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Abstract: Schiff bases attract research interest due to their applications in chemical synthesis and
medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety
have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme
overexpressed in most cancer cells. Benserazide and benitrobenrazide possess a common structural
fragment, a 2,3,4-trihydroxybenzaldehyde moiety connected through a hydrazone or hydrazine
linker acylated on an N′ nitrogen atom by serine or a 4-nitrobenzoic acid fragment. To avoid the
presence of a toxicophoric nitro group in the benitrobenrazide molecule, we introduced common
pharmacophores such as 4-fluorophenyl or 4-aminophenyl substituents. Modification of benserazide
requires the introduction of other endogenous amino acids instead of serine. Herein, we report
the synthesis of benitrobenrazide and benserazide analogues and preliminary results of inhibitory
activity against HK2 evoked by these structural changes. The derivatives contain a fluorine atom or
amino group instead of a nitro group in BNB and exhibit the most potent inhibitory effects against
HK2 at a concentration of 1 µM, with HK2 inhibition rates of 60% and 54%, respectively.
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1. Introduction

Carbonyl compounds easily react with N-centered nucleophiles, such as amines, hy-
drazine, and its derivatives. Schiff bases, a product of condensation of carbonyl compounds
with primary amines, have a wide range of applications in pharmaceuticals [1–3] and
in coordination chemistry as ligands and chelating agents [4,5]. The versatile pharma-
cophore C=N is present in biologically active compounds exhibiting antioxidant [3,6],
antimicrobial [3,6,7], and anticancer [8] properties.

N-Acylhydrazides R(CO)NHNH2 are structurally like amides and a relocation of a
proton can occur, thus forming an iminol form (Figure 1) [1]. Compounds containing an
amide–imine bridge -C(=O)-NH-N=CH- can be considered hybrid structures of hydrazide
or hydrazones [1]. These hybrid compounds have several applications in pharmacology,
exhibiting antimicrobial activity [9–11], anticancer activity [8,9], and free radical scaveng-
ing properties [12].
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antimicrobial [3,6,7], and anticancer [8] properties. 

N-Acylhydrazides R(CO)NHNH2 are structurally like amides and a relocation of a 
proton can occur, thus forming an iminol form (Figure 1) [1]. Compounds containing an 
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Figure 1. Tautomerism in a hydrazide molecule. 
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Benserazide (BND) and benitrobenrazide (BNB) (Figure 2) are compounds belonging
to the group of hydrazine derivatives containing common structural fragments, including a
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N-acyl rest of serine or 4-nitrobenzoic acid and a 2,3,4-trihydroxybenzaldehyde (pyrogallol-
4-carboxaldehyde) fragment attached to an N′ nitrogen atom by a methylene or methine
carbon atom. Both compounds BNB and BND have promising inhibitory activity against
hexokinase 2 (HK2) [13–15], an enzyme involved in the phosphorylation of glucose in
glycolysis, a first step of glucose metabolism [16]. An increased requirement for glucose is
observed in cancer cells, especially in rapidly growing and drug-resistant tumors [17–22].
Among all human hexokinase isoenzymes, HK2 shows overexpression in cancer cells,
which makes it interesting in the context of molecularly targeted therapy [23–28]. Currently,
several HK2 potent inhibitors are recognized, like metformin, 2-deoxy-D-Glucose, or 3-
bromopyruvate [24,29–32].
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Benserazide is an FDA-approved drug for the treatment of Parkinson’s disease, but
it was recently also recognized as a strong HK2 inhibitor [14]. Benitrobenrazide was
identified as a potential HK2 inhibitor by structure-based virtual ligand screening [15].
According to our previous study, the key structural feature is the presence of three hydroxy
groups in a benzene ring, which occupies the same HK2-binding pocket as the natural
substrate, glucose [29]. The influence of other structural elements, namely -NH-NH-CH2-
and -NH=N-CH-, on HK2 enzymatic activity has not yet been determined and requires
investigation to explain their impact on enzymatic activity.

Herein, we present our primary attempts to explore the influence of structural features
observed in benserazide and benitrobenrazide in their biological activity against HK2.
The serine originally present in benserazide has been exchanged with other amino acid
fragments, e.g., glycine, tyrosine, and cysteine. Application of these amino acids that
are different in structure, including glycine (achiral), threonine-containing benzene ring,
and cysteine (containing a thiol group instead of a hydroxyl one), in the synthesis of
benserazide analogues should deliver an answer regarding the importance of serine moiety
on benserazide inhibitory activity. In the BNB molecule, the 4-nitrophenyl moiety has
been substituted by an alkyl chain or aromatic rings of different molecular areas (benzene,
naphthalene, and anthracene) to judge their downstream influence on HK2 activity and
gauge HK2 active site volume. We decided to exchange the toxicophoric nitro group
present in BNB moiety by two common substituents, namely the fluorine atom and the
amino group [33,34]. These substituents have the opposite effects on electron density
in the benzene ring of BNB and were introduced to explain the eventual influence of
electronic conditions on its activity. The fluorine atom, like the nitro group, decreases the
electron density, whereas the amino group is typical of the electron-donating group. The
novel analogues of benserazide and benitrobenrazide were examined for their inhibitory
activity against HK2 to obtain information about the influence of structural variations on
inhibition activity.

2. Results and Discussion
2.1. Chemistry of Benitrobenrazide and Benserazide Derivatives

Benitrobenrazide and benserazide contain a N-acyl fragment, 4-nitrophenyl, or a serine
moiety, respectively [13,15]. We modified these regions of each molecule by incorporating
aromatic rings of different molecular areas instead to probe the volume of the active site
pocket of HK2. In further modifications, a nitro group suspected as a genotoxic substituent
was replaced by substituents of different polarity, constituting either a fluorine atom or
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an amino group. The introduction of fluorine and amino substituent as pharmacophore
groups into drugs molecules increases their therapeutic effectiveness [35,36]. Additionally,
the imine bond in hydrazone analogue was reduced to a single carbon–nitrogen bond to
identify the effect of the imine double bond (C=N) on HK2 activity.

The final benitrobenrazide analogue synthesis is depicted below (Scheme 1). Com-
mercially available methyl propionate and benzoate 2a and 2b were used. Methyl esters
of other aromatic acids 1c, 1e, and 1f were obtained in a one-pot synthesis involving the
primary transformation of each appropriate carboxylic acid into its respective acyl chloride
by treatment with thionyl chloride in excess, followed by esterification in the presence of
methanol (MeOH) [37] (Scheme 1; Pathway A). The ester of anthracene-9-carboxylic acid
1d was synthesized by a two-step synthesis. The first step was conversion of anthracene-9-
carboxylic acid into its acyl chloride in the presence of an excess of thionyl chloride and
a small amount of dimethylformamide (DMF) as a catalyst. The separated acyl chloride
was then subjected to esterification with ethanol (EtOH) in the presence of triethylamine,
according to synthesis pathway B shown in Scheme 1.
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Scheme 1. Preparation of benitrobenrazide derivatives. Reagent and conditions: (A) a: SOCl2
(1.2 equiv.), MeOH, 0 ◦C to RT, 24 h; b: N2H4·H2O (98%, 4 equiv.), MeOH, RT/reflux 24/72 h.;
c: (HO)3C6H2CHO; (1.0 equiv.), MeOH, RT/reflux, 24 h. (B) d: SOCl2, (53.6 equiv.), DMF, RT, Ar, 4 h;
e: EtOH, TEA (1.2 equiv.), RT, 24 h; g: N2H4·H2O (98%, 100 equiv.), reflux, 72 h; g: (HO)3C6H2CHO;
(1.1 equiv.), MeOH, reflux; 24 h.

Hydrazides 3a–3f were obtained with a good yield from appropriate esters in nucle-
ophilic substitution on a carbonyl carbon atom in the presence of an excess of hydrazine
monohydrate (four equivalents) in anhydrous boiling methanol [38,39]. Conducting hy-
drazide synthesis 3b–3c and 3f at room temperature led to a purer product and a good
yield (60–77%). The preparation of hydrazide 3d needs harsher conditions, so the reaction
was conducted in an excess of boiling hydrazine hydrate, with a prolonged reaction time
(Scheme 1; B pathway). Hydrazides 3b–3f were obtained in the form of white solids, which
precipitated during the reaction process and crystallized from ethanol or aqueous ethanol.
Compound 3a was purified via silica gel column chromatography using MeOH/CHCl3
(1:1 v/v) as an eluent. The hydrazide structure was confirmed by 1H NMR spectroscopy.
The absence of a singlet assigned to the methyl group in the region of 3.25–3.95 ppm
confirmed the conversion of the esters into hydrazides.

Compounds detailed in 3, treated with 2,3,4-trihydroxybenzaldehyde in methanol,
produced the products listed in 4 at a 50–100% yield. Hydrazones 4 can adopt an E or a Z
configuration at the imine double bond (-N=CH-). In the case of the E conformation, the
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geometrical isomer can be stabilized by the formation of an intramolecular hydrogen bond
between the 2-OH hydroxyl group and the nitrogen atom of the imine [40], as is depicted
in Figure 3. Similar behavior is exhibited by compound 10.
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Using quantum chemical calculations based on Density Function Theory (DFT), we
studied the possibility of the existence of equilibrium between conformers E and Z for
4a. For conformer E, the corresponding hydrogen bond length is 2.1 Å. Hydrogen bond
formation confirms our DFT calculation of stretching vibrations for the O-H group at
3224.47 cm−1. Additionally, our calculation data show higher stability of the E conformer
over the Z conformer by 9 kcal/mol when hydrogen bond formation is included in simu-
lations [41]. We can assume that the E conformer is the predominant form of hydrazone
4a. 1H NMR spectroscopy verified the results of our calculation based on DFT. The chemical
shifts of the protons of the 3-OH and 4-OH groups create singlet peaks at δ H 8.4–9.6 ppm,
while the peak for the proton of the 2-OH group is shifted to a lower field and was observed
in the region of δ H 11.3–12.4 ppm. We attribute this down-field shift of the 2-OH group to
the formation of an intramolecular hydrogen bond.

Based on 1H and 13C NMR spectra of 4a in DMSO, we observed separate chemical
signals for the imine proton (N=CH) at 8.09 and 8.17 ppm, respectively. In contrast,
the protons of the ethyl group (CH2CH3) were present as two triplets in the region of
1.05–1.09 ppm and two quartets in the region of 2.19–2.23 and 2.51–2.54. In the 13C NMR
spectrum, the carbon atom of the amide carbonyl groups (-C(O)NHN-) was detected from
signals at 173.71 and 168.73 ppm. The signals for carbon from the ethyl groups (CH2CH3)
were present at 8.47, 9.41 ppm, 25.24 and 26.97. These spectra suggest the existence of
another structural feature for compounds 4, namely a keto-enol tautomerism (Scheme 2).
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Quantum chemical calculations using DFT were used to quantify Gibbs free energy
for the constitutional isomers of 4a, which confirms the possibility of the keto and enol
forms’ occurrence. According to the calculations performed on data collected without a
solvent, the keto tautomer is preferred over the enol tautomer and is thermodynamically
more stable than the enol form by about 11 kcal/mol. However, based on calculations
performed in the presence of DMSO, the solvation process changed the Gibbs free energy of
both tautomers. Our calculations clearly indicate that, in a polar aprotic solvent like DMSO,
the enol form is more stable by 5 kcal/mol when compared with the keto form due to the
interaction of the OH-enol group with the oxygen atom of dimethyl sulfoxide (DMSO).

The imine bond in derivative 4f was reduced using hydrogen in the presence of
Pd(OH)2 as a catalyst at elevated pressure (Scheme 3). The reaction progress was monitored
by 1HNMR spectrometry. The disappearance of the signal for the 8.39 ppm imine proton
region (N=CH) indicated the consumption of substrate 4f.
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Continuing our study, we synthesized benserazide analogues, in which serine was
replaced with a side chain moiety of another L-amino acid glycine, tyrosine, and cysteine
(Scheme 4).
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Scheme 4. Preparation of benserazide analogues. Reagent and conditions: a: MeOH, SOCl2
(1.2 equiv.), 0 ◦C to RT, 24 h; b: CbzCl (1.2 equiv.), TEA (2.5 equiv.), DCM, RT, 24 h; c: 98% N2H4.H2O
(4.0 equiv.), MeOH, RT, 24 h; d: (HO)3C6H2CHO, (1.2 equiv.), MeOH, RT, 24 h/(HO)3C6H2CHO;
(1.2 equiv.), THF, reflux, 72 h; e: HCOONH4, 25% Pd(OH)2/C, MeOH, 50 ◦C, Ar, 12 h; f: H2, 25%
mixture Pd(OH)2/C and Pd/C, 2.5 bar, MeOH, RT, 6 h.

Commercially available L-amino acids 6a–c were converted to methyl esters 7a–c,
using thionyl chloride and methanol. A benzyloxycarbonyl group (Cbz) was used to
protect the amino group of the amino acids by reacting esters 7 with benzyl chloroformate
in the presence of triethylamine (TEA) in an anhydrous methylene chloride solution [42].
This method of protection was used to facilitate the parallel deprotection of Cbz together
with catalytic hydrogenation of the double bond. The reaction of N-Cbz-L-amino acid
esters 8a–c with 98% hydrazine hydrate under the same conditions described in Scheme 4
provided products 9 as white crystals at a 36–97% yield. Hydrazones 10a and 10c were
synthesized via the reaction of hydrazide 9a and 9c with 2,3,4-trihydroxybenzaldehyde
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in methanol at room temperature. In the case of 10b, as the above procedure failed,
we repeated the condensation in tetrahydrofuran (THF) instead of methanol in an inert
atmosphere of argon at reflux, which produced product 10b at a 55% yield. All hydrazones
10a–c were obtained with the E configuration, as confirmed by NMR spectroscopy. The best
purification method for compounds 10 was crystallization with aqueous methanol (1:1 v/v).
The last step in this synthesis was the elucidation of an efficient method for the reduction
of the imine bond of hydrazone and deprotection of the Cbz group. For the corresponding
hydrazone 10b, hydrogenation was performed in a Parr’s autoclave with gaseous H2 at
2.5 bar in the presence of palladium catalysts (mixture of 25% Pd/C and Pd(OH)2) at room
temperature in methanolic solution. We observed only cleavage of the Cbz group.

Compound 10a was reduced under modified conditions. Instead of gaseous hydrogen,
ammonium formate was used as a hydrogen donor and the same palladium catalysts were
used, according to the reported protocol [43]. Product 11 was obtained as a hygroscopic
powder, which rapidly liquefied after 5 min on air. For this reason, hydrazide 11 was
lyophilized after the purification was complete. In the case of the cysteine analogue of
benserazide 10c, hydrogenation did not occur under these conditions, or with the use of
other catalysts such as Raney nickel and electrochemical reduction. The likely reason is
that a compound containing sulfur in its structure causes catalyst poisoning, resulting in
the loss of catalyst function [44].

2.2. Inhibitory Effect of Benserazide and Benitrobenrazide Derivatives on HK2 Enzymatic Activity

We conducted in vitro studies of representative derivatives, namely N-acylhydrazones
4a–4f as benitrobenrazide derivatives and a benitrobenrazide derivative with a single
carbon-nitrogen bond 5. The benserazide derivatives, hydrazones 10, 12 with imine bonds,
and hydrazide 11 with a single carbon–nitrogen bond, which, like benserazide, have an
L-amino acid fragment (Figure 4), were selected for in vitro experiments. The selected
intermediates of hydrazide 9a–c, the potential peptidomimetics, were also used to evaluate
any inhibition of enzyme activity (Figure 4). The chosen compounds subjected to this
enzyme activity assay were purified by preparative HPLC.

For the inhibitory activity estimation, we used a colorimetric method. The most popu-
lar HK2 enzymatic activity assays reported in the literature are tests based on spectroscopy,
measuring/detecting the changes in NADPH absorbance at 320–490 nm [13–15,31]. An
alternative assay to determine the HK2 activity by reverse-phase high-performance liquid
chromatography (RP-HPLC) was reported by Guan et al. [45]. According to this method,
the concentration of released ADP during the conversion of glucose into 6-glucose phos-
phate is measured at 254 nm. We excluded RP-HPLC as an alternative assay because
tested compounds contain chromophores exhibiting absorption in UV-Vis in a region of
200–250 nm, which renders the assay results unreliable. To evaluate the potential of hex-
okinase 2 inhibitors, we used a commercially available Hexokinase II Inhibitor Screening
Kit, which uses a spectrophotometric method by measurement of absorbance at 450 nm,
where tested compounds exhibit no interference with the assay. This HK2 activity assay is
based on HK2’s ability to convert glucose into glucose-6-phosphate. Glucose-6-phosphate
is oxidized by glucose-6-phosphate dehydrogenase to produce NADPH, which reduces the
probe, showing strong absorbance at 450 nm.

Figures 5 and 6 show the results of the HK2 activity inhibition assay of synthesized
compounds. Primary measurements were performed at 50 and 5 µM concentrations.
We have decided that the concentration of 50 µM is the highest concentration accepted
for the investigated compounds as inhibitors. Compounds 4a, 4b, 4c, 4e, and 4f, which
showed the best inhibition of HK2 activity, were selected for the next assessment at a
lower concentration of 1 µM. The data in Figure 5 illustrate the inhibition of HK2-mediated
phosphorylation of glucose by the test compounds through changes in absorption detection
at λmax 450 nm observed in kinetic mode after 5–45 min.

As shown in Figure 6, at a concentration of 50 µM, most of the compounds show
significant HK2 inhibition activity, apart from hydrazides 9, which show moderate HK2
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inhibition. According to the in vitro study, which considered the effect of HK2 inhibition
by the tested compounds at a concentration of 5 µM, derivatives 4a–4f exhibited stronger
HK2 inhibition activity than the benserazide derivatives 10c, 11, and 12, which have a
modified L-amino acid fragment in their structure. The maximum inhibition by benserazide
derivatives 10c, 11, and 12 was approximately 50%. Hydrazides 9 have no significant effect
on HK2 activity at a concentration of 5 µM, which confirms that the presence of three
hydroxyl groups is required for the inhibition of HK2 activity.

A comparison of the inhibition results for derivatives 4f and 5, for which HK2 inhi-
bition was 92% and 15%, respectively, clearly indicates that the essential feature causing
the HK2 inhibitory effect of benitrobenrazide derivatives is the presence of the imine bond
(-CH=N-). Referring to studies on the pocket size of the HK2 binding site, it can be assumed
that a bulky group, like the anthracenyl group in the structure of the Schiff base 4d, does
not fit efficiently into the active site of HK2. Compared to other Schiff bases with smaller
volume substituents 4a–c, compound 4d did not exhibit inhibitory activity against HK2 at
a 5 µM concentration.

The most promising HK2 inhibitors assayed, 4a, 4b, 4c, 4e, and 4f, were evaluated
against human HK2 at a concentration of 1 µM. The derivatives 4e and 4f, which contain a
fluorine atom or amino group instead of a nitro group, exhibited the most potent inhibitory
effects against HK2 at a concentration of 1 µM, with HK2 inhibition rates of 60% and 54%,
respectively. The highest efficacy among the derivatives assessed against HK2 was recorded
for Schiff base 4e, in which the fluorine atom acts as an electron-withdrawing substituent
in the para position of the benzene ring.
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Figure 6. Inhibitory effect of synthesized compounds on HK2 enzyme activity. Bromopyruvic
acid was used as a positive HK2 inhibitor control. The relative activity of the negative enzyme
control (without inhibitor) was set at 100%. Results are displayed as the mean ± SD from three
independent experiments.
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3. Materials and Methods
3.1. Chemistry

The 1H NMR and 13C NMR spectra were recorded using a Varian NMR system
600 spectrometer at 600 MHz in DMSO-d6, with tetramethylsilane (TMS) as the reference
standard. NMR chemical shifts are reported in ppm (δ) and coupling constants (J) in Hz.
Melting points were measured on a Boethius PHMK apparatus (VEB Analytik Dresden,
Dresden, Germany). The progress of the reaction was monitored by thin-layer chromatog-
raphy (TLC) using Merck TLC silica gel 60 F254 plates and the following developing
systems: A: 5% MeOH/CHCl3, B: 10% MeOH/CHCl3, and C: 20% MeOH/CHCl3. Column
chromatography was conducted using silica gel 40–60 µm 60A with methanol–chloroform
mixtures as eluents. Preparative high-performance liquid chromatography was performed
with the LaboACE LC-5060 system (Japan Analytical Industry Co., Ltd., Tokyo, Japan),
with an ODS column (JAIGEL-ODS-AP, model SP-12-10, Japan Analytical Industry, Co.,
Ltd. Tokyo, Japan). The compounds were eluted with a mobile phase of MeOH at a flow
rate of 9 mL/min. High-resolution mass spectroscopy (HRMS) was measured on a Waters
Corporation Xevo G2 QTOF apparatus (Waters Corporation, Milford, MA, USA) using
electrospray ionization (ESI).

3.1.1. General Procedure for the Synthesis of Esters 2e–f

Methyl esters 2a and 2b were purchased from Merck. Methyl esters 2c and 2e–2f
were obtained by the well-known method for esterification of acids using thionyl chloride
in methanol [37]. To a stirred and cooled (0 ◦C) solution of the required acid 1c, 1e–1f
(20 mmol) in anhydrous methanol (30 mL), thionyl chloride (1.10 equiv.) was added
dropwise while stirring. The mixture was warmed up to room temperature and stirred
for 24 h. After that, the excess of methanol was removed under diminished pressure
and then dried under reduced pressure. In the case of 2f synthesis, after completion
of the esterification reaction, the solution was neutralized by adding saturated aqueous
NaHCO3 solution until no further gas evolution was observed. Solid 2f was filtered under
reduced pressure.

Synthesis of ethyl anthracene-9-carboxylate 2d: to SOCl2 (7 mL), we added anthracene-
9-carboxylic acid (1.80 mmol) and DMF (0.4 mL) as a catalyst. The reaction mixture was
stirred at room temperature under argon atmosphere for 4h. The excess of SOCl2 was
removed under reduced pressure. The residue was washed with toluene. To obtain orange
solid acid chloride, EtOH (10 mL) and TEA (1.3 equiv.) were added sequentially. The
reaction mixture was stirred at room temperature for 24 h. EtOH was removed under
reduced pressure; then, chloroform (10 mL) was added to the residue and the organic layer
was washed with water (2 × 8 mL) and dried over anhydrous Na2SO4. After filtration
and evaporation under reduced pressure, the residue was purified on a silica gel packed
column using (AcOEt:n-hexane 1:1, v/v) as an eluent, obtaining solid 2d at a yield of 90%.

3.1.2. General Procedure for the Synthesis of Hydrazides 3a–3f

Hydrazides 3a–3f were synthesized from their corresponding esters 2a–2f, followed
by reaction with hydrazine according to the method reported by Khan et al. [10].

Synthesis of hydrazides 3b–3c and 3f: to a solution of methyl ester 2b, c, or 2f (20 mmol)
in methanol (25 mL), hydrazine monohydrate (80 mmol, 4 equiv.) was added. The reaction
mixture was stirred at room temperature for 72 h and then cooled to −20 ◦C. The formed
precipitate was filtered off and dried under reduced pressure. Crystallization of crude solid
from an ethanol:water (1:2, v/v) solution produced white crystals.

Benzohydrazide (3b): yield 77%. Mp 114–115 ◦C. (lit. Mp 110–113 ◦C [46]). TLC
solvent system B; Rf (retention factor): 0.5. 1H NMR (600 MHz, DMSO-d6): δ 4.48 (s, NH2)
7.53–7.46 (m, 2H, C6H5), 7.49–7.51 (m, 1H, C6H5), 7.81–7.83 (m, 2H, C6H5), 9.76 (s, 1NH).
13C NMR (600 MHz, DMSO-d6): δ 132.08, 133.44, 136.18, 138.46, 171.02. HRMS (ESI-TOF):
m/z calcd for (C7H8N2O + H+): 137.0709; found: 137.0724.
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1-naphthohydrazide (3c): yield 69%. Mp 156–157 ◦C (lit. Mp 160–163 ◦C [38]). TLC
system B; Rf: 0.6. 1H NMR (600 MHz, DMSO-d6): δ 4.59 (d, J = 3.53 Hz, NH2), 7.51–7.58
(m, 4H, C6H5), 7.96–7.98 (m, 1H, C6H5), 8.00–8.01 (m, 1H, C6H5), 8.20–8.22 (m, 1H, C6H5),
9.68 (s, 1NH) 13C NMR 150 MHz, DMSO-d6): 130.16, 130.51, 130.60, 131.40, 131.80, 133.35,
135.02, 135.18, 135.138.30, 138.55, 173.14. HRMS (ESI-TOF): m/z calcd for (C11H10N2O +
H+): 187.0866; found: 187.0610.

4-aminobenzohydrazide (3f): yield 60%. Mp 224–226 ◦C (lit. Mp 225–227 ◦C [47]).
TLC system C; Rf: 0.4. 1H NMR (600 MHz, DMSO-d6): δ 4.29 (s, NH2), 5.57 (s, C6H5NH2),
6.52 (d, J = 8.72, 2H, C6H5), 7.54 (d, J = 8.67, 2H, C6H5), 9.246 (s, 1NH). 13C NMR (600 MHz,
DMSO-d6): 113.04, 120.40, 128.84, 151.94, 166.88. HRMS (ESI-TOF): m/z calcd for (C7H9N3O
+ H+): 152.0818; found: 152.0036.

Synthesis of hydrazides 3a and 3e: to a solution of methyl propionate 2a (5.50 mmol)
or methyl 4-fluorobenzoate 2e (5.50 mmol) in methanol (15 mL), we added hydrazine
monohydrate (22 mmol, 4 equiv.). The reaction mixture was stirred at reflux for 24 h
and evaporated under diminished pressure. The oily residue 3a was purified by silica
gel column chromatography and eluted with 3% MeOH/CHCl3 (v/v). Product 3e was
crystallized from an ethanol:water (1:2, v/v) solution.

Propanoic acid hydrazide (3a): yield 100%. Mp 36–38 ◦C (lit. Mp 38–40 ◦C [48]). TLC
system A; Rf: 0.5. 1H NMR (600 MHz, DMSO-d6): δ 0.99 (q, J = 7.62, CH3), 2.01 (t, J = 7.61,
CH2), 4.13 (s, NH2), 8.90 (s, NH), 13C NMR (600 MHz, DMSO-d6): δ 10.37, 27.07, 172.86.
HRMS (ESI-TOF): m/z calcd for (C3H8N2O + H+): 89.0709; found: 89.0736.

4-Fluorobenzhydrazide (3e): yield 60%. Mp 164–165 ◦C. (lit. Mp 160–163 ◦C [38]).
TLC system B; Rf: 0.7. 1H NMR (600 MHz, DMSO-d6): δ 4.48 (s, 2NH2), 7.24–7.27 (m, 2H,
C6H5), 7.86–7.88 (m, 2H, C6H5), 9.76 (s, 1NH). 13C NMR (600 MHz, DMSO-d6): 115.66 (d,
J = 21.75), 129.96 (d, J = 8.98), 163.36, 165.01, 165.31. C7H7FN2O HRMS (ESI-TOF): m/z calcd
for (C7H7FN2O + H+): 155.0615; found: 155.0623.

Synthesis of hydrazide (3d): to hydrazine monohydrate (98%, 10 mL), ethyl anthracene-
9-carboxylate (2d) (1.60 mmol) was added. The reaction mixture was stirred at reflux for
72 h. The residual hydrazine was removed under reduced pressure. A crude solid was
purified by flash column chromatography on silica gel, using 100% CHCl3 followed by
20% MeOH/CHCl3 (v/v) as an eluent. Additional purification by the high-performance
liquid chromatography (HPLC) method using an ODS column with methanol as an eluent
was performed.

Anthracene-9-carbohydrazide (3d): yield 60%. Td (thermal decomposition temper-
ature) 242 ◦C. TLC system A; Rf: 0.7. 1H NMR (600 MHz, DMSO-d6): δ 4.81 (d, J = 3.10,
NH2), 7.52–7.57 (m, 4H, C6H5), 7.98–8.00 (m, 2H, C6H5), 8.10–8.12 (m, 2H, C6H5), 8.65 (s,
1H, C6H5), 9.83 (s, 1NH). 13C NMR 600 MHz, DMSO-d6): 125.92, 126.02, 126.76, 127.83,
128.33, 128.77, 131.10, 132.51, 167.96. HRMS (ESI-TOF): m/z calcd for (C15H12N2O + H+):
237.1028; found: 237.1031.

3.1.3. General Procedure for the Synthesis of Hydrazones (4a–4f) and Hydrazide (5)

Synthesis of hydrazones 4b–4c and 4e–4f: an appropriate hydrazide 3b,c,e,f (4.40 mmol)
and 2,3,4-trihydroxybenzaldehyde (4.40 mmol) were dissolved in anhydrous methanol
(15 mL), and the reaction mixture was stirred at room temperature for 24 h. After the
completion of the reaction, the formed solid was filtered and purified by recrystallization
from EtOH:H2O (1:1, v/v) [13].

(E)-N′-(2,3,4-trihydroxybenzylidene)benzohydrazide (4b): yield 85%. Td 187–189 ◦C.
TLC system B; Rf: 0.4. 1H NMR (600 MHz, DMSO-d6): δ 6.41 (d, J = 8.39 Hz, 1H, C6H5),
6.80 (d, J = 8.48 Hz, 1H, C6H5), 7.53–7.56 (m, 2H, C6H5), 7.59–7.62 (m, 1H, C6H5) 7.93–7.94
(m, 2H, C6H5)), 8.48 (s, N=CH), 9.46 (s, OH), 11.56 (s, OH), 11.97 (s, NH). 13C NMR
(600 MHz, DMSO-d6): δ 108.10, 111.28, 121.63, 127.98, 128.96, 132.27, 133.16, 133.38, 147.97,
149.21, 150.63, 162.94. HRMS (ESI-TOF): m/z calcd for (C14H12N2O4 + H+): 273.0870;
found: 273.0882.
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(E)-N′-(2,3,4-trihydroxybenzylidene)-1-naphthohydrazide (4c): yield 69%. Td 109–110 ◦C.
TLC system C; Rf: 0.4. 1H NMR (600 MHz, DMSO-d6): δ 6.38 (d, J = 8.42, 1H, C6H5), 6.77 (d,
J = 8.50, 1H, C6H5), 7.58–7.61 (m, 3H, C6H5), 7.76 (dd, J = 1.12, J = 7.03 1H, C6H5), 8.00–8.02
(m, 1H, C6H5), 8.09 (d, J = 8.27, 1H, C6H5), 8.23 (dd, J = 1.51, 8.15 1H, C6H5), 8.35 (s, N=CH),
8.49 (s, OH), 9.48 (s, OH), 11.47 (s, OH), 12.07 (s, NH) 13C NMR (600 MHz, DMSO-d6): δ
108.14, 111.23, 121.60, 125.42, 125.59, 126.44, 126.90, 127.56, 128.81, 130.41, 131.08, 132.77,
133.16, 133.62, 147.99,149.26, 150.51, 164.49. HRMS (ESI-TOF): m/z calcd for C18H14N2O4 +
H+): 323.1026; found: 323.1033.

(E-4-fluoro-N′-(2,3,4-trihydroxybenzylidene)benzohydrazide (4e): yield 100%. Td
217–219 ◦C. TLC system B; Rf: 0.3. 1H NMR (600 MHz, DMSO-d6): 6.41(d, J = 8.42, 1H,
C6H5), 6.80 (d, J = 8.49, 1H, C6H5) 7.38 (t, J = 8.84 2H, C6H5), 7.99–8.03 (m, 2H, C6H5),
8.47 (s, N=CH) 11.98 (s, NH) 13C NMR (600 MHz, DMSO-d6): δ 108.11, 111.24, 115.95 (d,
JC-F = 21.87), 121.66, 130.70 (d, JC-F = 9.12), 133.13, 147.93, 149.21, 150.75, 161.99, 163.80,
165.46. HRMS (ESI-TOF): m/z calcd for (C14H11FN2O4 + H+): 291.0781; found: 291,0875.

(E)-4-amino-N′-(2,3,4-trihydroxybenzylidene)benzohydrazide (4f): yield 72%.
Mp > 250 ◦C. TLC system C; Rf: 0.5. 1H NMR (600 MHz, DMSO-d6): δ 5.79 (s, NH2)
6.38 (d, J = 8.39, 1H, C6H5), 6.60 (d, J = 8.63, 2H, C6H5) 6.72 (d, J = 8.48 Hz, 1H, C6H5), 7.66
(d, J = 8.41, 2H, C6H5), 8.39 (s, N=CH), 8.44 (s, OH), 9.36 (s, OH), 11.55 (s, OH). 11.78 (s,
NH) 13C NMR (600 MHz, DMSO-d6): δ 107.93, 111.47, 113.11, 119.41, 121.41, 129.68, 133.13,
147.79, 148.79, 149.01, 152.81, 162.85. HRMS (ESI-TOF): m/z calcd for (C14H13N3O4 + H+):
288.0979; found: 288.0988.

Synthesis of hydrazones 4a, 4d: to a solution of anthracene-9-carbohydrazide 3d
(1.14 mmol) or propanoic acid hydrazide 3a (1.14 mmol) in methanol (15 mL), 2,3,4-
trihydroxybenzaldehyde (1.26 mmol, 1.1 equiv.) was added. The reaction mixture was
stirred at reflux for 24 h. After consumption of the substrate, the solvent was removed
under reduced pressure. The crude solid was crystallized from a solution of ethanol:water
(1:1 v/v).

(E)-N′-(2,3,4-trihydroxybenzylidene)propionohydrazide (4a): yield 89%. Td 184–186 ◦C.
TLC system B; Rf: 0.5. 1H NMR (600 MHz, DMSO-d6): δ 1.08 (t, J = 7.57, CH3), 2.21 (q,
J = 7.55, CH2) 6.37 (d, J = 8.41, 1H, C6H5), 6.73 (d, J = 8.46, 1H, C6H5), 8.17 (s, N=CH), 8.44
(s, OH), 9.40 (s, OH), 11.07 (s, OH), 11.39 (s, NH). 13C NMR (150 MHz, DMSO-d6): 9.41,
26.97, 107.40, 110.66, 120.86, 132.54, 147.20, 148.14, 148.38, 168.70 (HRMS (ESI-TOF): m/z
calcd for (C10H12N2O4 + H+): 225.0869; found: 225.0874.

(E)-N′-(2,3,4-trihydroxybenzylidene)anthracene-9-carbohydrazide (4d). yield 50%. Td
167–169 ◦C. TLC system C; Rf: 0.5. 1H NMR (600 MHz, DMSO-d6): δ 6.43 (d, J = 8.37,
1H, C6H5), 6.82 (d, J = 8.48, 1H, C6H5) 7.54–7.64 (m, 4H, C6H5), 8.01–8.02 (m, 2H, C6H5),
8.16–8.19 (m, 2H, C6H5), 8.33 (s, N=CH), 8.57 (s, OH), 8.76 (s, 1H, C6H5), 9.57 (s, OH), 11.43
(s, OH), 12.33 (s, NH). 13C NMR 600 MHz, DMSO-d6): δ 108.26, 111.25, 121.61, 125.39,
126.22, 127.32, 127.48, 128.37, 128.99, 129.11, 131.09, 133.22, 148.05, 149.40, 150.59, 164.30.
HRMS (ESI-TOF): m/z calcd for (C22H16N2O4 + H+): 373.1188; found: 373.1185.

Synthesis of hydrazide 5: (E)-4-amino-N′-(2,3,4-trihydroxybenzylidene)benzohydrazide
4f (3 mmol), anhydrous methanol (10 mL), and 25% of the weight of hydrazone 4f 20%
Pd(OH)2/C were added to a reaction vessel. The vessel was placed in a Parr hydrogenator
and the reaction mixture was treated with hydrogen at 2.2 bar at room temperature for
6 h. The catalyst was filtered from the solution and the reaction mixture was concentrated
under reduced pressure. The crude solid was crystallized from an ethanol solution.

4-amino-N′-(2,3,4-trihydroxybenzyl)benzohydrazide (5): yield 40%. Td 188–190 ◦C.
TLC system B; Rf: 0.2.1H NMR (600 MHz, DMSO-d6): δ 3.80 (d, J = 3.80, N-CH2), 5.18 (d,
J = 5.07, NH-CH2), 5.63 (s, NH2) 6.20 (d, J = 8.11, 1H, C6H5), 6.42 (d, J = 8.18, 1H, C6H5)
6.53 (d, J = 8.54, 2H, C6H5), 7.54 (d, J = 8.50, 2H, C6H5) 8.12 (s, OH), 8.74 (s, OH), 9.20 (s,
OH), 9.74 (d, J = 3.27, NH) 13C NMR (600 MHz, DMSO-d6): δ 52.50, 106.56, 113.00, 115.65,
119.58, 119.85, 129.07, 133.56, 145.81, 145.98, 152.25, 166.39. HRMS (ESI-TOF): m/z calcd for
(C14H15N3O4 + Na+); 312.0955; found: 312.0955.
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3.1.4. General Procedure for the Synthesis of Amino Acid Methyl Ester Hydrochloride 7a–7c

Methyl esters 7a–7c were obtained by the well-known amino acid esterification method,
which uses thionyl chloride in methanol [25]. To a stirred and cooled (0 ◦C) solution of
required L-amino acid 6 (30 mmol) in anhydrous methanol (40 mL), SOCl2 (1.10 equiv.) was
added dropwise. The reaction mixture was warmed up to room temperature and stirred
for 24 h. After completion of the reaction, excess methanol was removed and dried under
reduced pressure.

3.1.5. General Procedure for the Synthesis of N-Benzyloxycarbonyl-L-amino Acid Methyl
Esters 8a–8c

An amino group of derivatives 7a–7c was protected using benzyl chloroformate [25]. To
a solution of amino acid methyl ester hydrochloride salt 7a–7c (25 mmol) in dichloromethane
(30 mL), triethylamine (2.5 equiv.) was added. After 10 min, benzyl chloroformate
(1.2 equiv.) was added dropwise to the reaction mixture at 0 ◦C. The reaction mixture
was stirred at room temperature for 24 h; then, water was added to solubilize all salts.
The organic layer was washed with water (2 × 30 mL) and dried over anhydrous Na2SO4.
After filtration, the organic layer was concentrated under reduced pressure. The residue
was purified on a silica gel column using a mixture of AcOEt:n-hexane, 1:1 v/v, obtaining
colorless oil 8a–8c.

3.1.6. General Procedure for the Synthesis of N-Benzyloxycarbonyl-L-amino Acid
Hydrazides 9a–9c

To a solution of N-Cbz-amino acid methyl esters 8a–8c (16.5 mmol) in anhydrous
methanol (30 mL), hydrazine hydrate (98% 4.0 equiv.) was added. The reaction mixture
was stirred for 24 h at room temperature. The insoluble product formed was filtered off
and was recrystallized from a solution of ethanol: H2O, 1:1 v/v [25].

N-benzyloxycarbonyl-L-glycine hydrazide (9a): yield 97%. Mp 114-115 ◦C (lit. Mp
112–114 ◦C [49]). TLC system B; Rf: 0.8. 1H NMR (600 MHz, DMSO-d6): δ 3.55 (d, J = 6.16,
CH2), 4.17(s, NH2), 5.00 (s, CH2C6H5), 7.28–7.39 (m, 5H, C6H5), 9.02 (s, 1NH), 13C NMR
(600 MHz, DMSO-d6): δ 42.65, 65.91, 128.13, 128.23, 128.77, 137.44, 156.86, 168.93. HRMS
(ESI-TOF): m/z calcd for (C10H13O3N3 + H+): 224.1030; found: 224.1046.

N-benzyloxycarbonyl-L-tyrosine hydrazide (9b): yield 36%. Mp 218–219 ◦C. (lit. Mp
219–221 ◦C [50]). TLC system B; Rf: 0.8. 1H NMR (600 MHz, DMSO-d6): δ 2.62–2.66 (m,
HCH), 2.77–2.81 (m, HCH), 4.08–4.12 (m, CH), 4.21 (s, NH2) 4.91–4.96 (m, CH2C6H5), 5.04
(s, OH), 6.65 (d, J = 8.36, 2H, C6H5), 7.04 (d, J = 8.30, 2H, C6H5), 7.24–7.35 (m, 3H, C6H5),
7.44 (d, J = 8.71, 2H, C6H5), 9.17 (s, 1NH), 9.18 (s, NHCbz) 13C NMR (600 MHz, DMSO-d6):
δ 37.48, 55.72, 65.57, 115.30, 127.86, 128.07, 128.49, 128.70, 128.76, 130.52, 137.52, 156.13,
156.19, 171.29. (ESI-TOF): m/z calcd for (C11H15N3O3S + H+): 330.1454; found: 330.1441.

N-benzyloxycarbonyl-L-cysteine hydrazide (9c): yield 67%. Mp 138–139 ◦C (lit. Mp
141–143 ◦C [51]). TLC system B; Rf: 0.7. 1H NMR (600 MHz, DMSO-d6): δ 1.23 (s, SH),
2.84–2.88 (m, CH), 3.03–3.06 (m, CH), 4.26 (s, NH2), 5.00–5.04 (m, CH2C6H5), 7.31–7.36 (m,
4H, C6H5), 7.56 (d, J = 8.53, 1H, C6H5) 9.30 (s, NH, NHCbz) 13C NMR (600 MHz, DMSO-d6):
δ 53.00, 56.47, 66.00, 128.16, 128.23, 128.75, 137.33, 156.24, 169.60. HRMS (ESI-TOF): m/z
calcd. for (C7H8ON2 − H−): 268.0761; found: 268.0763.

3.1.7. General Procedure for the Synthesis of Hydrazones of N-Benzyloxycarbonyl-amino
Acids 10a–10c

Synthesis of (E)-benzyl(2-oxo-2-(2-(2,3,4-trihydroxybenzylidene)hydrazinyl)ethyl) car-
bamate: 2,3,4-trihydroxybenzaldehyd (11.7 mmol; 1.20 equiv.) was added to a stirring
solution of N-Cbz-L-glycine hydrazide 9a (9.8 mmol) in methanol (25 mL). The mixture
solution was stirred at room temperature for 24 h. After completion of the reaction, the
obtained solid was filtered off. The product was obtained as a solid and purified by
recrystallization from the solution of methanol: H2O (1:1 v/v).

Synthesis of (E)-benzyl(3-(4-hydroxyphenyl)-1-oxo-1-(2-(2,3,4-trihydroxybenzylidene)-
hydrazinyl)propan-2-yl)carbamate 10b: 2,3,4-trihydroxybenzaldehyd (1.20 mmol; 1.20 equiv.)



Molecules 2024, 29, 629 14 of 18

was added to a stirring solution of N-benzyloxycarbonyl-L-tyrosine hydrazide 9b (1.00 mmol)
in THF (10 mL). The resulting solution was stirred at reflux for 72 h in an inert atmosphere
of argon. The reaction mixture was concentrated under reduced pressure. The residue was
crystallized from a 1:1 (v/v) solution of methanol:H2O at a 55% yield.

Synthesis of (E)-benzyl(3-mercapto-1-oxo-1-(2-(2,3,4-trihydroxybenzylidene)hydrazinyl)
propan-2-yl)carbamate 10c: 2,3,4-trihydroxybenzaldehyd (16.92 mmol; 1.20 equiv.) was
added to a stirring solution of N-Cbz-L-cysteine hydrazide 9c (14.10 mmol) in methanol
(30 mL). The mixture solution was stirred at room temperature for 24 h and concentrated
under reduced pressure. The residue was crystallized from an ethanol:H2O, 1:1 v/v solution.

(E)-benzyl(2-oxo-2-(2-(2,3,4-trihydroxybenzylidene)hydrazinyl)ethyl)carbamate (10a):
yield 97%. Mp 213–215 ◦C (Mp 211–212 ◦C [52]). TLC system B; Rf: 0.3. 1H NMR (600 MHz,
DMSO-d6): δ 3.75 (d, J = 4.41, CH2), 5.06 (s, CH2C6H5), 6.38 (d, J = 7.92, 1H, C6H5) 6.77 (d,
J = 7.87, 1H, C6H5), 7.32–7.37 (m, 4H, C6H5), 7.60 (s, 1H, C6H5), 8.25 (s, N=CH), 8.47 (s, OH)
9.45, (s, OH), 9.52 (d, J = 15.50, NHCbz), 11.32 (s, OH), 11.54 (s, NH) 13C NMR (600 MHz,
DMSO-d6): δ 43.09 66.03, 108.04, 111.16, 121.48, 128.11, 128.19, 128.26, 128.79, 133.11, 137.41,
147.80, 149.12, 149.62, 157.00, 165.65. HRMS (ESI-TOF): m/z calcd for (C17H17N3O6 + H+):
360.1190; found: 360.1197.

(E)-benzyl(3-(4-hydroxyphenyl)-1-oxo-1-(2-(2,3,4-trihydroxybenzylidene)hydrazinyl)
propan-2-yl)carbamate (10b): yield 55%. Mp 106–108 ◦C. TLC system B; Rf: 0.3. 1H NMR
(600 MHz, DMSO-d6): δ 2.72–2.746 (m, HCH), 2.88–2.91 (m, HCH), 4.20–4.21 (m, CH),
4.94–5.00 (m, CH2C6H5), 6.66 (d, J = 8.16, 1H, C6H5), 6.38 (d, J = 8.40, 1H, C6H5), 6.77
(d, J = 8.47, 1H, C6H5), 7.08 (d, J = 8.00, 2H, C6H5), 8.24 (s, N=CH), 8.46 (s, OH), 9.21 (s,
NHCbz) 9.46 (s, OH), 11.27 (s, OH) 13C NMR (600 MHz, DMSO-d6): δ 36.96, 56.11, 65.76,
108.05, 111.18, 115.37, 121.45, 127.87, 127.94, 128.15, 128.70 128.73, 130.56, 133.10, 137.40,
147.81, 149.14, 149.86, 156.29, 168.02. HRMS (ESI-TOF): m/z calcd for (C24H23N3O7 + H+);
466.1609; found: 466.1610.

(E)-benzyl(3-mercapto-1-oxo-1-(2-(2,3,4-trihydroxybenzylidene)hydrazinyl)propan-2-
yl)carbamate (10c): yield 49%. Mp 134–135 ◦C. TLC system B; Rf: 0.2. 1H NMR (600 MHz,
DMSO-d6): δ 1.24 (s, SH), 2.96–2.99 (m, HCH), 3.18-3.21 (m, HCH), 4.39 (dd, J = 8.54, 14.07
CH), 5.05 (s, CH2C6H5), 6.37 (d, J = 8.41, 1H, C6H5), 6.75 (d, J = 8.41, 1H, C6H5), 7.30–7.37 (m,
4H, C6H5), 7.84 (d, J = 8.21, 1H, C6H5), 8.31 (s, N=CH), 8.48 (s, OH), 9.14 (s, NHCbz), 9.48
(s, OH), 11.25 (s, OH), 11.78 (s, NH). 13C NMR (600 MHz, DMSO-d6): δ 53.50, 65.97, 66.18,
108.10, 111.13, 121.56, 128.21, 128.29, 128.78, 133.10, 137.21, 147.88, 149.26, 150.40, 156.40,
166.49. HRMS (ESI-TOF): m/z calcd for (C18H19N3O6S − H−): 404.0921; found: 404.0916.

3.1.8. General Procedure for the Synthesis of Substituted Amino Acid Hydrazide 11 and
Substituted Amino Acid Hydrazone 12

Synthesis of 2-amino-N′-(2,3,4-trihydroxybenzyl)acetohydrazide 11: ammonium for-
mate (1 mmol, 1 equiv.), 40% (w/v) hydrazone 10a, and 10% PdOH2 (145 mg) were added
to a stirring solution of N-(N-Cbz-L-glycine)-2,3,4-trihydroxybenzaldehyde hydrazone 10a
(1 mmol) in methanol (10 mL). The reaction mixture was stirred at 50 ◦C under an argon
atmosphere for 12 h then was cooled down to room temperature, filtered to remove the
catalyst, and concentrated under reduced pressure. The residue was purified by crystalliza-
tion from diethyl ether and the pure powder was lyophilized. The hygroscopic powder
was obtained in 48% yield.

Synthesis of (E)-2-amino-3-(4-hydroxyphenyl)-N′-(2,3,4-trihydroxybenzylidene)propa
nehydrazide 12: hydrazone 10b (0.5 mmol), anhydrous methanol (30 mL), and 25% (w/v)
hydrazone 10b were added to a mixture of 10% Pd/C and Pd(OH)2. The reaction vessel
was placed in a Parr shaker hydrogenator at pressures of up to 2.5 bar at room temperature
for 6 h. The solid catalyst was filtered off and the reaction solution was concentrated under
reduced pressure. The product was purified by reverse-phase preparative HPLC on an
ODS column using 70% MeOH:H2O (v/v).

2-Amino-N′-(2,3,4-trihydroxybenzyl)acetohydrazide (11): yield 48%. Hygroscopic
powder. TLC system B; Rf: 0.1. 1H NMR (600 MHz, DMSO-d6): δ 1.99 (s, NH2), 3.06 (s,
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CH2), 3.49 (s, NH-CH2), 3.60 (s, NH-CH2), 6.12 (d, J = 8.06, 1H, C6H5), 6.28 (d, J = 8.09, 1H,
C6H5), 8.86 (s, NH). 13C NMR (600 MHz, DMSO-d6): δ 43.17, 44.11, 106.75, 115.31, 119.81,
133.78, 145.00, 145.16, 172.52. HRMS (ESI-TOF): m/z calcd for (C9H13N3O4 + H+) 228.0978;
found: 228.0331.

(E)-2-Amino-3-(4-hydroxyphenyl)-N′-(2,3,4-trihydroxybenzylidene)propanehydrazide
(12): yield 20%. Td 176–178 ◦C TLC system C; Rf: 0.2. 1H NMR (600 MHz, DMSO-d6): δ
2.58–2.61 (m, HCH), 2.76–2.79 (m, HCH), 3.65–3.69 (m, CH), 4.41 (d, J = 7.43, NH), 4.51
(d, J = 7.37, NH), 6.18–6.21 (m, 1H, C6H5), 6.36–6.40 (m, 1H, C6H5), 6.62–6.68 (m, 2H,
C6H5), 6.91–7.07 (m, 2H, C6H5), 8.04 (s, N=CH), 8.31 (s, NH) 13C NMR (600 MHz, DMSO-
d6): δ 29.46, 55.21, 106.66, 115.39, 119.68, 128.29, 128.45, 130.57, 130.65, 133.46, 145.63,
146.01, 156.26, 172.87 HRMS (ESI-TOF): m/z calcd for (C16H17N3O5 + H+): 332.1241; found:
332.1253.

1H and 13C NMR spectra of synthesized compounds are presenting in Supplementary
Materials.

3.2. Computational Methods

Calculations were performed by the Orca 4.2.1 package on the DFT level (B3LYP/def2-
SVP) [53]. The accuracy of the optimization process was determined using the Hessian
eigenvalue analysis. All the calculated Hessian eigenvalues were positive for the com-
pounds evaluated. In the case of calculations in a solvent environment, the CPCM continu-
ous solvation model for DMSO was used.

3.3. Hexokinase Activity Assay

For studying the potential of HK2 inhibitors, a commercially available assay test
(ab211114) Hexokinase II Inhibitor Screening (colorimetric) was used. The in vitro hexoki-
nase activity assay was conducted according to the manufacturer’s instructions. Briefly, the
enzyme and substrate solution were prepared. Next, the enzyme solution was added to the
wells containing sample compounds and incubated for 5 min at 25 ◦C. Then, the substrate
solution was added to the wells and the absorbance was measured at 450 nm every 5 min
for 45 min using the Thermo Scientific™ Varioskan™ LUX multimode microplate reader
(ThermoFisher Inc.Waltham, MA, USA). The test compounds were dissolved in DMSO at
50 µM, 5 µM, and 1 µM concentrations, with the final concentration of solvent not exceeding
1% by volume.

4. Conclusions

In our research, we synthesized benitrobenrazide and benserazide analogues. We
identified that some of these compounds, namely compounds 4e and 4f, represent a
promising class of HK2 inhibitors, inhibiting HK2 at a concentration of 5 µM by 98% and
82%, respectively. At the lower concentration of 1 µM, 4e and 4f inhibited HK2 by 60%
and 54%, respectively. We have confirmed that the presence of a bulky anthracenyl group
in 4d has no significant effect on HK2 enzymatic activity. The exchanging of serine by
glycine or threonine in benserazide analogues has a minor effect on their inhibition activity
against HK2. Compounds 11 and 12 reduce the enzymatic activity of HK2 by approx.
40% in comparison with the negative control. The presented findings suggest that the
imine scaffold -CH=N-, in the structure of the potent HK2 inhibitors, helps to enhance and
regulate their biological activities. The -CH=N- core is responsible for the possible binding
of various groups with nucleophilic and electrophilic properties and, thus, can interact
with targeted enzymes and inhibit their enzymatic activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29030629/s1, Figure S1: Hydrogen bonding interaction
in compound 4a; 1H and 13C NMR spectra of synthesized compounds. Figures S2–S27: 1H and 13C
NMR spectrum of synthesized compounds.

https://www.mdpi.com/article/10.3390/molecules29030629/s1
https://www.mdpi.com/article/10.3390/molecules29030629/s1
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