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Abstract: Drug discovery plays a critical role in advancing human health by developing new 
medications and treatments to combat diseases. How to accelerate the pace and reduce the costs of 
new drug discovery has long been a key concern for the pharmaceutical industry. Fortunately, by 
leveraging advanced algorithms, computational power and biological big data, artificial intelli-
gence (AI) technology, especially machine learning (ML), holds the promise of making the hunt for 
new drugs more efficient. Recently, the Transformer-based models that have achieved revolution-
ary breakthroughs in natural language processing have sparked a new era of their applications in 
drug discovery. Herein, we introduce the latest applications of ML in drug discovery, highlight the 
potential of advanced Transformer-based ML models, and discuss the future prospects and chal-
lenges in the field.  
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1. Introduction 
Drug research and development play a vital role in improving human health and 

well-being. However, the discovery of a new drug is an extremely complex, expensive 
and time-consuming process, typically costing approximately USD 2.6 billion [1] and 
taking more than 10 years on average [2]. Despite the high investment levels, the ap-
proval success rate of launching a small-molecule drug to market from phase I clinical 
trial is less than 10% [3], highlighting the considerable risk of failure. Therefore, how to 
reduce the costs and accelerate the pace of new drug discovery has emerged as a key 
concern within the pharmaceutical industry. 

The increasing availability of large-scale biomedical data provides tremendous op-
portunities for computational drug discovery, but effectively mining, correlating, and 
analyzing these huge amounts of data has become a critical challenge. Fortunately, with 
the advent of efficient mathematical tools and abundant computational resources, artifi-
cial intelligence (AI) approaches have rapidly developed (Figure 1). As the representative 
AI method, machine learning (ML), empowers machines to learn from existing data by 
using statistical approaches and make predictions, which can be further classified into 
supervised, unsupervised, and reinforcement learnings [4,5]. Deep learning (DL), a sub-
set of ML, focuses on using multi-layered artificial neural networks (ANNs) structures to 
simulate the neural networks of the human brain for learning data representations, 
making it more powerful and flexible in handling complex and high-dimensional data 
[6,7]. With the advantages of low cost and fast speed, the ML approaches are revolu-
tionizing and strengthening multiple stages of drug discovery, such as target identifica-
tion, de novo drug design and drug repurposing. For example, DL-based open-source 
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tools, such as DeepDTAF [8] and DeepAffinity [9], have been applied to predict the 
binding affinity of drug–target interactions (DTIs), making the hunt for new pharmaceu-
ticals more efficient. Accordingly, more and more pharmaceutical giants, such as Sanofi 
(Paris, France), Merck (Darmstadt, Germany), Takeda (Takeda, Japan) and Genentech 
(South San Francisco, America), have initiated cooperation with AI companies to develop 
new drugs. 

 
Figure 1. Introduction diagram of artificial intelligence and its subfields: machine learning and 
deep learning. 

Notably, the Transformer-based language models, such as the Generative 
Pre-training Transformer (GPT), Bidirectional Encoder Representations from Trans-
formers (BERT) and the Text-to-Text Transfer Transformer (T5), have not only achieved 
revolutionary breakthroughs but have also brought about a paradigm shift in the area of 
natural language processing (NLP) [10]. In particular, the outstanding learning ability, 
generalization ability and transferability of Transformer-based language models have 
sparked a new era of their applications in drug discovery and development, primarily 
owing to the inherent similarities between drug-related biological sequences and natural 
languages. Their remarkable advantages, including capturing long-range dependencies 
in sequences, processing input sequences in parallel, employing an attention mechanism, 
and having extendibility to incorporate multimodal information, make them valuable 
tools for various aspects of the drug discovery process [11]. For example, by employing 
Transformer-based language models, Kalakoti et al. [12] have successfully developed a 
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modular framework called TransDTI for predicting novel DTIs from sequence data. Its 
performance proved to be superior to existing methods. Therefore, the Transform-
er-based models have the potential to revolutionize the identification and development 
of new drugs. 

Given the significance of ML techniques in the pharmaceutical industry, we here 
focus on introducing the recent advancements, opportunities and challenges of ML ap-
plications in drug discovery. First, we provide an updated overview of the emerging 
applications of ML in different stages of the drug discovery process, including drug de-
sign, drug screening, drug repurposing and chemical synthesis. Next, we highlight the 
opportunities of the advanced Transformer-based models in empowering drug discov-
ery. Furthermore, we discuss the challenges and future prospects of ML in the field of 
drug discovery. 

2. Applications of ML in Drug Discovery 
The process of discovering effective new drugs is time-consuming and predomi-

nantly the most challenging part of drug development. With the advantages in learning 
from data, discerning patterns, and making intelligent decisions, ML-based approaches 
have emerged as versatile tools that can be applied in multiple stages of drug discovery, 
including drug design, drug screening, drug repurposing and chemical synthesis (Figure 
2). Moreover, considerable efforts are dedicated to developing models, tools, software 
and databases based on the core architecture of ML algorithms, to counter the inefficien-
cies and uncertainties inherent in traditional drug development methods (Table 1). 

Table 1. ML-based software/model used for drug discovery. 

Name Algorithm Specific Function PMID 
Prediction of the target protein structure 

TrRosetta server DNN Predict 3D structures of proteins [13] 
AlphaFold DNN Predict 3D structures of proteins [14] 

ComplexQA GNN Predict protein complex structure [15] 
ProteinBERT Transformer Predict secondary structure [16] 

ESMfold Transformer Predict structure of proteins [17] 
Predicting protein–protein interactions 

IntPred RF Predict PPI interface sites [18] 
eFindSite SVM; NBC Predict PPI interfaces [19] 
DELPHI RNN; CNN Predict PPI sites [20] 

PPISP-XGBoost XGBoost Predict PPI sites [21] 
HN-PPISP CNN Predict PPI sites [22] 
TAGPPI GCN Predict PPIs [23] 

Struct2Graph GAT Predict PPIs [24] 
DeepFE-PPI DNN Predict PPIs [25] 

SGPPI GCN Predict PPIs [26] 
DeepPPI DNN Predict PPIs [27] 
DL-PPI GNN Predict PPIs [28] 

DeepSG2PPI CNN Predict PPIs [29] 
MaTPIP Transformer; CNN Predict PPIs [30] 

ProtInteract Autoencoder; CNN Predict PPIs [31] 
Predicting drug–target interactions 

DeepC-SeqSite CNN Predict DTI binding sites [32] 
DeepSurf CNN; ResNet Predict DTI binding sites [33] 
PrankWeb RF Predict DTI binding sites [34] 
PUResNet ResNet Predict DTI binding sites [35] 

AGAT-PPIS GNN Predict DTI binding sites [36] 
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DeepDTA CNN Predict DTI binding affinity [37] 
SimBoost GBM Predict DTI binding affinity [38] 
DEELIG CNN Predict DTI binding affinity [39] 

DeepDTAF CNN Predict DTI binding affinity [8] 
GraphDelta CNN Predict DTI binding affinity [40] 
PotentialNet CNN Predict DTI binding affinity [41] 
DeepAffinity RNN, CNN Predict DTI binding affinity [9] 
TeM-DTBA CNN Predict DTI binding affinity [42] 

Wang et al.’s method RL Predict DTI binding pose [43] 
Nguyen et al.’s method RF; CNN Predict DTI binding pose [44] 

AMMVF-DTI GAT; NTN Predict drug–target interactions [45] 
De novo drug design 

ReLeaSE RNN; RL Conduct de novo drug design [46] 
ChemVAE CNN; GRU Conduct de novo drug design [47] 
MolRNN RNN Conduct multi-objective de novo drug design [48] 

PaccMann(RL) VAE 
Generate compounds with anti-cancer drug prop-

erties [49] 

druGAN AAE Conduct de novo drug design [50] 
SCScore CNN Evaluate the molecular accessibility [51] 

UnCorrupt SMILES Transformer Conduct de novo drug design [52] 
PETrans Transfer learning Conduct de novo drug design [53] 

FSM-DDTR Transformer Conduct de novo drug design [54] 
DNMG GAN Conduct de novo drug design [55] 

MedGAN GAN Design novel molecule [56] 
Prediction of the physicochemical properties 

Panapitiya et al.’s method GNN Predict aqueous solubility [57] 
SolTranNet Transformer Predict aqueous solubility [58] 

Zang et al.’s method SVM Predict multiple physicochemical properties [59] 
Prediction of the ADME/T properties 

ADMETboost XGBoost Predict ADME/T properties [60] 
vNN k-NN Predict ADME/T properties [61] 

Interpretable-ADMET CNN; GAT Predict ADME/T properties [62] 
XGraphBoost GNN Predict ADME/T properties [63] 

DeepTox DNN Predict toxicity of compounds [64] 
Li et al.’s method DNN Predict human Cytochrome P450 inhibition [65] 

LightBBB LightGBM Predict blood–brain barrier [66] 
Deep-B3 CNN Predict blood–brain barrier [67] 
PredPS GNN Predict stability of compounds in human plasma [68] 

Khaouane et al.’s method CNN Predict plasma protein binding [69] 
Application of AI in drug repurposing 

deepDTnet Autoencoder Predict new targets of known drugs [70] 
NeoDTI GCN Predict new targets of known drugs [71] 

DTINet 
Network diffusion algo-

rithm and the dimension-
ality reduction 

Predict new targets of known drugs [72] 

MBiRW Birandom walk algorithm Predict new indications of known drugs [73] 
GDRnet GNN Predict new indications of known drugs [74] 
deepDR VAE Predict new indications of known drugs [75] 
GIPAE VAE Predict new indications of known drugs [76] 

DrugRep-HeSiaGraph 
Heterogeneous siamese 

neural network Predict new indications of known drugs [77] 
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iEdgeDTA GCNN Predict DTI binding affinity [78] 
Retrosynthesis prediction 

Segler et al.’s method MCTS, DNN Predict retrosynthetic analysis [79] 
Liu et al.’s method  RNN Predict retrosynthetic analysis [80] 

RAscore RF Predict retrosynthetic accessibility score [81] 
Reaction prediction 

Wei et al.’s method Neural network Predict reaction classes [82] 
Coley et al.’s method Neural network Predict products of chemical reactions [83] 
Gao et al.’s method Neural network Predict optimal reaction conditions [84] 

Marcou et al.’s method RF Evaluate reaction feasibility [85] 
Note: DNN, deep neural network; RNN, recurrent neural network; RF, random forest; CNN, con-
volutional neural network; XGBoost, eXtreme gradient boosting; GCN, graph convolutional net-
work; GAT, graph attention network; SVM, support vector machine; NBC, naïve Bayes classifier; 
ResNet, residual network; GBM, gradient boosting machines; RL, reinforcement learning; GRU, 
gated recurrent unit; VAE, variational autoencoder; AAE, adaptive adversarial autoencoder; GNN, 
graph neural networks; k-NN, k-nearest neighbor; LightGBM, light gradient boosting machine; 
MCTS, Monte Carlo tree search, NTN, neural tensor network; GAN, generative adversarial net-
work; GCNN, graph convolutional neural network. 

 
Figure 2. Machine learning can be applied in multiple stages of the drug discovery process, mainly 
including drug design, drug screening, drug repurposing and chemical synthesis. 
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2.1. Application of ML in Drug Design 
2.1.1. Prediction of the Target Protein Structure 

Since proteins play crucial roles in various biological processes, their dysfunctions 
can lead to abnormal cell behavior and lead to the development of diseases [86]. For se-
lective targeting of diseases, small-molecule compounds are generally designed based on 
the three-dimensional (3D) chemical environment surrounding the ligand-binding sites 
of the target protein [87]. Hence, predicting the 3D structure of the target protein is of 
great significance for structure-based drug discovery. Homology modeling has tradi-
tionally been used for this purpose, relying on known protein structures as templates 
[88]. Comparatively, ML-based approaches have shown great promise in predicting the 
3D structures of target proteins with improved accuracy and efficiency. For example, 
AlphaFold is a state-of-the-art protein structure prediction system developed by Deep-
Mind, a leading AI company. Based on deep neural network (DNN), it has achieved re-
markable success in multiple protein structure prediction competitions, demonstrating 
its ability to accurately predict the 3D structures of proteins by analyzing the adjacent 
amino acid distances and peptide bond angles [14]. Importantly, AlphaFold has signifi-
cantly advanced the field of protein structure prediction and has the potential to revolu-
tionize drug discovery [14]. Therefore, ML-based approaches hold great potential to en-
hance our understanding of protein structures. It should be noted that protein structures 
can undergo changes in different environments, and proteins may form multiple coex-
isting structures under the same conditions [89]. This complexity adds to the challenges 
of structure prediction. 

2.1.2. Prediction of PPIs 
In most cases, proteins rarely implement their functions alone, but rather cooperate 

with other proteins to form intricate relationships known as the protein–protein interac-
tion (PPI) network [86]. PPIs possess indispensable functions in diverse biological pro-
cesses. They can contribute to altering protein specificity, regulating protein activity and 
generating novel binding sites for effector molecules [90]. Hence, understanding and 
targeting PPIs offers opportunities to design innovative drugs that can modulate complex 
biological processes. 

Currently, ML-based methods for PPI prediction can be broadly grouped into 
structure-based and sequence-based categories. Structure-based approaches mainly lev-
erage the knowledge of protein structure similarity to predict PPIs [91]. For example, 
IntPred, a random forest ML tool, was developed to predict protein–protein interface 
sites based on structural features. Compared with other methods, the IntPred predictor 
showed strong performance in identifying interactions at both the surface-patch and 
residue levels on independent test sets of both obligate and transient complexes 
(Matthews’ Correlation Coefficient (MCC) = 0.370, accuracy = 0.811, specificity = 0.916, 
sensitivity = 0.411) [18]. Struct2Graph, a graph attention network (GAT)-based classifier, 
was proposed to identify PPIs directly from the 3D structure of protein chains [24]. The 
accuracy of Struct2Graph on balanced sets with equal numbers of positive and negative 
pairs was 0.9989, and the average accuracy of five-fold cross-validation on unbalanced 
sets with a ratio of positive and negative pairs of 1:10 was 0.9942 [24]. Comparatively, 
sequence-based PPI prediction approaches aim to identify physical interactions between 
two proteins by leveraging information from their protein sequences [92]. DNNs provide 
a robust solution for this purpose. They are composed of multiple layers of intercon-
nected neurons, allowing them to automatically extract complex patterns and features 
from data. For example, DeepPPI applied DNNs to effectively learn protein representa-
tions from common protein descriptors, thereby contributing to the prediction of PPIs. It 
can achieve excellent performance on the S. cerevisiae dataset with an accuracy of 0.925, 
precision of 0.9438, recall of 0.9056, specificity of 0.9449, MCC of 0.8508 and area under 
the curve (AUC) of 0.9743, respectively [27]. Extensive experiments showed that DeepPPI 
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was able to learn the useful features of protein pairs through a layer-wise abstraction, 
resulting in better predictive performance than existing methods on core S. cerevisiae, H. 
pylori and H. sapien datasets [27]. In addition, based on Uniprot database, Li et al. [20] 
developed a DELPHI, a new sequence-based deep ensemble model for PPI-binding sites’ 
prediction. Therefore, ML-based approaches have great potential in enhancing the iden-
tification of PPI sites. Compared with sequence-based approaches, structure-based ones 
are limited by the scarcity of available protein structures and the low quality of familiar 
protein structures [90,93]. 

2.1.3. Prediction of DTIs 
Most drugs exert therapeutic effects by specifically interacting with target molecules 

within the body, such as enzymes, receptors and ion channels. Hence, the accurate pre-
diction of DTIs is a pivotal step in the drug design pipeline. As the traditional experi-
mental approaches are time-consuming and costly, ML-based methods have been in-
creasingly developed and applied by researchers to predict DTIs. These methods pri-
marily focus on three key aspects: predicting the binding sites of drugs on target mole-
cules, estimating the binding affinity between drugs and targets, and determining the 
binding pose or conformation of the drug within the target molecule [94]. 

Firstly, binding sites, also referred to as binding pockets, are specific locations within 
a protein where interactions occur between the protein and a ligand (such as a drug 
molecule) [94]. By introducing a deep convolutional neural network (CNN), Cui et al. 
[32] developed a sequence-based method, DeepC-SeqSite, for predicting protein–ligand 
binding residues. Notably, this method exhibited superior performance compared with 
multiple existing sequence-based and 3D-structure-based methods, including the leading 
ligand-binding method COACH [32]. Similarly, Zhou et al. [36] proposed a binding site 
prediction method called AGAT-PPIS based on augmented GAT. It demonstrated sig-
nificant improvements over the state-of-the-art method, achieving an accuracy increase 
of 8% on the benchmark test set. Moreover, binding affinity represents the strength of an 
interaction between a drug and its target. Some tools based on ML and DL algorithms 
have been applied to determine DTIs’ binding affinity, such as DEELIG [39] and 
GraphDelta [40]. In addition, the active conformation of ligands plays a crucial role in 
facilitating the effective binding between proteins and drugs [94]. By combining random 
forest and CNN strategies, Nguyen et al. [44] proposed a scoring function to select the 
most relevant poses generated by docking software tools including GOLD, GLIDE and 
Autodock Vina, thereby contributing to obtaining more accurate and effective ligand–
target binding configurations. Therefore, ML algorithms have been extensively employed 
to predict DTIs and hold the potential to facilitate the design of new drugs. 

2.1.4. De Novo Drug Design 
De novo drug design refers to the process of creating new drug molecules from 

scratch using computational methods, without relying on existing bioactive compounds 
or known drug structures. It involves designing molecules that have specific properties 
and functions to target a particular disease or condition [95,96]. Compounds developed 
with traditional de novo drug design methods (e.g., the fragment-based approach) usually 
have poor drug metabolism and pharmacokinetics properties and are hard to synthesize 
due to the complexity and impracticality of compound structures [97,98]. Therefore, there 
is high demand for new methods to explore chemical entities that meet the requirements 
of biological activity, drug metabolism, pharmacokinetics and synthesis practicality. 

Recently, ML-based approaches, especially auto-encoder variants (e.g., the varia-
tional auto-encoder (VAE) and adversarial auto-encoder (AAE)) have gained attention in 
the field of de novo drug design. PaccMannRL is an example of these approaches that 
combines a hybrid VAE with reinforcement learning for the de novo design of anti-cancer 
molecules from transcriptomic data [49]. Similarly, another approach, known as dru-
GAN, utilizes a deep generative AAE model to generate novel molecules that possess 
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specific anti-cancer properties [50]. In addition, a Wasserstein GAN and GCN-based 
model, known as MedGAN, has been successfully developed to generate novel quino-
line-scaffold molecules from complicated molecular graphs and evaluate drug-related 
properties [56]. It has been demonstrated that the MedGAN was able to produce 25% 
effective molecules, 62% fully connected, among which 92% are quinoline, 93% are novel, 
and 95% are unique [56]. To address the difficulty in synthesizing generated molecules, 
Coley et al. [51] defined a synthetic complexity score, namely SCScore, that utilizes 
precedent reaction knowledge to train a neural network model for evaluating the level of 
synthetic complexity. Therefore, ML-empowering approaches play crucial roles in de 
novo drug design, revolutionizing the process of discovering and developing new drugs. 

2.2. Application of ML in Drug Screening 
2.2.1. Prediction of the Physicochemical Properties 

The physicochemical properties of drugs, mainly including solubility, ionization 
degree, partition coefficient, permeability coefficient and stability, play a significant role 
in determining their behavior (e.g., bioavailability, absorption, transportation and per-
meability) in biological systems as well as the environment, and in evaluating their po-
tential risks to human health [6,59]. Hence, these properties are assessed during drug 
screening to select promising candidates for further development and optimization. At 
present, multiple ML-based tools have been proposed to predict the physicochemical 
properties of molecules. For example, Francoeur et al. [58] developed a molecule atten-
tion Transformer called SolTranNet for predicting aqueous solubility from the SMILES 
representation of drug molecules. It has been demonstrated to function as a classifier for 
filtering insoluble compounds, achieving a sensitivity of 0.948 on Challenge to Predict 
Aqueous Solubility (SC2) datasets, which is competitive with other methods [58]. More-
over, by using molecular fingerprints and four ML algorithms, Zang et al. [59] developed 
a quantitative structure–property relationship workflow to predict six physicochemical 
properties of environmental chemicals, such as water solubility, octanol–water partition 
coefficient, melting point, boiling point, bioconcentration factor, and vapor pressure [59]. 
Therefore, these ML-based predictors are valuable tools in drug discovery, as they can 
help in screening potential drug candidates based on their physicochemical properties. 

2.2.2. Prediction of the ADME/T Properties 
Once hit or lead compounds are identified during the drug discovery process, a se-

ries of tests and evaluations are conducted to assess their absorption, distribution, me-
tabolism, and excretion and toxicity (ADME/T) properties [99]. These pharmacokinetic 
properties are essential for understanding how the compounds will behave in the human 
body and whether they have the potential to be safe and effective as drugs. Imbalanced 
ADME/T properties frequently cause the failure of drug candidates in late stages of drug 
development and may even lead to the withdrawal of approved drugs [100]. Hence, 
ADME/T properties are often employed as molecular filters to screen large databases of 
compounds in the early stage of drug discovery, thereby helping to increase efficiency 
and improve the success rate of drug screening [93,100]. 

To detect the ADME/T properties of drugs, various evaluation criteria such as 
hepatotoxicity, passing through the blood–brain barrier (BBB), plasma protein binding 
(PPB) and cytochrome P450 2D6 (CYP2D6) inhibition are commonly used [101,102]. Ac-
cordingly, there has been growing interest in developing ML-based tools for the predic-
tion of these criteria. For example, Tian et al. [60] developed a web server called AD-
METboost that utilizes the powerful extreme gradient boosting (XGBoost) model to learn 
about molecule features from multiple fingerprints and descriptors, allowing for the ac-
curate prediction of ADME/T properties, such as Caco2, BBB, CYP2C9 inhibition, 
CL-Hepa and hERG. It has been demonstrated that this model can achieve remarkable 
results in the Therapeutics Data Commons ADMET benchmark, ranking first in 18 out of 
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22 tasks and within the top three in 21 tasks [60]. Similarly, by utilizing more than 13 000 
compounds obtained from the PubChem BioAssay Database, Li et al. [65] proposed a 
multitask autoencoder DNN model to predict the inhibitors of five major cytochrome 
P450 (CYP450) isoforms (1A2, 2C9, 2C19, 2D6 and 3A4). Especially, the multi-task DNN 
model achieved average prediction accuracies of 86.4% in 10-fold cross-validation and 
88.7% on external test datasets, outperforming single-task models, earlier described clas-
sifiers and conventional ML methods [65]. Furthermore, the Tox21 Challenge is a collab-
orative effort aimed at developing predictive models for toxicity assessment using 
high-throughput screening data. In this context, Mayr et al. [64] developed a DL pipeline, 
DeepTox, for toxicity prediction. It outperformed all other computational methods (e.g., 
naïve Bayes, random forest and support vector machine) in 10 out of 15 cases in the Tox21 
Challenge [64]. Therefore, ML algorithms have made significant progress in predicting 
the ADME/T properties of drugs, contributing to guiding drug safety assessment and 
preclinical research. 

2.3. Application of ML in Drug Repurposing 
Drug repurposing, also known as drug repositioning, is a strategy to identify new 

indications from approved or investigational (including failed in clinical trials) drugs that 
have not been approved [103]. As this approach takes advantage of the extensive safety 
testing conducted during clinical trials for other purposes, repurposing known drugs not 
only speeds up the drug development process but also presents cost-saving advantages 
compared to developing entirely new drugs from scratch [103]. Currently, researchers 
are increasingly developing and applying ML-based methods to conduct drug repur-
posing, which can be broadly divided into target-centered and disease-centered ap-
proaches [104]. 

In target-centered drug repurposing, network-based methods have been widely 
applied to search new targets for known drugs. For example, by employing autoencoder 
and Positive-Unlabeled matrix completion algorithms, Zeng et al. [70] developed a cal-
culation method called deepDTnet to identify new targets for known drugs from a het-
erogeneous drug–gene–disease network. Experiments have shown that the deepDTnet 
achieved a high accuracy in predicting new targets of existing drugs (AUC = 0.963), 
which is superior to traditional ML methods [70]. Similarly, by combining the network 
diffusion algorithm and the dimensionality reduction approach, Luo et al. [72] developed 
DTINet, a novel network-integration procedure for DTI prediction and drug reposition-
ing. It can outperform other existing methods, with AUC and area under precision-recall 
(AUPR) 5.7% and 5.9% higher than the second best method, respectively, providing an 
effective tool in the field of drug discovery and target identification [72]. 

In addition, disease-centered approaches are mainly aimed at identifying drug–
disease relationships and can be widely divided into similarity-based and network-based 
ones [104]. Similarity-based methods have achieved significant progress by combining 
drug or disease characteristics with the known drug–disease associations [104]. For ex-
ample, based on the assumption that similar drugs are commonly associated with similar 
diseases, Luo et al. [73] proposed a novel computational approach called MBiRW, which 
combines similarity measurements and a Bi-Random walk algorithm to recognize poten-
tial novel indications for a specific drug. MBiRW can achieve a high accuracy in predict-
ing drug–disease associations (AUC = 0.917), which is superior to other methods [73]. In 
addition, network-based methods integrate information from different biological net-
works to improve the predictive accuracy of drug–disease relationships. For example, 
Doshi et al. [74] developed a graph neural network model called GDRnet for drug re-
purposing, which can efficiently screen existing drugs in the database and predict their 
unknown therapeutic effects by evaluating the scores of drug–disease pairs. Therefore, 
ML technology holds significant promise in the field of drug repurposing, providing 
strong support for accelerating drug discovery. 
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2.4. Application of ML in Chemical Synthesis 
Organic synthesis is a key part of the small-molecule drug-discovery process [97]. 

New molecules are synthesized along the path of compound optimization to achieve 
improved properties. To promote molecule synthesis, researchers have developed mul-
tiple ML-based computational tools applicable to the retrosynthesis prediction and for-
ward reaction prediction. 

2.4.1. Retrosynthesis Prediction 
Retrosynthesis planning aims to identify efficient synthetic routes for a desired 

molecule by recursively converting it into easier precursors. Therefore, it can effectively 
solve the synthesis of complex molecules to facilitate the development of organic syn-
thesis science [105]. At present, a series of ML-based approaches have been used for ret-
rosynthesis planning, mainly including template-based and template-free approaches. 

The template-based approach involves systematically comparing the target mole-
cule with a set of templates, each representing alternative substructure patterns that oc-
cur during a chemical reaction [105]. The first work involving DNNs for this issue was 
presented by Segler et al. [79], published in Nature. They found that Monte Carlo tree 
search (MCTS) combined with DNNs and symbolic rules can be utilized to perform 
chemical synthesis effectively. The routes generated by the model were comparable to 
those reported in the literature in a double-blind AB test, thereby confirming the accuracy 
of the model [79]. However, it is worth noting that template-based approaches cannot be 
extended beyond templates, limiting their predictive ability [106].  

As for the template-free method, it aims to uncover hidden relationships within the 
data concerning reaction mechanisms rather than relying on direct matching [105]. For 
example, by using neural sequence-to-sequence models, Liu et al. [80] proposed the 
template-free method called seq2seq, to perform the retrosynthetic reaction-prediction 
tasks. This model was based on an encoder–decoder framework consisting of two recur-
rent neural networks (RNNs) and was trained on a dataset of 50,000 experimental reac-
tions extracted from the United States’ patent literature, demonstrating comparable per-
formances to the rule-based expert system model [80]. Therefore, ML algorithms have 
been extensively employed to conduct retrosynthetic analysis and hold the potential to 
facilitate chemical synthesis. 

2.4.2. Forward Reaction Prediction 
Contrary to retrosynthesis analysis, forward reaction prediction aims to identify 

potential molecules that can be synthesized from given reactants and reagents [105]. 
Given the reactant molecules as input, the ML model analyzes their structural and 
chemical properties to generate predictions about the resulting products and reaction 
conditions. For example, Wei et al. [82] introduced a novel reaction fingerprinting ap-
proach that utilizes neural networks to predict reaction types. The prediction results of 
this method on 16 basic reactions of alkyl halides and alkenes indicates that neural net-
works can contribute to identify key features from the structure of reactant molecules to 
classify new reaction types [82]. Similarly, Coley et al. [83] proposed a neural network 
model to predict the main products of chemical reactions by training the data extracted 
from a collection of 150,000 compounds’ reaction templates in the US patent database. In 
addition, in practical chemical synthesis reactions, reaction conditions (e.g., solvent and 
temperature) are critical to maximize the yield of desired products. Based on this, Gao et 
al. [84] proposed a neural network model to predict the optimal reaction conditions for 
various types of reactions. This model was trained using a vast dataset of nearly 10 mil-
lion entries extracted from the Reaxys database and can effectively predict the ideal cat-
alyst, solvent, reagent, and temperature for a given reaction, facilitating the optimization 
of reaction conditions [84]. Therefore, the utilization of ML-based models can assist in 
predicting reaction types, accelerating the discovery of new chemical molecules, and 
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identifying optimal reaction conditions, thereby holding great potential in improving the 
efficiency of chemical synthesis processes. 

3. Opportunities for Transformer-Based ML Models in Empowering Drug Discovery 
The Transformer model, firstly proposed in the paper ‘Attention is All You Need’ by 

Vaswani et al., is a highly advanced DL architecture utilizing self-attention mechanisms. 
As it allows for parallelization and captures long-range dependencies more efficiently 
than traditional RNN models, the Transformer model has proven to be highly effective in 
a wide range of tasks and has set new benchmarks in the corresponding fields [10,11]. 
Given the advantages of the Transformer, it has emerged as a promising future direction 
of ML in the field of drug discovery (Figure 3). 

 
Figure 3. Opportunities for Transformer-based models in empowering drug discovery. 

3.1. Opportunity 1: Transformer Models Empowering PPIs Identification 
Existing ML-based approaches mainly use CNNs to extract low-dimensional fea-

tures from protein sequences based on the amino acid composition, while disregarding 
the long-range relationships within these sequences [107]. Fortunately, transformers can 
capture the long-distance dependencies in the protein sequences, making them suitable 
to predict whether and how given proteins interact with each other [108]. For example, 
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by utilizing the advantage of the Transformer model in evolutionary scale model-
ing-multiple sequence alignment, Lin et al. [109] developed DeepHomo2.0, a DL-based 
model that predicts PPIs of homodimeric complexes by combining Transformer features, 
monomer structure information, and direct-coupling analysis. The results showed that 
DeepHomo2.0 can achieve a high accuracy of over 70% and 60% in terms of experimental 
monomer structure and predicted monomer structure for the top 10 contacts predicted 
on the Protein Data Bank (PDB)test set, respectively, which is superior to the DCA-based, 
protein language model-based and other ML-based methods [109]. Similarly, Kang et al. 
[110] proposed AFTGAN, a neural network that combines Transformer and GAT 
frameworks for effective protein information extraction and multi-type PPI prediction. 
Experimental comparisons validated the superior performance of AFTGAN in accurately 
predicting the PPIs of unknown proteins. Therefore, given the advantage of the Trans-
former in extracting protein sequences, it has demonstrated remarkable potential in ad-
vancing the prediction of PPIs. 

3.2. Opportunity 2: Transformer Models Empowering DTIs’ Identification 
Despite the remarkable performance improvement of DL models in DTI prediction, 

the primary challenge lies in the limited representation of drugs in these methods, as they 
only consider SMILES sequences, SMARTS strings or molecular graphs, failing to capture 
comprehensive drug representations [107]. It is worth noting that Transformers can be 
employed either independently or in combination with other AI algorithms to address 
these problems. For example, DeepMGT-DTI, a DL model that incorporates a Trans-
former network and multilayer graph information, can effectively capture the structural 
features of drugs, leading to improved DTI prediction [111]. Experiments have demon-
strated that the DeepMGT-DTI can achieve an AUC of 90.24%, an AUPR of 77.11%, an F1 
score of 79.31% and an accuracy of 85.15% on the DrugBank dataset. These performance 
metrics surpassed those previous target sequence structure models, such as Deep DTA 
and TransformerCPI [111]. Moreover, GSATDTA, a novel triple-channel model based on 
graph–sequence attention and Transformer, has been developed to predict the 
drug-target binding affinity with outstanding performance [107]. Therefore, Transformer 
models have shown promising results for DTIs’ prediction. 

3.3. Opportunity 3: Transformer Models Empowering De Novo Drug Design 
Most existing deep generative models either focus on virtual screening on the 

available database of compounds by DTI binding-affinity prediction, or unconditionally 
generate molecules with specific physicochemical and pharmacological properties, which 
ignore the function of protein targets during the generation process [112]. In contrast, 
Transformer models have the capability to consider the protein target and achieve tar-
get-specific molecular generation. For example, AlphaDrug, a method for protein tar-
get-specific de novo drug design, has been recently proposed. It utilizes a modified 
Transformer to optimize the learning of protein information and integrates an efficient 
MCTS guided by the Transformer’s predictions as well as docking values [112]. Notably, 
in terms of average docking score, uniqueness, the octanol–water partition coefficient 
logP, the quantitative estimate of drug-likeness (QED), synthetic accessibility (SA) and 
Natural products-likeness (NP-likeness) criteria, AlphaDrug is superior to other methods 
(such as LiGANN, SBMolGen and SBDD-3D) [112]. In addition, the GPT model is a 
powerful language generation model that can be fine-tuned for specific tasks after 
pre-training on large amounts of text data [113]. It has been successfully applied to ac-
celerate molecular generation for specific targets in the field of drug discovery. For ex-
ample, cMolGPT, a GPT-inspired model, is a useful tool for target-specific de novo mo-
lecular generation. The chemical space of the compounds generated by cMolGPT closely 
matches with that of real target-specific ones [114].  
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3.4. Opportunity 4: Transformer Models Empowering Molecular Property Prediction 
Despite the widespread application of ML-based models, the shortage of labeled 

data continues to be a significant challenge in efficient molecular property predictions 
[10,115]. To address this, researchers are exploring the use of unlabeled data and lever-
aging transformer-based self-supervised learning (e.g., BERT) to improve predictions on 
small-scale labeled data [116]. Currently, several BERT-based pre-training methods for 
molecular property prediction have been proposed [10,117]. For example, a novel 
pre-training method, known as K-BERT, was developed to extract chemical information 
from SMILES similar to chemists for molecular property prediction in drug discovery 
[118]. The K-BERT model exhibited superior performance in 8 out of 15 tasks, thus re-
flecting the efficacy and benefits of the proposed pre-training approach in drug discov-
ery. Specifically, K-BERT had an average AUC score of 0.806, outperforming other com-
peting methods (e.g., XGBoost-MACCS, XGBoost-ECFP4, HRGCN+ and Attentive FP) 
[118]. Moreover, Wang et al. [119] proposed a two-stage (pre-training and fine-tuning) 
model called SMILES-BERT that could use both unlabeled data and labeled data to im-
prove molecular property prediction. Compared with a range of state-of-the-art ap-
proaches (e.g., CircularFP, NeuralFP, Seq2seqFP, Seq3seqFP), it exhibited superior per-
formance on three different datasets (the LogP dataset, PM2 dataset and PCBA-686978 
dataset) with accuracies of 0.9154, 0.7589, and 0.8784, respectively [119]. Therefore, these 
Transformer-based predictors are essential tools for molecular property prediction, con-
tributing to the efficient screening of potential drug candidates. 

3.5. Opportunity 5: Transformer Models Empowering Chemical Synthesis 
Previous sequence-based approaches commonly employed RNNs for both the en-

coder and decoder, with a single-head attention layer connecting them. These models 
treated reactants and reagents separately in the input by utilizing atom mapping, which 
limits the interpretability of the model [120]. Fortunately, Transformer-powered models 
have shown potential to accelerate chemical synthesis. One notable example is the effec-
tiveness of the multi-head attention Molecular Transformer model in predicting chemical 
reactions and reaction conditions [120,121]. In addition, inspired by the success of the 
Molecular Transformer for forward reaction prediction, Schwaller et al. [122] proposed 
an enhanced Molecular Transformer architecture coupled with a hyper-graph explora-
tion algorithm for automated retrosynthetic pathway prediction. This approach sur-
passes previous ML-based methods by not only predicting reactants but also identifying 
reagents for each retrosynthetic step, thereby significantly raising the complexity of the 
prediction task. 

4. Challenges of ML-Based Models in Drug Discovery 
Given the remarkable advantages in identifying and extracting features from 

high-dimensional and complex big data, ML-based models have made significant pro-
gress in multiple stages of drug discovery [99]. However, there remain several challenges 
that have yet to be effectively resolved (Figure 4). 
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Figure 4. Challenges of machine learning-based models in drug discovery. 

First, the effectiveness of ML algorithms heavily relies on the quantity of training 
data, and typically, a larger dataset tends to yield a more accurate model [96]. When the 
amount of data is inadequate, it can significantly impact the performance and reliability 
of ML models, potentially resulting in the risk of overfitting [123]. Indeed, the limited 
availability of data, especially labeled data, poses a significant challenge to the progress 
of ML-driven drug discovery. One potential approach to address this issue is employing 
transfer learning algorithms, where knowledge acquired from one task can be effectively 
applied to another task [124–126]. Additionally, in light of the challenges associated with 
acquiring extensive labeled datasets in drug discovery, there is a growing trend for the 
effectiveness of concentrating efforts on smaller, carefully curated datasets. This shift 
highlights the significance of extracting meaningful insights from limited yet relevant 
data, thereby enhancing the precision and applicability of ML models in the complex 
landscape of drug discovery. 

Second, the quality of the data is also crucial in determining the prediction perfor-
mance of ML models. The experimental drug-related data collected in public databases 
frequently originates from varying biological assays, conditions, or methods, leading to 
disparate results when different measurement techniques are employed for a specific 
compound, thereby hindering direct comparisons. Hence, the strategies for filtering raw 
inputs with noise, outliers, or irrelevant information and automating data entry may be 
helpful to achieve reliable and accurate ML models for drug discovery. For example, 
during the data processing phase, noise reduction and outlier detection algorithms, such 
as Z-scores, box plots or iterative deletion, can be applied to identify and purge outliers 
from the data, enhancing its quality for ML model prediction. In addition, researchers 
can use cross-validation experiments to assess the generalization ability of the models, 
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ensuring that they perform well not only on specific datasets but also on new, unseen 
data. 

Third, due to the abundance of ML model architectures and the constant emergence 
of new ones, it becomes challenging to choose the most suitable models that meet specific 
research task requirements in the field of drug discovery [99]. Generally, the model se-
lection involves evaluating various options and considering factors such as the complex-
ity of the problem, available data, and computational resources. Furthermore, once the 
model architecture is selected, the next step is to fine-tune its parameters to optimize the 
model’s performance. Although hyperparameter optimization tools have been proposed 
to automate the process of tuning substantial parameters in ML models, the entire system 
process is also relatively complicated, which may bring certain difficulties to the appli-
cation of researchers [99,127]. In addition, the setting of hyper-parameters usually re-
quires human intervention, which may lead to their incomplete or inaccurate selection. 
Accordingly, cross-validation is commonly used in variable selection and model param-
eter tuning to evaluate the performances of various ML methods [128]. Moreover, estab-
lishing clear performance metrics at the outset, such as accuracy, precision, recall, F1 
score, AUC and AUPR can help in objectively evaluating the suitability of different 
models depending on the nature of the problem. 

Fourth, unlike traditional models where the reasoning and decision-making process 
can be easily understood, ML models, particularly DL models, operate using complex 
mathematical algorithms and layers of interconnected neurons, making it challenging to 
interpret their inner workings. The lack of transparency and interpretability pose diffi-
culties for ML models in explaining the observed phenomena and understanding the 
underlying biological mechanisms. Hence, the ML models are often referred to as “black 
boxes” [99]. For this issue, employing visualization tools such as Activation Maximiza-
tion [129], Local Interpretable Model-agnostic Explanations (LIME) [130] and SHapley 
Additive exPlanations (SHAP) [131] can help in understanding the model’s deci-
sion-making process by providing insights into which features are most influential. In the 
future, a continuous requirement is to develop robust models with high interpretability. 

Therefore, a tremendous amount of work has been done to incorporate ML tools to 
expedite the drug discovery cycle, but further advancement and improvement of these 
tools is needed before the full potential of ML in drug discovery can be realized. 

5. Concluding Remarks 
The research and development of new drugs can contribute to meet the human 

demand for treating diseases and provide more effective, safer, and more convenient 
treatment options. Compared with the traditional strategies of drug discovery, ML-based 
approaches have the potential to reduce time and costs, improve safety, and bridge the 
gap between drug discovery and drug effectiveness, making them increasingly favored 
by the pharmaceutical industry and academia. In particular, the introduction of chatGPT 
has sparked researchers’ growing interest and exploration in leveraging the Transformer 
model’s NLP capabilities, particularly its self-attention mechanisms, to accelerate multi-
ple stages of the drug discovery process, thereby opening up new opportunities for ad-
vancements. 

However, the current challenges in ML-based models can result in generating false 
positives or false negatives, potentially leading to incorrect predictions and resource 
waste. Further in vitro and in vivo experiments as well as clinical trials are needed to 
fully demonstrate the practicability of ML-based drug discovery and obtain more reliable 
and accurate results. Therefore, future research should focus on improving data quality, 
enhancing the interpretability of ML algorithms, and integrating them with human pro-
fessional knowledge to increase the efficacy of drug discovery. 
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