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Abstract: This research introduces a novel liquid crystal molecular design approach based on the
para-sexiphenyl (6P) structure. Six new liquid crystalline materials were synthesized, incorporating
an alkyl terminal and lateral substitutions of the sexiphenyl core to achieve temperature-stable and
broad nematic phases. The synthetic pathway involved cross-coupling, resulting in derivatives with
strong nematogenic characteristics. Optical investigations demonstrated that the tested material had
high birefringence values, making it promising for optical and electronic applications. These results
open up new avenues of research and offer potential practical applications in electronics, photonics,
optoelectronics and beyond.
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1. Introduction

Para-Sexiphenyl (6P) is a type of organic material that has been extensively studied in
the field of materials science due to its unique properties and potential applications in vari-
ous electronic and optoelectronic devices [1–3]. p-Sexiphenyl molecules are composed of
six phenyl rings that are linked together by a single bond, resulting in a rigid structure. This
arrangement gives rise to strong intermolecular interactions and an extended pi-electron
system, which leads to high charge carrier mobility and luminescence efficiency [4]. In
recent years, sexiphenyl organic materials have been explored as promising materials for
lasers [5,6] and organic thin film transistors (OTFTs) [7–10]. The high electron mobility
of sexiphenyl enables efficient charge transport in OFETs [1], while its high luminescence
efficiency makes it an attractive choice for organic diodes [11–16]. Additionally, the unique
electronic properties of sexiphenyl have been harnessed to create high-performance OPVs
with good stability and durability [6,17,18]. In addition to their technological applications,
sexiphenyl organic materials are of interest to researchers studying the physics and chem-
istry of complex materials. Through functionalization or blending with other organic or
inorganic materials, they have the potential to be used as hybrid materials in the devel-
opment of high-performance electronic devices [19–23], as well as in the development of
sensors with high sensitivity and selectivity [24,25]. One of the most interesting properties
of sexiphenyl materials is their ability to self-assemble, which further creates liquid crystal
behavior. Sexiphenyl materials (sometimes referred to as hexaphenyls) have gathered much
attention in the field of materials science for their ability to form temperature-stable, ne-
matic liquid crystalline phases with highly anisotropic properties [26–33]. These materials
are characterized by their rigid, elongated core consisting of multiple aromatic rings, and
they are mainly known for their high thermal and photochemical stability. Sexiphenyl
organic materials individually form temperature-stable liquid crystalline phases; how-
ever, the use of these materials as dopants in nematic liquid crystal mixtures has also
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been explored, leading to enhanced nematic stability and electro-optical properties [29,34].
Nevertheless, such materials have interesting liquid crystalline properties, but at elevated
temperatures, which are typical of oligophenyls that are strongly elongated by aromatic
rings. Therefore, research is currently focused on the element of designing and obtaining
new organic materials with enhanced properties, such as improved solubility, thermal
stability and even photoluminescence. Overall, the combination of the sexiphenyl structure
with liquid crystal behavior represents an exciting area of research with significant potential
for practical applications. Continued research into these materials is likely to uncover new
and innovative structures and uses for them in a range of fields, from electronics and
photonics, even to biomedicine and beyond.

In this work, we present our approach to a new liquid crystal molecular design, which
is based on the sexiphenyl (6P) structure—see the general structure in Figure 1. New
materials show a tendency to form temperature-stable and broad nematic phases. In
contrast to already developed and investigated 6P materials, alkyl terminals and the lateral
substitution of sexiphenyl cores bring the temperatures of phase transitions to much lower
levels, which are within reach of many modern experiments. Our findings demonstrate that
the incorporation of side groups in a planar mesogenic structure broadens the molecule,
thus inducing a separation of the molecular axes. This phenomenon results in diminished
intermolecular interaction and ultimately leads to a decrease in the transition temperature,
far below 200 ◦C [29–31]. Here, we use the expression temperature-stable nematic, which
refers to the ability of a liquid crystal system to maintain constant mesomorphic (here
nematic) characteristics over a very wide temperature range.
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Figure 1. The general structure of the investigated materials.

2. Results
2.1. Synthesis

The methodology for the synthesis of sexiphenyl liquid crystalline materials was based
on the Suzuki–Miyaura coupling protocol. The appropriate selection of reactants successively
forming the polyaromatic core and their sequence of use was planned for all organic materi-
als. Materials were terminally ended with standard alkyl chains and additionally laterally
substituted with short alkyl chains. Such a move aimed at lowering the temperatures of
phase transitions and allowed us to obtain the nematic phase in a temperature range much
lower than that for previously studied materials of this type [29–31,35]. The synthetic path is
presented in Figure 2.
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Figure 2. Synthetic pathway to sexiphenyl materials. Reaction condition: (A) Pd(OAc)2, K2CO3,
acetone, H2O; (B) Pd(OAc)2, SPhos, K3PO4·3H2O, THF; (C) i. Mg, THF, ii. C3H7Br, Li2CuCl4,
THF; (D) KIO3, I2, H2SO4, CH3COOH; (E) tert-BuLi, then B(OPr)3, then HCl(aq); (F) PdCl2(PPh3)2,
K3PO4·3H2O, toluene; (G) Pd2(dba)3, B2pin2, Cs2CO3, toluene; (H) Pd(OAc)2, Cs2CO3, DME, H2O.

The synthetic procedure of p-sexiphenyls was divided into several subsections. In
general, the idea of synthesizing such structures was based on the best available tool for
combining benzene rings, i.e., the Suzuki–Miyaura cross-coupling reaction. The gradual
growth of successive aromatic units forming the liquid crystalline core required the gen-
eration of suitable multi-ring halogen derivatives and suitable multi-ring boronic acid
derivatives or boronic ester derivatives. Depending on the stage of synthesis (i.e., the
degree of expansion of the aromatic core), the conditions for conducting the coupling
reaction themselves were also modified. Everything depended primarily on the degree
of solubility of the reactants used and the products formed in the reaction. The greatest
degree of difficulty in the presented methodology turned out to be the proper selection of
solvents for the individual steps of the multi-step procedure, to ensure high conversion,
which was directly related to the solubility of the organic materials mentioned. It turned
out that ether-type solvents (1,2-dimethoxyethane, tetrahydrofuran) were the best choice,
generating the highest solubility, and thus the degree of cross-coupling, which significantly
raised the process temperature while maintaining the very good solubility of both reactants
and products. The synthesis strategy presented in Figure 2 involved the production of
terphenylene intermediates, which formed a six-ring core in the coupling reaction in the
final step. The problem of the formation of six-ring by-products of homocoupling processes
was eliminated by using cyclic boronic esters (dioxaborolane derivatives). The final prod-
ucts of the synthesis were purified to a very high level (a minimum of 99.5% LC) using a
multiple sequence of recrystallization processes from toluene and column chromatography
(dichloromethane + silica gel). General synthetic procedures are gathered in ESI.
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2.2. Mesomorphic Properties

The individual structures differed in both the position of placement of lateral sub-
stituents in the core and their length. In addition, the series included sexiphenyls that
differed in the length of the terminal chains on either side of the core. Each compound
obtained had its corresponding acronym (Sexi_PhX, where X = 1–6). Table 1 shows the
exact temperatures and enthalpies of the phase transitions.

Table 1. Phase transition temperatures and enthalpies of investigated p-sexiphenyls, temperatures,
and enthalpies. Red color means the first heating process; blue color means the first cooling process;
temperatures are bolded; enthalpy values are italics.

Compound
Phase Transition Temperatures [◦C]/(Enthalpy Change ∆H [kJ mol−1])

Heating Process Cooling Process

Sexi_Ph1 Cr1 77.9 (−7.0) Cr2 293.1 (−55.3) N 345.8 (−3.8) Iso Iso 347.2 (2.2) N 273.5 (0.9) SmA 243.7 (22.3)
Cr2 74.5 (5.6) Cr1

Sexi_Ph2 Cr 155.0 (−30.6) N 302.9 (−2.5) Iso Iso 303.0 (2.3) N 111.6 (30.3) Cr2 −39.2 (0.6) Cr1

Sexi_Ph3 Cr1 49.8 (−4.3) Cr2 157.7 (−36.7) N 244.2 (−2.4) Iso Iso 244.4 (2.3) N 117.4 (23.2) Cr2 48.7 (7.3) Cr1

Sexi_Ph4 Cr 147.1 (−17.3) N 356.0 (−2.6) Iso Iso 357.0 (2.5) N 104.3 (16.8) Cr

Sexi_Ph5 Cr 148.9 (−22.8) N 330.0 (−2.2) Iso Iso 329.8 (2.1) N 103.5 (13.1) Cr

Sexi_Ph6 Cr 149.0 (−26.0) N 271.8 (−2.5) Iso Iso 272.2 (2.4) N 103.0 (28.0) Cr

Each of the sexiphenyl compounds obtained had a nematic phase. For the compounds
Sexi_Ph2–Sexi_Ph6, the study excluded the presence of smectic phases. The exception was the
symmetrical derivative Sexi_Ph1, for which a monotropic smectic SmA phase was observed,
verified on POM with characteristic focal-conic textures—see Figure 3. The smectic phase
was not studied in detail. Some of investigated materials also showed crystalline–crystalline
transitions, which were not investigated in detail here. For compounds with isotropization
temperatures above 300 ◦C, no thermal decomposition of the samples tested was observed.
Among the characterized compounds, the widest temperature range of the nematic phase,
together with the lowest melting point, was exhibited by the compound Sexi_Ph4. However,
the determination of structure–property-type correlations between the individual compounds
was problematic due to their high structural diversity. Among the compounds labeled with
the acronyms Sexi_Ph2–Sexi_Ph6, the temperatures of crystal–nematic transition were in
a similar range of around 150 ◦C. On the other hand, depending on the substitution, they
differed significantly in the values of isotropization temperatures. Thus, compounds that had
different lengths of both terminal and lateral chains were characterized by the highest TN-Iso
temperatures (significantly above 300 ◦C), and the temperature range of the nematic phase
exceeded 150 Kelvins—see structure Sexi_Ph4 and Sexi_Ph5. The exception here was the
material Sexi_Ph1, which very strongly deviated in characteristics from all others. Materials
with pentyl terminal chains, in particular Sexi_Ph3 and Sexi_Ph6, already had lower TN-Iso,
while still maintaining a large nematic phase range (90–120 K).

2.3. Optical Properties

The basic optical properties were also investigated for the selected compounds Sexi_Ph4,
Sexi_Ph5, and Sexi_Ph6. As the liquid crystalline compounds under study are not nematic
at room temperature, their properties had to be extrapolated from the low birefringent
nematic base mixture. For this purpose, the test compound was added to the nematic
base mixture in amounts of 2%, 6%, 14%, and 17% by weight. The values of refractive
indices and birefringence for the pure liquid crystalline compound were determined by
extrapolation from Equation (1), as follows:

(∆n)gh = x(∆n)g + (1 − x)(∆n)h, (1)
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where ∆n is the birefringence value; gh—the test mixture; g—the base mixture; h—the test
compound; and x is the concentration of the test compound added to the base mixture
given in molar fractions.
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The nematic matrix is a ternary mixture of compounds from the 4n-alkyloxyphenyl
trans-4n-cyclohexylcarboxylate family—see Table 2.

Table 2. Composition of nematic matrix mixture.

Compound n wt % Properties
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1 32 TN-Iso = 63.6 ◦C
TCr-N < −20 ◦C
η = 21.2 mPa·s

∆n = 0.07; 20 ◦C (636 nm)
∆ε = −1.3; 20 ◦C (1 kHz)

2 31

5 37

It has the following properties: isotropization temperature TN-Iso = 63.6 ◦C; melting
point TCr-N < −20 ◦C; viscosity η = 21.2 mPa·s; and birefringence ∆n = 0.07 measured
at T = 22 ◦C for 636 nm. Table 3 presents the optical properties of three compounds
(Sexi_Ph4, Sexi_Ph5, and Sexi_Ph6) at three different wavelengths (443 nm, 636 nm, and
1550 nm). Unfortunately, the solubility of the remaining compounds (Sexi_Ph1, Sexi_Ph2,
and Sexi_Ph3) in the low birefringent nematic base was too low (maximum 3%), so the
determination of their optical parameters was subject to too much error. The optical
parameters include the refractive indices (no and ne) and the birefringence (∆n). For all
compounds tested, the refractive indices exhibited a decreasing trend as the wavelength
increased, with the birefringence also following this pattern. Sexi_Ph5 maintains the
correct trend, with slightly higher no values compared to Sexi_Ph4 at each wavelength.
Sexi_Ph6 also followed the general trend as well, with the lowest ne values among the
three compounds at each wavelength. Notably, despite variations in the substitution of
the sexiphenyl core, the refractive indices (no and ne) and birefringence (∆n) showed
very similar values of refractive indices and birefringence at all wavelengths, and their
change was small. This suggests that changing the length of the alkyl lateral substituent
and changing the length of the alkyl terminal substituent of the sexiphenyl core does not
significantly change the optical properties, emphasizing the robust and stable behavior. It is
the rigid aromatic core rich in π-electrons that has the greatest impact on the birefringence
value here. Theoretical studies were employed to quantify the influence of alkyl substituents
on the electron polarizability of compounds (Table S1 in ESI). The increase in isotropic
polarizability could be observed for compounds with alkyl substituents. The influence of
the alkyl chains did not affect the polarizability anisotropy which was consistent among
all of the compounds. Importantly, the birefringence values also followed this pattern,
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showing that the substitution of the sexiphenyl core did not strongly affect the magnitude
of ∆n.

Table 3. Refractive indices and birefringence values (extrapolated) for tested Sexi_Ph4, Sexi_Ph5,
and Sexi_Ph6 materials (T = 25 ◦C).

Compound
443 nm 636 nm 1550 nm

no ne ∆n no ne ∆n no ne ∆n

Sexi_Ph4 1.6236 2.2105 0.5869 1.5859 2.0842 0.4983 1.5751 1.9638 0.3887

Sexi_Ph5 1.6255 2.2072 0.5817 1.5954 2.0807 0.4853 1.5816 1.9577 0.3761

Sexi_Ph6 1.6261 2.2011 0.5750 1.5950 2.0741 0.4791 1.5814 1.9518 0.3704

Figure 4a presents the dispersion of the refractive indices ne, no, and birefringence for
the tested Sexi_Ph4 structure. With the values of the refractive indices ne and no for any
three wavelengths, using the methods of mathematical model fitting to the experimental
results, we determined the exact values of the three coefficients of the Cauchy equation Ae,o,
Be,o, and Ce,o (Table 3) from Equation (2) as follows:

ne,o = Ae,o +
Be,o

λ2 +
Ce,o

λ4 (2)
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Figure 4. (a) Fitting parameters for the extended Cauchy model at 25 ◦C using the experimental data
measured at 443, 636, and 1550 nm wavelengths for Sexi_Ph4; (b) refractive indices ne and no and
the birefringence dispersion determined for Sexi_Ph4.

Having Cauchy coefficients, we further calculated the refractive index and birefrin-
gence dispersion in a large range of the electromagnetic spectrum—see Figure 4b.

The material studied belonged to the group of liquid crystals with high birefringence.
Its extrapolated birefringence value was 0.4983 for lambda = 636 nm. The linear arrange-
ment of six benzene rings connected by single bonds and extended π-conjugation resulted
in high electron polarizability along the long molecular axis, increasing polarizability
anisotropy and birefringence. Even in the infrared range wavelengths, these compounds
still showed high values of optical anisotropy ∆n. Undoubtedly, this should be considered
a great advantage of these materials, which, combined with the high chemical stability of
such systems, creates many research and application opportunities for them.

2.4. Spectral Properties

The spectral properties of the investigated 6P compounds are displayed in Table 4.
The absorption spectra measured in DCM at room temperature are shown in Figure 5a.
All the compounds had a strong absorption band in the region of 290–300 nm, with molar
absorption coefficients ranging from approximately 73,000 for Sexi_Ph4 to around 89,000 for
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Sexi_Ph6, and a weaker band was found around 230 nm. Normalized emission spectra
are presented in Figure 5b. Compound Sexi_Ph1 was the only one with blue-shifted
emissions—for the rest, there was only minimal difference. All the compounds had high
values of quantum yield.

Table 4. Spectral properties of 6P compounds.

Compound λmax
abs [nm] εmax[L mol−1 cm−1] λmax

em [nm] φfl δν [nm]

Sexi_Ph1 299 89,086 364 0.79 65

Sexi_Ph2 297 66,972 370 0.68 73

Sexi_Ph3 294 74,250 372 0.80 78

Sexi_Ph4 298 74,025 368 0.77 70

Sexi_Ph5 296 73,039 371 0.79 75

Sexi_Ph6 294 73,897 370 0.73 76
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Figure 5. (a) Absorption (left) and (b) emission (right) spectra of 6P compounds.

Computational studies were performed to correlate spectral measurements with the
structure of compounds. The optimized ground-state geometries in the gas phase of
compounds Sexi_Ph1, Sexi_Ph2, and Sexi_Ph4, together with the non-substituted p-
sexiphenyl core [36], are presented in ESI. The dihedral angles of the non-substituted
p-sexiphenyl were all around 37◦. The introduction of a substituent caused distortion of a
torsion angle adjacent to it. Compound Sexi_Ph1, bearing two substituents on two adjacent
phenyl rings, had the most distorted torsion angle with a value of 91.72◦. In the case of
other compounds with two substituted phenyl rings separated by one (Sexi_Ph4) or two
(Sexi_Ph2) phenyl rings, torsion angles on adjacent bonds were all approximately 63◦. In
all compounds, other bonds were not significantly affected by the presence of substituents,
with values of approximately 37◦. All torsion angles are displayed in detail in ESI.

Distorted torsion angles in the ground state did not affect excitation energy, but
due to the planarization of the molecule in the excited state, they affected emission en-
ergy. The small difference between the emission maximum of Sexi_Ph1 and the rest of
the compounds was caused by the slightly bigger dihedral angle in the excited state in
this compound. Lateral alkyl substituents in adjacent aromatic rings resulted in almost
45 dihedral angles compared to an average of 40 degrees in other compounds. More planar
excited states of compounds Sexi_Ph2–6 relaxed with lower energy.



Molecules 2024, 29, 946 8 of 11

3. Materials and Methods

2-Dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (SPhos), 1-bromo-3-chlorobenzene,
1-bromo-4-iodobenzene, and bis(pinacolato)diboron were purchased from Trimen Chemi-
cals (Łódż, Poland) and used as received. Magnesium for Grignard reactions (turnings) was
purchased from Acros-Organics, (Geel, Belgium) and used as received. Toluene, acetone,
hydrochloric acid, anhydrous potassium carbonate, and cesium carbonate were purchased
from Avantor Performance Materials Poland S.A (Gliwice, Poland) and used as received.
Palladium (II) chloride was purchased from Merck KGaA (Darmstadt, Germany) and
used as received. THF was distilled from sodium under a nitrogen atmosphere before use.
4-pentylphenyl boronic acid, 4′-propylbiphenyl-4yl boronic acid, and 1-ethyl-3-iodobenzene
were synthesized in our lab according to common procedures [37,38].

Synthesis progress and the purity of the synthesized compounds were determined
using a SHIMADZU GCMS-QP2010S (Shimadzu, Kyoto, Japan) series gas chromatograph
equipped with a quadrupole mass analyzer MS(EI), high-performance liquid chromatogra-
phy HPLC-PDA-MS (APCI-ESI dual source) Shimadzu LCMS 2010 EV (Shimadzu, Kyoto,
Japan) equipped with a polychromatic UV–VIS detector (Shimadzu, Kyoto, Japan) and by
thin-layer chromatography (silica gel on aluminum). Proton (1H) and carbon (13C) nuclear
magnetic resonance (NMR) spectra in CDCl3 were collected using a Bruker model Avance
III spectrometer (Bruker, Billerica, MA, USA).

The phase transition temperatures and enthalpy data were determined by polarizing
optical microscopy (POM) with an OLYMPUS BX51 (Olympus, Shinjuku, Tokyo, Japan)
equipped with a Linkam hot stage THMS-600 (Linkam Scientific Instruments Ltd., Tad-
worth, UK) and differential scanning calorimeter DSC 204 F1 Phoenix instrument (Netzsch,
Selb, Germany) with the scanning rate of 2 Kmin−1 on both the heating and cooling cycles
with the isothermal time of 5 min between cycles.

Refractive indices of the multicomponent nematic mixtures were measured by The
Metricon Model 2010/M Prism Coupler (Metricon Corporation, Pennington, NJ, USA)
equipped with 443 nm, 636 nm, and 1550 nm lasers. Samples of liquid crystals were placed
on Kapton® MT polyimide film (DuPont, Wilmington, DE, USA). Ordinary refractive
index no and extraordinary refractive index ne were measured separately using different
polarization of incident beams. Samples were measured at room temperatures (25 ◦C).

Solutions of sexiphenyls for absorption measurements were prepared using spectroscopy-
grade DCM (Thermo Fisher Scientific, Waltham, MA, USA). The absorption spectra were
acquired using a Shimadzu UV–VIS–NIR spectrometer UV-3600 (Shimadzu, Kyoto, Japan).
Photoluminescence spectra were acquired using an Edinburgh Instruments FS5 spectroflu-
orometer (Livingston, UK). Spectra were collected with solutions at a concentration of
0.7–1.2 × 10–5 M. Quantum yield measurements were performed with a calibrated inte-
grating sphere (SC-30 module for FS5 spectrofluorometer, Livingston, UK) using solutions
with an absorbance of 0.1 ± 0.05.

The computational investigation of the properties of selected compounds was per-
formed. Ground-state optimization was performed with the B3-LYP [39,40] functional and
6–31G** [41] basis set. Frequency calculations were performed on optimized structures
to verify that the stationery points corresponded to the ground-state minima. Calcula-
tions were performed in Gaussian16 (Revision C.01) [42] on the PLGrid ASK Cyfronet
Ares cluster.

4. Conclusions

In summary, our study presents a novel molecular design approach for liquid crystals
based on the structure of para-sexiphenyl (6P). By introducing alkyl terminals and the
lateral substitution of the sexiphenyl core, we obtained six new liquid crystalline materials
with temperature-broad nematic phases. The synthesis strategy allowed us to tailor the
properties of the materials by controlling mainly the positioning of the alkyl chains. The
mesomorphic investigations revealed that all compounds displayed a nematic phase,
with one member additionally showing a smectic phase. This study highlights several
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key insights into molecular design. In particular, nonsymmetric compounds consistently
exhibit better mesomorphic properties, i.e., they have wider temperature ranges of the
nematic phase and higher isotropization temperatures. At the same time, their emission
properties compared to their symmetric counterparts remain unchanged. Considering
the positions of lateral substituents in the core, it is the lateral substitution of the second
and fifth rings on the sexiphenyl core that results in the most favorable combination of
individual properties. While symmetric compounds offer simplicity in synthesis, they tend
to exhibit inferior mesomorphic properties. Interestingly, our studies have shown that for
both lateral and terminal alkyl substitutions, position is more important than length in
affecting material properties. Contrary to conventional expectations, changing the length
of the terminal alkyl chains (from three to five carbon atoms) does not yield significant
improvements in mesomorphic or optical properties. Moreover, the optical properties of
the tested material show high birefringence values, even in the infrared range wavelengths.
This characteristic, combined with the strong intermolecular interactions and extended
π-electron system, makes these materials highly promising for various optical and electronic
applications. The combination of polyaromatic and sexiphenyl materials with liquid crystal
behavior represents an exciting area of research with significant potential for practical
applications in electronics, photonics, optoelectronics, and beyond. Continued research
into these materials is likely to uncover new and innovative uses in a range of fields, from
electronics and photonics to biomedicine and beyond. We believe that our findings open
up new avenues for research and development in the fields of materials science and offer
prospects for real-world applications in various devices.
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13C NMR of (3-ethyl-4′′-propyl-1,1′:4′,1′′-terphenyl-4-yl)boronic acid (5); Figure S5: 1H NMR of
4-bromo-2′-ethyl-4′′-pentyl-1,1′:4′,1′′-terphenyl (13_Et); Figure S6: 13C NMR of 4-bromo-2′-ethyl-4′′-
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1,3,2-dioxaborolane (14_Pr); Figure S11: 1H NMR of Sexi_Ph2; Figure S12: 13C NMR of Sexi_Ph2;
Figure S13: 1H NMR of Sexi_Ph3; Figure S14: 13C NMR of Sexi_Ph3; Figure S15: 1H NMR of
Sexi_Ph4; Figure S16: 13C NMR of Sexi_Ph4; Figure S17: 1H NMR of Sexi_Ph5; Figure S18: 13C NMR
of Sexi_Ph5; Figure S19: 1H NMR of Sexi_Ph6; Figure S20: 13C NMR of Sexi_Ph6; Figure S21: MS
spectrum of 1-chloro-3-propylbenzene (7); Figure S22: MS spectrum of 3-ethyl-4′ ′-propylterphenyl
(3); Figure S23: MS spectrum of 4-iodo-3-ethyl-4′ ′-propylterphenyl (4); Figure S24: MS spectrum of 4′-
pentyl-3-ethyllbiphenyl (9_Et); Figure S25: MS spectrum of 4-iodo-4′-pentyl-3-ethylbiphenyl (10_Et);
Figure S26: MS spectrum of 4,4,5,5-tetramethyl-2-(4′′-pentyl-2′-ethyl-1,1′:4′,1′′-terphenyl-4-yl)-1,3,2-
dioxaborolane (14_Et); Figure S27: MS spectrum of 4-bromo-2′-ethyl-4′′-pentyl-1,1′:4′,1′′-terphenyl
(13_Et); Figure S28: MS spectrum of 4′-pentyl-3-propylbiphenyl (9_Pr); Figure S29: MS spectrum
of 4-iodo-4′-pentyl-3-propylbiphenyl (10_Pr); Figure S30: MS spectrum of 4,4,5,5-tetramethyl-2-(4′′-
pentyl-2′-propyl-1,1′:4′,1′′-terphenyl-4-yl)-1,3,2-dioxaborolane (14_Pr); Figure S31: MS spectrum
of 4-bromo-2′-propyl-4′′-pentyl-1,1′:4′,1′′-terphenyl (13_Pr); Figure S32: MS spectrum of Sexi_Ph1;
Figure S33: MS spectrum of Sexi_Ph2; Figure S34: MS spectrum of Sexi_Ph3; Figure S35: MS spectrum
of Sexi_Ph4; Figure S36: MS spectrum of Sexi_Ph5; Figure S37: MS spectrum of Sexi_Ph6; Figure S38:
DSC of Sexi_Ph1; Figure S39: DSC of Sexi_Ph2; Figure S40: DSC of Sexi_Ph3; Figure S41: DSC of
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