclear derivatives, where protons fall 
into regions with different signs of the geometrical parameter (Figure 8b,c). 

Figure 7. 1H-NMR spectra of [B4]Dy[B4]Dy[C4] in CDCl3 (a) and toluene-d8 (b). Dots show the
chemical shifts calculated with Equation (5) (axes y) vs. the experimental values (axes x). Grey lines
show the least-squares fits between the calculated and experimental values. Labels of protons are
given in Figure 5c. Graphical search for values of χax for Dy3+ cations at [B4]/[C4] (axes x) and
[B4]/[B4] (axes y) sites corresponding to minimal values of the agreement factor, AF, in CDCl3 (c) and
toluene-d8 (d). Labels of protons are given in Figure 5b. The complete assignment of NMR spectra
for all complexes is presented in the Materials and Methods section and the Electronic Supporting
Information (Figures S15–S18).

The results presented in Figure 7 suggest that the change in anisotropy in the homonu-
clear complex [B4]Dy[B4]Dy[C4] follows the same trends observed in heteronuclear com-
plexes. In particular, switching between SAP/SAP (in toluene-d8) and DP/SAP (in CDCl3)
causes an increase in the anisotropy of the ion in the conformationally flexible [B4]/[B4] site
from 3.95 × 10−31 to 4.28 × 10−31 m3, while the χax value of the Dy3+ ion in the conforma-
tionally invariant [B4]/[C4] site remains almost the same—3.9 × 10−31 m3 (Figure 8a).

Plotting the contour maps of ∆δ
para
k for the molecules of the [B4]Dy[B4]Dy[C4] complex

in CDCl3 and toluene-d8 using the derived χax values explains why all signals in the spectra
have shifts of the same sign—all protons fall into the region with the same sign of the net
G(θ, r) function, in contrast to the heteronuclear derivatives, where protons fall into regions
with different signs of the geometrical parameter (Figure 8b,c).
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two isomeric complexes, [B4]Dy[B4]Tb[C4] and [B4]Tb[B4]Dy[C4], in CDCl3 and toluene-
d8 (Figure 9) to trace the change in the axial anisotropy of both lanthanide ions simultane-
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Figure 8. Values of axial anisotropy χax for the Dy3+ ions at two different sites of [B4]Dy[B4]Dy[C4]
in toluene-d8 and CDCl3 (a). Contour maps of the net LIS functions according to Equation (6) plotted
for [B4]Dy[B4]Dy[C4] in CDCl3 (b) and toluene-d8 (c). Labels of protons are given in Figure 5b.

2.2.3. Analysis of Lanthanide-Induced Shifts in 1H-NMR Spectra of Heteronuclear
Complexes [B4]Dy[B4]Tb[C4] and [B4]Tb[B4]Dy[C4]

Following the procedure described above, we assigned and analyzed the spectra of two
isomeric complexes, [B4]Dy[B4]Tb[C4] and [B4]Tb[B4]Dy[C4], in CDCl3 and toluene-d8
(Figure 9) to trace the change in the axial anisotropy of both lanthanide ions simulta-
neously using Equations (5) and (6). The assignment was confirmed by 1H-1H COSY
(Figures S13–S16).
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(axes x). Grey lines show the least-squares fits between the calculated and experimental values. Labels
of protons are given in Figure 5b. Graphical search for values of χax for corresponding lanthanide
cations at the [B4]/[C4] (axes x) and [B4]/[B4] (axes y) sites corresponding to minimal values of the
agreement factor, AF, in CDCl3 (e,g) and toluene-d8 (f,h). The complete assignment of NMR spectra
for all complexes is presented in the Materials and Methods section and the Electronic Supporting
Information (Figures S19–S26).

It can be clearly seen that the change from CDCl3 to toluene-d8 has the most pro-
nounced influence on the 1H-NMR spectra of [B4]Tb[B4]Dy[C4], where the Tb3+ ion is
placed into the switchable [B4]/[B4] site (Figure 9a,b), which is expectedly followed by
a significant decrease in its axial anisotropy—from 9.40 × 10−31 to 7.75 × 10−31 m3—in
agreement with the behavior of the previously studied Tb3+ complexes [23,24]. Switching
the coordination polyhedron of the Dy3+ ion from DP to SAP also causes a decrease in axial
anisotropy (Figure 9c,d), although this effect is not so strong compared to the Tb3+ metal
centers (Figure 10a,b).
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Figure 10. Values of axial anisotropy χax for Tb3+ and Dy3+ ions in heteronuclear complexes
[B4]Tb[B4]Dy[C4] (a) and [B4]Dy[B4]Tb[C4] (b). Contour maps of the net LIS functions accord-
ing to Equation (6) plotted for [B4]Tb[B4]Dy[C4] (c,d) and [B4]Dy[B4]Tb[C4] (e,f) in CDCl3 (a,c) and
toluene-d8 (b,d). Labels of protons are given in Figure 5b.

Finally, the availability of χax for each metal center allows plotting the contour maps of
the overall LIS values for different conformers of [B4]Tb[B4]Dy[C4] and [B4]Dy[B4]Tb[C4]
(Figure 10c–f). These plots vividly explain the difference between the spectral appearances
of these complexes and their homonuclear analogues. For example, it can be seen that a
combination of two metal ions with essentially different anisotropies results in deformation
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of the zero ∆δ isosurface, which approaches the protons of the terminal ligands bound to the
Dy3+ ion; this is clearly seen in the experimental spectra, in which the less downfield-shifted
signals refer to aromatic protons (either bHPc

o or cHPc
o) and exo-protons of methylene

groups (1o′ or αo′, respectively).

3. Discussion

The presented results give several guidelines for further work on lanthanide complexes
with phthalocyanine ligands:

• The trisphthalocyanine scaffold affords the synthesis of heteronuclear complexes with a
precise arrangement of rare-earth ions due to its thermodynamical and kinetic stability.
Complexes with different combinations of paramagnetic lanthanides can be efficiently
obtained, which provides the basis for further investigation of intramolecular f -f inter-
actions and the elaboration of molecular magnetic materials. In the present work, the
combinations of two strongly paramagnetic Tb3+ and Dy3+ ions were used to obtain
isomeric heteronuclear complexes, but, obviously, other combinations of middle and
late lanthanides can also be used in this type of chemistry to obtain complexes with the
required number of unpaired f -electrons.

• The comprehensive 1H-NMR spectroscopic characterization of strongly paramagnetic
complexes is based on the appropriate structural model; therefore, this work pro-
vides algorithms for dealing with the spectra of complexes containing either one or
two lanthanide ions, which are not necessarily equivalent. In this regard, the results
presented demonstrate that the application of paramagnetic 1H-NMR spectroscopy
should not be limited to routine identification but can be used to extract the magnetic
properties of lanthanide ions [53]. In this context, our report follows the strategies
applied by Enders and Yamashita, where Tb(III) and Dy(III) sandwich phthalocyani-
nates were comprehensively studied using NMR spectroscopy [26,35,54,57,58], and
the influence of electronic and structural effects on their magnetic properties, especially
χax, was revealed. In summary, it is expected that further magnetochemical studies of
the newly synthesized lanthanide phthalocyaninates will provide more correlations
between the χax term and the energetic properties of slow magnetic relaxation.

• The addition of controllable conformational flexibility gives one more degree of free-
dom to control the magnetic properties of sandwich lanthanide complexes. The
previously discovered correlations between the symmetry of the coordination polyhe-
dron of the Tb3+ ion and its magnetic properties are also valid for the Dy3+ ion, and
the effect of the conformational switching can be studied for other lanthanides to find
the capabilities and limitations of theoretical models.

• Importantly, our study evidences that the χax values for Dy3+ are nearly twice smaller
than those for Tb3+; however, this observation does not match the expectations from
Bleaney’s theory, where the largest anisotropy in the lanthanide series is expected for
dysprosium [43]. Moreover, it contradicts the results of theoretical modeling obtained
by Mironov et al. [32] for various polyhedra of lanthanide complexes, where the most
pronounced influence of the surrounding coordination was anticipated for dysprosium
complexes. The reason for this discrepancy may be a violation of the theory’s basic
assumption that the thermal energy is larger than the ligand field splitting; thus, further
theoretical modeling using ab initio methods might be particularly helpful [59,60].

4. Materials and Methods
4.1. Materials

Starting phthalocyanines H2[B4], Y[B4]2, Tb[B4]2, Dy[B4]2 and H2[C4] were synthe-
sized according to the previously reported procedures [61,62]. 1,2,4-Trichlorobenzene
(TClB, for synthesis, 1-octanol (for synthesis), rare-earth acetylacetonates (Sigma-Aldrich,
Burlington, MA, USA), and neutral alumina (50–200 µm, Macherey-Nagel, Düren, Ger-
many) were used as received from the commercial suppliers. Chloroform (reagent grade,
Ekos-1, Staraya Kupavna, Russia) was distilled over CaH2.
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4.2. Methods

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra
were measured on a Bruker Daltonics Ultraflex spectrometer. Mass spectra were registered
in positive ion mode using 2,5-dihydroxybenzoic acid as a matrix. UV-vis spectra in the
range of 250–900 nm were measured using a Thermo Evolution 210 spectrophotometer in
quartz cells with 0.5–1.0 cm optical path lengths.

1H NMR spectra were recorded at 303 K on a Bruker Avance III 600 MHz spectrometer
equipped with a 5 mm Z-gradient BBO probe (zg30 pulse program from Topspin library). A
total of 128 scans with a 30◦ excitation pulse (90◦ pulse width was 13.8 µs, DE 6.50 µs) and
1 s delay were accumulated for each system. Spectral width was taken to be 90–100 kHz,
depending on the combination of lanthanides. Gaussian multiplication was used for
processing. Automatic polynomial baseline correction was applied. For recording 2D
COSY spectra (cosygpqf program from Topspin library), spectral width was selected to be
40–75 ppm, depending on the combination of lanthanides. The residual solvent resonances
were used as internal references (δ toluene 7.09 ppm, chloroform 7.26 ppm). Typically, 5 mg
of complexes was dissolved in 0.6 mL of a corresponding deuterated solvent to provide a
concentration of ca. 2.3 mM. The applied deuterated chloroform (99.8 atom% D, ZEOchem,
Uetikon am See, Switzerland) was filtered prior to use through Pasteur pipettes filled with
alumina to remove possible acidic impurities. Deuterated toluene (99.8 atom% D, ABCR,
Karlsruhe, Germany) was used without additional purification.

4.3. Synthesis and Characterization of the Triple-Decker Complexes

Trisphthalocyaninate [B4]Dy[B4]Y[C4]: A solution of phthalocyanines Dy[B4]2 (30.0 mg,
12.8 µmol) and H2[C4] (20.4 mg, 16.0 µmol) in a mixture of 2.7 mL 1,2,4-trichlorobenzene
and 0.3 mL n-octanol was heated to reflux at 230 ◦C under a stream of argon, and solid
yttrium (III) acetylacetonate hydrate Y(acac)3·nH2O (19.4 mg, 48.1 µmol) was added. After
10 min, the reaction mixture was cooled to ambient temperature. The reaction mixture was
transferred to a chromatographic column packed with alumina in a mixture of CHCl3 and
hexane (1:1 v/v). The target complex was isolated by elution with a CHCl3-hexane mixture
(4:1 v/v), followed by a mixture of CHCl3 with 0→1% MeOH as a dark-blue solid (29 mg,
yield 61%).

MALDI TOF: m/z calculated for C192H232DyN24O36Y 3703.5, found 3704.2 [M+].
UV-vis (CHCl3) λmax (nm) (log ε): 647 (5.06), 546 (4.50), 355 (5.21), 295 (5.16).
UV-vis (Toluene) λmax (nm) (log ε): 698 (4.64), 642 (5.40), 363 (5.24), 294 (5.09).
1H-NMR (600 MHz, CDCl3) δ −31.71 (br s, 8H, bHPc

i), −27.34 (br s, 8H, bHPc
o),

−17.16 (br s, 8H, 1ib), −12.32 (br s, 8H, 1o), −10.87 (br s, 8H, 1ic), −8.88 (s, 8H, 2ib), −8.62 (s,
8H, 2ic), −7.92 (s, 8H, 3ib), −7.65 (s, 8H, 3ic), −7.14 (br s, 8H, 1o′), −5.91 (s, 32H, CH3

i + 2o),
−5.69 (s, 8H, 2o′), −4.89 (s, 16H, 3o,o′), −3.50 (s, 24H, CH3

o), 2.77 (s, 8H, βo), 2.83 (m, 8H,
γo), 2.96 (m, 8H, γo′), 3.13 (d, 25 Hz, 8H, αo), 3.62 (m, 16H, δo,o′), 4.13 (s, 8H, βo′), 6.95 (d,
25 Hz, 8H, αo′), 16.34 (br s, 8H, cHPc

o).
1H-NMR (600 MHz, Toluene-d8) δ −25.33 (br s, 8H, bHPc

i), −22.01 (br s, 8H, bHPc
o),

−14.89 (br s, 8H, 1ib), −11.06 (br s, 8H, 1o), −8.37 (br s, 8H, 1ic), −6.40 (s, 8H, 2ib), −6.07 (s,
8H, 2ic), −5.95 (s, 8H, 3ib), −5.70 (s, 8H, 3ic), −5.12 (s, 8H, 1o′), −4.88 (s, 8H, 2o), −4.80 (s,
8H, 2o′), −4.33 (br t, 24H, CH3

i), −3.99 (s, 16H, 3o,o′), −2.79 (br t, 24H, CH3
o), 2.68 (s, 8H,

βo), 3.08 (d, 30 Hz, 8H, αo), 3.18 (br m, 8H, γo), 3.62 (br m, 8H, δo), 3.74 (br m, 8H, γo′), 3.81
(s, 8H, βo′), 4.03 (s, 8H, δo′), 6.81 (d, 30 Hz, 8H, αo′), 16.86 (br s, 8H, cHPc

o).
Trisphthalocyaninate [B4]Y[B4]Dy[C4]: A solution of phthalocyanines Y[B4]2 (23.0 mg,

10.0 µmol) and H2[C4] (16.0 mg, 12.6 µmol) in a mixture of 2.7 mL 1,2,4-trichlorobenzene
and 0.3 mL n-octanol was heated to reflux at 230 ◦C under a stream of argon, and solid
dysprosium (III) acetylacetonate hydrate Dy(acac)3·nH2O (18.0 mg, 39.0 µmol) was added.
After 8 min, the reaction mixture was cooled to ambient temperature. The reaction mixture
was transferred to a chromatographic column packed with alumina in a mixture of CHCl3
and hexane (1:1 v/v). The target complex was isolated by elution with a CHCl3-hexane
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mixture (4:1 v/v), followed by a mixture of CHCl3 with 0→1% MeOH as a dark-blue solid
(21.2 mg, yield 57%).

MALDI TOF: m/z calculated for C192H232DyN24O36Y 3703.5, found 3704.3 [M+].
UV-vis (CHCl3) λmax (nm) (log ε): 646 (4.95), 546 (4.43), 354 (5.14), 294 (5.10).
UV-vis (Toluene) λmax (nm) (log ε): 698 (4.65), 642 (5.40), 363 (5.25), 293 (5.11).
1H-NMR (600 MHz, CDCl3) δ −29.74 (br s, 16H, bHPc

i + cHPc
o), −13.94 (br s, 8H, 1ib),

−12.05 (br s, 8H, αo), -8.73 (br s, 8H, 1ic), −6.83 (br s, 8H, αo′), −6.68 (m, 16H, 2ib,ic), −5.45
(m, 16H, 3ib,ic), −4.31 (s, 8H, βo), −4.13 (s, 24H, CH3

i), −2.86 (s, 8H, βo′), −1.04 (m, 8H,
γo), −0.21 (m, 16H, γo′ + δo), 0.05 (s, 24H, CH3

o), 0.53 (br m, 32H, δo′ + 2o + 3o,o′), 1.03 (m,
2o′), 2.19 (d, 25 Hz, 8H, 1o), 6.41 (d, 25 Hz, 8H, 1o′), 16.55 (br s, 8H, bHPc

o).
1H-NMR (600 MHz, Toluene-d8) δ −28.26 (br s, 8H, bHPc

i), −22.88 (br, 8H, cHPc
o),

−16.45 (br s, 8H, 1ib), −10.96 (br s, 8H, αo), −9.68 (br s, 8H, 1ic), −7.17 and −6.89 (2s, 2×8H,
2ib and 2ic), −6.61 and −6.46 (2s, 2×8H, 3ib and 3ic), −4.86 (s, 32H, CH3

i + αo′), −3.56 (s,
8H, βo), −2.13 (s, 8H, βo′), −0.52 (s, 8H, γo), 0.25 (d, 8H, γo′), 0.41 (s, 24H, CH3

o), 0.56 (s,
8H, δo), 0.83 (s, 8H, δo′), 0.92 and 0.98 (2s, 2×8H, 3o,o′), 1.08 and 1.14 (2s, 2×8H, 2o,o′), 2.75
(d, 29 Hz, 8H, 1o), 6.65 (d, 29 Hz, 8H, 1o′), 17.15 (br s, 8H, bHPc

o).
Trisphthalocyaninate [B4]Dy[B4]Dy[C4]: A solution of phthalocyanines Dy[B4]2

(25.5 mg, 10.9 µmol) and H2[C4] (17.4 mg, 13.6 µmol) in a mixture of 2.7 mL 1,2,4-
trichlorobenzene and 0.3 mL n-octanol was heated to reflux at 230 ◦C under a stream
of argon, and solid Dy(acac)3·nH2O (18.8 mg, 40.9 µmol) was added. After 8 min, the
reaction mixture was cooled to ambient temperature. The reaction mixture was transferred
to a chromatographic column packed with alumina in a mixture of CHCl3 and hexane (1:1
v/v). The target complex was isolated by elution with a CHCl3-hexane mixture (4:1 v/v),
followed by a mixture of CHCl3 with 0→1% MeOH as a dark-blue solid (27 mg, yield 66%).

MALDI TOF: m/z calculated for C192H232Dy2N24O36 3776.6, found m/e—3777.2 [M+].
UV-vis (CHCl3) λmax (nm) (log ε): 645 (5.04), 547 (4.53), 355 (5.28), 293 (5.22).
UV-vis (Toluene) λmax (nm) (log ε): 696 (4.65), 642 (5.40), 364 (5.27), 292 (5.13).
1H NMR (600 MHz, CDCl3) δ−71.54 (br s, 8H, bHPc

i), −31.56 (br s, 8H, 1ib), −30.69 (br
s, 8H, 1ic), −22.39 (br s, 8H, cHPc

o), −19.74 (br s, 8H, bHPc
o), −18.64 and −18.29 (2s, 2×8H,

2ib and 2ic), −15.95 and −15.75 (2s, 2×8H, 3ib and 3ic), −15.43 (br s, 8H, 1o), −14.05 (br s,
8H, αo), −11.86 (s, 24H, CH3

i), −7.87 and −7.25 (2s, 2×8H, 3o and 3o′), −6.46 (s, 16H, 3o,o′),
−6.11 (s, 8H, βo), −5.42 (br s, 8H, 1o′), −4.89 (s, 24H, CH3

o), −5.49 (br s, 8H, αo′), −3.06 (s,
8H, βo′), −2.34 (m, 8H, γo), −1.29 (s, 8H, δo), −0.65 (m, 8H, γo′), −0.12 (s, 8H, δo′).

1H NMR (600 MHz, Toluene-d8) δ −64.60 (br s, 8H, bHPc
i), −30.13 (br s, 8H, 1ic),

−29.97 (br s, 8H, 1ib), −15.96 (s, 16H, 2ib,ic), −15.07 (br s, 8H, cHPc
i), −14.67 (s, 16H, 3ib,ic),

−14.02 (br s, 8H, bHPc
i), −12.87 (br s, 8H, 1o), −12.39 (br s, 8H, αo), −10.84 (s, 24H, CH3

i),
−5.75 (m, 16H, 2o,o′), −4.88 (s, 8H, βo), −4.79 (s, 16H, 3o,o′), −3.55 (s, 24H, CH3

o), −2.32
(br s, 8H, 1o′), −2.05 (s, 8H, βo′), −1.99 (br s, 8H, αo′), −1.37 (m, 8H, γo), 0.22 (m, 8H, γo′),
0.92 (s, 16H, δo,o′).

Trisphthalocyaninate [B4]Tb[B4]Dy[C4]: A solution of phthalocyanines Tb[B4]2 (27.0 mg,
11.5 µmol) and H2[C4] (18.0 mg, 14.1 µmol) in a mixture of 2.7 mL 1,2,4-trichlorobenzene
and 0.3 mL n-octanol was heated to reflux at 230 ◦C under a stream of argon, and solid
Dy(acac)3·nH2O (21.0 mg, 45.7 µmol) was added. After 8 min, the reaction mixture was cooled
to ambient temperature. The reaction mixture was transferred to a chromatographic column
packed with alumina in a mixture of CHCl3 and hexane (1:1 v/v). The target complex was
isolated by elution with a CHCl3-hexane mixture (4:1 v/v), followed by a mixture of CHCl3
with 0→1% MeOH as a dark-blue solid (20 mg, yield 45%).

MALDI TOF: m/z calculated for C192H232DyN24O36Tb 3773.6, found 3774.3 [M+].
UV-vis (CHCl3) λmax (nm) (log ε): 646 (5.07), 545 (4.52), 354 (5.24), 293 (5.19).
UV-vis (Toluene) λmax (nm) (log ε): 695 (4.68), 643 (5.47), 363 (5.26), 293 (5.13).
1H NMR (600 MHz, CDCl3) δ −118.51 (br s, 8H, bHPc

i), −60.39 (br s, 8H, bHPc
o),

−57.29 (br s, 8H, 1ib), −49.37 (br s, 8H, 1ic), −35.40 (br s, 8H, 1o), −32.17 and −31.58 (2s,
2×8H, 2ib and 2ic), −27.90 and −27.42 (2s, 2×8H, 3ib and 3ic), −20.68 (s, 24H, CH3

i), −19.23
(br s, 8H, 1o′), −17.55 and −16.65 (2s, 2×8H, 2o and 2o′), −16.47 (s, 8H, αo), −14.60 (s,
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16H, 3o,o′), −13.11 (br s, 8H, cHPc
o), −10.70 (s, 24H, CH3

o), −8.11 (s, 8H, βo), −4.02 (d, 8H,
γo), −3.27 (s, 8H, δo), −2.77 (s, 8H, βo′), −1.99 (br s, 8H, αo′), −1.15 (d, 8H, γo′), −0.53 (s,
8H, δo′).

1H NMR (600 MHz, Toluene-d8) δ −97.98 (br s, 8H, bHPc
i), −48.46 (br s, 8H, 1ib),

−43.16 (br s, 8H, bHPc
o), −42.45 (br s, 8H, 1ic), −27.43 (br s, 8H, 1o), −24.44 and −24.08

(2s, 2×8H, 2ib and 2ic), −22.21 and −21.96 (2s, 2×8H, 3ib and 3ic), −16.24 (s, 24H, CH3
i),

−13.35 (br s, 8H, αo), −12.18 and −12.04 (2s, 2×8H, 2o and 2o′), −10.98 (br s, 8H, 1o′),
−10.19 (s, 16H, 3o,o′), −7.28 (s, 24H, CH3

o), −5.94 (s, 8H, βo), −2.08 (m, 8H, γo), −1.86 (s,
8H, βo′), 0.00 (s, 8H, δo), 0.20 (m, 8H, γo′), 0.93 (br s, 8H, αo′), 1.06 (s, 8H, δo′).

Trisphthalocyaninate [B4]Dy[B4]Tb[C4]: A solution of phthalocyanines Dy[B4]2 (29.0 mg,
12.4 µmol) and H2[C4] (19.7 mg, 15.5 µmol) in a mixture of 2.7 mL 1,2,4-trichlorobenzene and
0.3 mL n-octanol was heated to reflux at 230 ◦C under a stream of argon, and solid terbium (III)
acetylacetonate hydrate Tb(acac)3·nH2O (22.0 mg, 46.5 µmol) was added. After 10 min, the
reaction mixture was cooled to ambient temperature. The reaction mixture was transferred to
a chromatographic column packed with alumina in a mixture of CHCl3 and hexane (1:1 v/v).
The target complex was isolated by elution with a CHCl3-hexane mixture (4:1 v/v), followed
by a mixture of CHCl3 with 0→1% MeOH as a dark-blue solid (29 mg, yield 62%).

MALDI TOF: m/z calculated for C192H232DyN24O36Tb 3773.6, found 3774.3 [M+].
UV-vis (CHCl3) λmax (nm) (log ε): 645 (5.00), 550 (4.46), 354 (5.18), 293 (5.14).
UV-vis (Toluene) λmax (nm) (log ε): 695 (4.61), 643 (5.39), 363 (5.20), 294 (5.07).
1H NMR (600 MHz, CDCl3) δ −107.81 (br s, 8H, bHPc

i), −57.71 (br s, 8H, cHPc
i),

−48.90 (br s, 8H, 1ic), −44.48 (br s, 8H, 1ib), −30.28 (br s, 8H, αo), −27.57 and −27.15 (2s,
2×8H, 2ib and 2ic), −23.25 (m, 16H, 3ib,ic), −17.83 (br s, 8H, 1o), −17.32 (s, 24H, CH3

i),
−15.56 (br s, 8H, αo′), −14.33 (s, 8H, βo), −11.63 (br s, 8H, bHPc

o), −9.78 (s, 8H, βo′),
−9.38 and −8.51 (2s, 2×8H, 2o and 2o′), −7.73 (s, 16H, 3o,o′), −7.75 (m, 8H, γo), −6.05 (s,
24H, CH3

o), −5.33 (s, 8H, δo), −4.60 (m, 8H, γo′), −3.54 (br s, 8H, 1o′), −3.15 (s, 8H, δo′).
1H NMR (600 MHz, Toluene-d8) δ −100.40 (br s, 8H, bHPc

i), −50.04 (br s, 8H, 1ic),
−44.57 (br s, 8H, cHPc

o), −43.19 (br s, 8H, 1ib), −26.68 (br s, 8H, αo), −24.04 and −24.76
(2s, 2×8H, 2ib and 2ic), −22.70 (s, 16H, 3ib,ic), −16.69 (s, 24H, CH3

i), −14.12 (br s, 8H, 1o),
−11.80 (s, 8H, βo), −10.39 (br s, 8H, αo′), −7.45 (s, 8H, βo′), −6.45 and −6.37 (2s, 2×8H, 2o

and 2o′), −5.58 (m, 8H, γo), −5.40 (s, 16H, 3o,o′), −4.17 (s, 32H, bHPc
o + CH3

o), −3.07 (m,
8H, γo′), −2.93 (s, 8H, δo), −2.03 (s, 8H, δo′), 0.46 (br s, 8H, 1o′).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29020510/s1, Figures S1–S5: MALDI-TOF mass spectra of
the synthesized triple-decker complexes; Figure S6: Fragments of X-ray structures of [C4]Yb[C4]Y(Pc)·
4CHCl3·3H2O and [B4]Y[B4]Y[C4]·10CH2Cl2, showing the analogy in localization of solvent molecules
and contacts with substituents that stabilize staggered pairwise conformations; Figures S7–S26: 1H-NMR
and 1H-1H COSY spectra of the synthesized triple-decker complexes in CDCl3 and toluene-d8.
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35. Morita, T.; Damjanović, M.; Katoh, K.; Kitagawa, Y.; Yasuda, N.; Lan, Y.; Wernsdorfer, W.; Breedlove, B.K.; Enders, M.; Yamashita,
M. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato
Single-Molecule Magnets Using the Geometric Spin Arrangement. J. Am. Chem. Soc. 2018, 140, 2995–3007. [CrossRef]

36. Gigli, L.; Di Grande, S.; Ravera, E.; Parigi, G.; Luchinat, C. Nmr for Single Ion Magnets. Magnetochemistry 2021, 7, 96. [CrossRef]
37. Ishikawa, N.; Kaizu, Y. Excited States of the Lutetium Phthalocyanine Trimer: Semiempirical Molecular Orbital and Localized

Orbital Study. J. Phys. Chem. 1996, 100, 8722–8730. [CrossRef]
38. Rousseau, R.; Aroca, R.; Rodríguez-Méndez, M.L. Extended Hückel Molecular Orbital Model for Lanthanide Bisphthalocyanine

Complexes. J. Mol. Struct. 1995, 356, 49–62. [CrossRef]
39. Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta

Cryst. 1976, A32, 751–767. [CrossRef]
40. Utochnikova, V.V. The Use of Luminescent Spectroscopy to Obtain Information about the Composition and the Structure of

Lanthanide Coordination Compounds. Coord. Chem. Rev. 2019, 398, 113006. [CrossRef]
41. Bulach, V.; Sguerra, F.; Hosseini, M.W. Porphyrin Lanthanide Complexes for NIR Emission. Coord. Chem. Rev. 2012, 256,

1468–1478. [CrossRef]
42. Golding, R.; Halton, M. A Theoretical Study of the 14N and 17O N.M.R. Shifts in Lanthanide Complexes. Aust. J. Chem. 1972, 25,

2577–2581. [CrossRef]
43. Bleaney, B. Nuclear Magnetic Resonance Shifts in Solution Due to Lanthanide Ions. J. Magn. Reson. 1972, 8, 91–100. [CrossRef]
44. Gorbunova, Y.G.; Martynov, A.G.; Birin, K.P.; Tsivadze, A.Y. NMR Spectroscopy—A Versatile Tool for Studying the Structure

and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review). Russ. J. Inorg. Chem. 2021, 66, 202–216.
[CrossRef]

45. Vogel, R.; Müntener, T.; Häussinger, D. Intrinsic Anisotropy Parameters of a Series of Lanthanoid Complexes Deliver New
Insights into the Structure-Magnetism Relationship. Chem 2021, 7, 3144–3156. [CrossRef]

46. Piguet, C.; Geraldes, C.F.G.C. Paramagnetic NMR Lanthanide Induced Shifts for Extracting Solution Structures. In Handbook
on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The
Netherlands, 2003; Volume 33, pp. 353–463. ISBN 9780444513236.

47. Zapolotsky, E.N.; Qu, Y.; Babailov, S.P. Lanthanide Complexes with Polyaminopolycarboxylates as Prospective NMR/MRI
Diagnostic Probes: Peculiarities of Molecular Structure, Dynamics and Paramagnetic Properties. J. Incl. Phenom. Macrocycl. Chem.
2021, 102, 1–33. [CrossRef] [PubMed]

48. Ravera, E.; Gigli, L.; Fiorucci, L.; Luchinat, C.; Parigi, G. The Evolution of Paramagnetic NMR as a Tool in Structural Biology.
Phys. Chem. Chem. Phys. 2022, 24, 17397–17416. [CrossRef] [PubMed]

49. Miao, Q.; Nitsche, C.; Orton, H.; Overhand, M.; Otting, G.; Ubbink, M. Paramagnetic Chemical Probes for Studying Biological
Macromolecules. Chem. Rev. 2022, 122, 9571–9642. [CrossRef]

https://doi.org/10.3390/molecules28114474
https://www.ncbi.nlm.nih.gov/pubmed/37298954
https://doi.org/10.3390/molecules27196498
https://www.ncbi.nlm.nih.gov/pubmed/36235033
https://doi.org/10.1002/chem.202001365
https://www.ncbi.nlm.nih.gov/pubmed/32428358
https://doi.org/10.1016/S0009-2614(01)00842-9
https://doi.org/10.1039/c2cc31125a
https://doi.org/10.1039/C5SC04669F
https://doi.org/10.1021/acs.inorgchem.7b02704
https://www.ncbi.nlm.nih.gov/pubmed/29200279
https://doi.org/10.1063/1.1450543
https://doi.org/10.1039/C6DT00227G
https://www.ncbi.nlm.nih.gov/pubmed/26898996
https://doi.org/10.1021/acs.accounts.0c00275
https://doi.org/10.1021/jacs.7b12667
https://doi.org/10.3390/magnetochemistry7070096
https://doi.org/10.1021/jp951346c
https://doi.org/10.1016/0022-2860(95)08905-B
https://doi.org/10.1107/S0567739476001551
https://doi.org/10.1016/j.ccr.2019.07.003
https://doi.org/10.1016/j.ccr.2012.02.027
https://doi.org/10.1071/CH9722577
https://doi.org/10.1016/0022-2364(72)90027-3
https://doi.org/10.1134/S0036023621020091
https://doi.org/10.1016/j.chempr.2021.08.011
https://doi.org/10.1007/s10847-021-01112-3
https://www.ncbi.nlm.nih.gov/pubmed/34785985
https://doi.org/10.1039/D2CP01838A
https://www.ncbi.nlm.nih.gov/pubmed/35849063
https://doi.org/10.1021/acs.chemrev.1c00708


Molecules 2024, 29, 510 18 of 18

50. Santria, A.; Fuyuhiro, A.; Fukuda, T.; Ishikawa, N. Determination of Ligand Field Splitting in Lanthanide(III) Monoporphyrinato
Complexes. Dalton Trans. 2019, 48, 7685–7692. [CrossRef]

51. Hiller, M.; Sittel, T.; Wadepohl, H.; Enders, M. A New Class of Lanthanide Complexes with Three Ligand Centered Radicals:
NMR Evaluation of Ligand Field Energy Splitting and Magnetic Coupling. Chem. Eur. J. 2019, 25, 10668–10677. [CrossRef]

52. Hiller, M.; Maier, M.; Wadepohl, H.; Enders, M. Paramagnetic NMR Analysis of Substituted Biscyclooctatetraene Lanthanide
Complexes. Organometallics 2016, 35, 1916–1922. [CrossRef]

53. Ince, R.; Doudouh, A.; Claiser, N.; Furet, É.; Guizouarn, T.; Le Pollès, L.; Kervern, G. Determining Local Magnetic Susceptibility
Tensors in Paramagnetic Lanthanide Crystalline Powders from Solid-State NMR Chemical Shift Anisotropies. J. Phys. Chem. A
2023, 127, 1547–1554. [CrossRef]

54. Damjanovic, M.; Katoh, K.; Yamashita, M.; Enders, M. Combined NMR Analysis of Huge Residual Dipolar Couplings and
Pseudocontact Shifts in Terbium(III)-Phthalocyaninato Single Molecule Magnets. J. Am. Chem. Soc. 2013, 135, 14349–14358.
[CrossRef] [PubMed]

55. Arnold, D.P.; Jiang, J. Distinction between Light and Heavy Lanthanide(III) Ions Based on the 1H NMR Spectra of Heteroleptic
Triple-Decker Phthalocyaninato Sandwich Complexes. J. Phys. Chem. A 2001, 105, 7525–7533. [CrossRef]

56. Ishikawa, N.; Iino, T.; Kaizu, Y. Study of 1H NMR Spectra of Dinuclear Complexes of Heavy Lanthanides with Phthalocyanines
Based on Separation of the Effects of Two Paramagnetic Centers. J. Phys. Chem. A 2003, 107, 7879–7884. [CrossRef]
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