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Abstract: Oral cancer is a common malignancy with a high mortality rate. Although surgery is the
best treatment option for patients with cancer, this approach is ineffective for advanced metastases.
Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims
to summarise the molecular agents used for the treatment of oral cancer in the last decade and
describe their sources and curative effects. These agents are classified into phenols, isothiocyanates,
anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these
agents include regulating the expression of cell signalling pathways and related proteases to affect
the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells.
This paper may serve as a reference for subsequent studies on the treatment of oral cancer.

Keywords: oral squamous cell carcinoma; anti-proliferative; signalling pathway; cell proliferation;
cell apoptosis

1. Introduction

Oral diseases are a global public health problem, affecting the health and quality of life
of 3–5 billion people [1–3]. If untreated, they may even lead can to systemic diseases [4,5].
Thus, many studies have focused on the aetiology, pathogenesis, and therapeutic regimens
of oral cancer [6–8].

Oral cancer often arises from pre-existing white spots and oral submucosal fibrosis,
and its incidence has increased with the increasing consumption of carcinogens, such as
tobacco and alcohol [9–11]. The types of oral cancer include cancer of the palate, tongue,
floor of the mouth, lip, buccal mucosa, etc., and vary according to the location of the
infected cancer cells [12]. Physiological disorders are caused by the disease itself or tradi-
tional treatment, such as pain, paraesthesia, dysphagia, dysphagia, infection, ulceration,
maxillofacial deformity, and other complications. Oral cancers have a significant genetic
diversity, and these subgroups include p53-independent tumours, subtypes with multiple
tumour suppressor l (MTS1), oral leucoplakia, etc. [13]. Tongue cancer is mainly caused by
cell cycle-related gene cyclin D1 changes [14]. These oncogenes influence the clinicopatho-
logical features of oral squamous cell carcinoma, including poor tumour differentiation,
lymph node involvement, and poor survival [15]. Oral squamous cell carcinoma (OSCC) is
the leading cause of cancer-related deaths, and its incidence and mortality are increasing
considerably annually [16–18]. Despite advances in diagnostic imaging, surgery, radiation,
and chemotherapy, oral cancer is often diagnosed at a later stage of disease development,
leading to poor prognosis and high mortality. Moreover, many patients with oral cancer
are resistant to standard treatments owing to heterogeneity within the tumour or a genetic
mutation which occurs during treatment, resulting in the high recurrence rate of this dis-
ease [19–21]. Oral cancer metastasises to various tissues or organs of the body through
the lymphatic system or blood, and generally has no specific location, but it is more likely
to metastasise to the head and neck area [20]. Thus, the development of safe and reliable
drugs is crucial for the effective treatment of oral cancer. Different cell death pathways,
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immunotherapy, and the targeted inhibition of tumour cells have been explored for the
treatment of malignant tumours [12,22]. Additionally, target discovery and validation are
the key steps in developing molecular agents for the treatment of oral cancer. Multiple
signalling pathways are involved in the progression of oral cancer, such as Toll-like receptor
4 signalling (TLR4), phosphoinositide 3-kinase (PI3K) pathway, janus kinase (JAK)–signal
transduction and activator of transcription (STAT) pathway, etc. [23]. The study of Kenison
et al. indicates that it is of great significance to develop immune checkpoint inhibitors
targeting aromatic hydrocarbon receptors for oral cancer immunotherapy [24]. Current
research is focused on discovering new targets of oral cancer drugs and in verifying targets
of traditional drugs [25].

Various oral cancer drugs have been launched with the recent rise in the occurrence,
development, and diagnosis, of oral cancer; further, the continuous development of clinical
trials on molecular targeted therapies has accelerated this process. This review summarises
the molecular agents used to treat oral cancer and their mechanisms of action, pharmaco-
logical advantages, and development strategies. It also discusses research progress in oral
cancer drugs and candidates. This paper may serve as a reference for designing novel oral
cancer drugs with simple structures and good efficacy.

2. Polyphenols

Natural polyphenols (Figure 1) have emerged as promising chemopreventive and anti-
cancer agents [26–28]. They exert anti-proliferative, anti-metastatic, and pro-apoptotic ef-
fects on tumour cells. Natural polyphenols can function synergistically with chemotherapy
drugs to overcome drug resistance. Considering the anti-cancer, anti-metastatic, and chemo-
preventive effects of natural polyphenols on oral cancer, several researchers investigated the
mechanisms of action of these agents [29]. Kapoor et al. [30] found that [6]-gingerol (1) can
significantly inhibit the proliferation of oral cancer cells (OCCs) by inducing apoptosis and
G2/M phase arrest. 6-Gingerol can also inhibit OCC migration and invasion by regulating
N-cadherin and vimentin, inducing AMPK activation in Ca9-22 cells, and inhibiting the
AKT/mTOR signalling pathway. Liu et al. [31] found that platyphyllenone (2) induces
OCC autophagy and apoptosis by regulating the serine/threonine protein kinase B (AKT)
and c-Jun N-terminal kinase (JNK) pathways. Resveratrol (3) inhibits OCC proliferation
by inhibiting the transactivation of the element binding protein 1 (SREBP1), subsequently
down-regulating the expression of epidermal fatty acid-binding protein (E-FABP), blocking
the proliferation of Ca9-22 cells, and finally inducing autophagy [32,33]. Yang et al. [34]
found that phloretin (4) exerts anti-proliferative activity against human OCC through
reactive oxygen species (ROS)-mediated apoptosis and G0/G1 phase arrest. Piperlongu-
mine (PL, 5) inhibits the production of tumour necrosis factor-α (TNF-α) and interleukin-6
(IL-6) and the activation of nuclear factor-κB (NF-κB) in pro-inflammatory response [35,36].
Moreover, PL prevents plaque formation, thereby inhibiting the development of malignant
phenotypes and the formation of tumour stem cells [35]. At the molecular level, in vitro
studies have shown that curcumin (CUR, 6) suppresses OCC growth by inhibiting SCC-25
cell proliferation and inducing G2/M phase arrest in a dose-dependent manner [37]. A
novel synthetic CUR analogue, GO-Y078 (7), induces caspase-mediated apoptosis in OCC
by up-regulating apoptosis regulatory proteins SMAC/DIABLO and haem oxygenase (HO)-
1 [38]. Semlali et al. [39] demonstrated that curcumin analogue (PAC, 8) dose-dependently
inhibits the proliferation of OCC by disrupting cell cycle distribution, down-regulating the
expression of oncogenes (cyclin D1) and cyclin-dependent kinase inhibitors (p21WAF1), and
increasing the apoptosis, autophagy, and oxidative stress of OCC. Caffeic acid phenethyl
ester (CAPE, 9) dose-dependently inhibits the proliferation of TW2.6 cells by up-regulating
the expression of Bax and Puma, activating the Bax protein, and causing conformational
changes, mitochondrial translocation, and oligomerisation [40]. Rosmarinic acid (10) ex-
erts anti-cancer effects on different human cancer cell lines by inducing apoptosis and
G2/M phase arrest, causing endoplasmic reticulum (ER) stress and decreasing the mi-
gration potential of cancer cells in a concentration-dependent manner [41,42]. Delta-8-
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and delta-9-tetrahydrocannabinol (11 and 12) inhibits the growth of OCC through various
mechanisms, such as inhibiting the expression of epithelial–mesenchymal transition (EMT)
markers (such as E-cadherin), reducing the production of ROS, and increasing the expres-
sion of glutathione and glutathione [43]. Yang et al. [44] confirmed that pterostilbene (14)
inhibits the growth of SAS and OECM-1 cell lines and induces autophagy by inhibiting
Akt, p38, and extracellular signal-regulated kinase ½ (ERK1/2) and activating the c-Jun
N-terminal kinase (JNK) pathways. Huang et al. [45] designed and synthesised a series of
bis(hydroxymethyl)propionate analogue prodrugs using natural rosewood stilbene as the
lead compound. They screened the anti-proliferative effects of all derivatives on cisplatin-
resistant oral squamous cells (CARs) and found that several compounds show stronger
antitumour activities than rosewood stilbene and resveratrol.
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Flavonoids (Figure 2) are found in plants, including vegetables, fruits, and other foods.
These agents prevent the carcinogenesis and proliferation of tumours via various mecha-
nisms, such as regulating the apoptosis and autophagy pathways and causing cell cycle
arrest [46–48]. 7,8-Dihydroxyflavone (15) can induce the apoptosis of OCC by inducing
G-phase arrest in OSCC cells and down-regulating specificity protein 1 (Sp1) levels in HN22
and HSC4 cells, indicating that it plays an important antitumour role in OSCC [49]. Liquir-
itigenin (LQ, 16) is inactivated via the PI3K/AKT/mTOR pathway, which largely limits
tumour growth and enhances apoptosis and autophagy, thereby inhibiting the progression
of OCC. In addition, LQ inhibits AKT phosphorylation in tumour tissues [50]. Chrysin
(17) regulates the apoptosis and autophagy of MC3 cells by inducing MAPK/extracellular
signalling, reducing the activity of human mucoepidermoid carcinoma MC3 OCC, and
causing morphological changes in MC3 cells [51]. Fisetin (3,3-,4-,7-tetrahydroxyflavone,
18) is a naturally occurring flavonoid with antioxidant, anti-inflammatory, and anti-cancer
properties [52]. This flavonoid enhances the apoptosis of Ca9-22 cells at the human tongue
scale through the mitochondrial pathway and inhibition of autophagy. In addition, it
can cause cell cycle arrest by disrupting Wnt, mTOR, and NF-xB signals and preventing
the invasion and migration of cancer cells. Quercetin (19) can cause mitochondrial dys-
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function and inhibit the viability, migration, and invasion of OCC via the mitochondrial
apoptosis pathway [53,54]. Baicalein (20) induces the apoptosis, causes the GO/G1 phase
arrest, and reduces the NF-κB activity of OSCC cells. In addition, baicalein inhibits the
proliferation of OSCC in vivo and in vitro by down-regulating the relative mRNA levels
of the transcription factors Sp1, p65, and p50 [55]. Tu et al. [56] found that luteolin (21)
combined with radiotherapy reduces the tumourigenicity of OCSC by inactivating the
IL-6/STAT3 signalling pathway. Moreover, luteolin treatment reduces the proliferation and
self-renewal ability of enriched OCSCs. Huang et al. [57] reported that hydroxygenkwanin
(22) inhibits cell cycle, cell colony formation, and cell motility by activating p21 and the
intrinsic apoptosis pathway. Moreover, apigenin (23) can induce the apoptosis of tongue
and oral carcinoma-derived cell line SCC-25 and regulate the expression of cyclin D and
E, inactivation of cyclin dependent kinase 1 (CDK1), and cell cycle arrest at the G0/G
and G2/M phases [58]. Hesperidin (24) exerts anti-cancer effects on OCC by inactivating
transcriptional actvator 1 (STAT1) and STAT3 signalling molecules and inhibiting pro-
grammed cell death 1 ligand 1 (PD-L1) expression [59].Velmurugan et al. [60] demonstrated
for the first time that luteosin-7-O-glucoside (25) inhibits the invasion and migration of
OCC by regulating matrix metalloproteinase-2 (MMP-2) expression and the extracellular
signal-regulated kinase pathway and significantly reduces the metastasis of oral cancer by
alleviating the P38-induced increase in MMP-2 expression.
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3. Isothiocyanates

Isothiocyanates (Figure 3) are natural phytochemical compounds derived from plants,
such as broccoli, cabbage, papaya, and wasabi, which demonstrate many biological ef-
fects, including neuroprotective, anti-inflammatory, and anti-cancer effects. Tsai et al. [61]
reported that cathepsin S inhibitors can be used to prevent or delay cancer metastasis.
Chen et al. [62] observed that sulforaphane (26) reduces the motility and aggressiveness
of SCC-9 and SCC-14 cells by decreasing the expression of cathepsin S and inhibits the
migration of OCC by regulating the expression of cathepsin S and its downstream target
LC3. Varadarajan et al. [63] found that benzyl isothiocyanate (27) shows anti-cancer effects
on the SCC-25 cell line through G2/M phase blockade and apoptosis induction. 6-MITC
(28), a wasabi compound, can enhance the sensitivity of OCC cells to the growth inhibitory
effect of anti-cancer drugs [64]. Furthermore, 6-MITC and its derivatives 17,447 (29) and
17,557 (30) inhibit OCC growth in a dose-dependent manner [64].
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4. Quinones

Anthraquinones (Figure 4) are a class of quinone compounds that can occur naturally
or synthesised artificially. These drugs have various effects, including haemostatic, anti-
bacterial, and antitumour. Hsu et al. [65] demonstrated that chrysophanol (31) inhibits
the proliferation and metastasis and increases the apoptosis of FaDu and SAS cell lines
by promoting ROS production and cell cycle G1 arrest. Meanwhile, aloe emodin (32)
reduces the viability of SCC15 cells and induces apoptosis by regulating the expression of
caspase-3/9 [66]. Lin et al. [67] showed that plumbagin (33) reduces the viability of CR-SAS
cells and induces apoptosis. In addition, plumbagin increases ROS production, leading
to mitochondrial dysfunction and ER stress. Animal experiments have also been con-
ducted to demonstrate the in vivo anti-cancer effects of plumbagin on drug-resistant OCC.
Shikonin (34) enhances the sensitivity of OCC cells to cisplatin. It also inhibits the activity
and malignant proliferation of OCC by down-regulating the expression of β-catenin [68].
Acetylshikonin (35) significantly inhibits the invasion of YD10B OCC with porphyrin gin-
gival infection by inhibiting IL-8- and IL-8-dependent MMP release [69]. Acetylshikonin
(35) enhances the phosphorylation of JNK and p38 MAPK via ROS production and triggers
apoptosis in Ca9-22 cells [70]. Therefore, acetylshikonin is a strong candidate for a selective
chemotherapeutic agent for the treatment of OSCC.
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5. Statins

Statins (Figure 5) inhibit cholesterol biosynthesis by blocking the activity of 3-hydroxy-
3-methylglutaryl-CoA (HMG-CoA) reductase and preventing the conversion of HMG-CoA
to methanate [71–73]. Atorvastatin (36) suppresses NADPH oxidase activity and ROS
formation by inhibiting Racl activity and induces angiogenesis by increasing VEGF-A
expression after ROS formation [74]. In addition, atorvastatin reportedly inhibits the growth
of oral tumours by reducing cell migration. This drug creates a toxic microenvironment and
inhibits the metastasis of oral squamous cancer cells by increasing intracellular oxidative
stress [74]. Lovastatin (37) and simvastatin (38) inhibit the proliferation of tumour cells by
enhancing the response of PD-1 ICB and inducing T cells to kill tumour cells [75]. Combined
treatment with daily oral simvastatin (38) or lovastatin and PD-1 blocking enhances tumour
control and prolongs survival, suggesting that statins may enhance the response to PD-1
checkpoint blocking and other HNSCC immunotherapies [75]. Huang et al. [76] found that
statin (37–42) use significantly decreases the incidence of OCSCC among betel nut chewers.
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6. Terpenoids and Steroids

Zhang et al. [77] showed that linalool (43, Figure 6) monoterpene exerts its antitumour
effect by reducing the mitochondrial membrane potential and inhibiting the cell cycle
and PI3K/AKT signalling pathway. Dehydroandrographolide (44) induces autophagy
in human OCC by regulating the expression of p53, activating JNK1/2 and inhibiting
Akt and p38 expression [78]. It can also effectively inhibit tumour formation in vivo in
xenotransplantation models of oral cancer. Coronarin D (45) can significantly reduce cancer
cell viability by increasing the loss of mitochondrial membrane potential and the expression
of death receptors, resulting in the activation of caspase-3/8/9 [79]. It also induces the
apoptosis of human SCC-9 and SAS cells by causing G2/M phase arrest, decreasing the
activation of ERK1/2, p-38, and AKT, and increasing the activation of JNK1/2. Costunolide
(46) triggers cell apoptosis by inhibiting AKT activity and significantly promoting ROS
production [80]. In addition, an in vivo mouse model analysis showed that costunolide
strongly inhibits the growth of cell-derived xenograft oral cancer. 4-Carbomethoxyl-10-
epigyrosanoldie E (47) induces ROS production in OCC, thereby initiating multiple cellular
pathways, including ER stress and mitochondria-induced apoptotic pathway dysfunction,
ultimately leading to autophagy [81]. Sinularin (48) exerts oxidative stress-mediated anti-
proliferative, G2/M-blocking, and apoptotic effects on OCC and is associated with ROS
production, making it a potential marine drug against oral cancer [82]. Yang et al. [83]
confirmed that dihydrosinularin (49) exerts its anti-proliferative effect on OCC by inducing
apoptosis, double-strand breaks, and DNA oxidative damage without causing cytotoxicity
to non-malignant oral cells. Trichodermin (50) inhibits the migration and invasion of OSCC
Ca922 and HSC-3 cells by down-regulating the expression of MMP-9. In addition, tricho-
dermin can reduce the mitochondrial membrane potential and mitochondrial oxidative
phosphorylation of OSCC cells and regulate the expression levels of histone deacetylase 2
and downstream proteins [84]. Triptolide (51) significantly inhibits the proliferation, cell
cycle arrest, and apoptosis of taxol-resistant SAS/Taxol cells. Kuo et al. [85] found that
triptolide inhibits the growth of oral cancer tumour and proliferation of OSCC cells by
down-regulating PD-L1 expression. The antibiotic antimycin A (52) mediates the apoptosis
of OCC CAL27 and Ca9-22 cells by increasing oxidative stress and ROS production [86].
Nitrated [6,6,6] tricycle (53)-derived compounds induce apoptosis and DNA damage in
OCC by inducing oxidative stress [87]. Meanwhile, pseudolaric acid B (54) significantly
inhibits the caspase-dependent apoptosis of HN22 cells [88].
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Gambogic acid causes the G1 arrest of OSCC cells. In addition, gambogic acid (55,
Figure 7) can pharmacologically inhibit p38 kinase, significantly reduce haem oxygenase 1
(HO-1) expression, induce caspase cleavage, and promote cell apoptosis [89]. Paclitaxel
(56) significantly inhibits the activity and proliferation of OCC by increasing the expression
of Bim, Bid, MMP-2, and MMP-9. In addition, paclitaxel inhibits the growth of oral
cancer cell lines by inhibiting the EGFR signalling pathway [90]. Paclitaxel combined
with lupeol inhibits the simulation of hypoxia-induced angiogenesis [91]. Ursolic acid (57)
induces caspase-dependent cell apoptosis by down-regulating the expression of multiple
biomarkers, including Akt/mTOR/NF-xB signalling [92]. It also inhibits angiogenesis by
preventing the migration/invasion of Ca922 OCC and blocking the secretion of MMP-2. Cis-
3-o-p-hydroxycinnamyl ursolic acid (58) inhibits the stagnation of oral cancer cell lines (Ca9-
22 and SAS cells) in the G1 phase in a concentration-dependent manner [93]. Additionally,
cis-3-O-p-hydroxycinnamoyl ursolic acid triggers the production of intracellular ROS and
mediates mitochondrial apoptosis by inducing ROS dependence and p53. Sharifi et al. [94]
found that the cytotoxic mechanism of thistle saponins IV (59) and IVa may be mediated
through the mitochondrial apoptosis pathway and that both saponins can reduce the
migration, invasion potential, and metastasis of HN-5 cancer cells. Ursodeoxycholic acid
(60) induces the apoptosis of cancer cells by promoting the expression of caspase-3/8/9
and reducing the expression of pro-apoptotic proteins [95]. Betulinic acid (61) inhibits the
proliferation of OSCC cells by regulating ROS and p53 signalling, making it a potential
drug for the treatment of oral cancer [96]. Lupeol (62) can promote the apoptosis and
inhibit the proliferation of OSCC cells by inducing the phosphorylation of EGFR and
inhibiting the activation of downstream molecules, such as protein kinase B (or AKT) and
NF-κB [91,97]. Zhang et al. [98] found that 20(S)-ginsenoside Rh2 (63) induces the apoptosis
and inhibits the growth of OCC by inducing G0/G phase arrest and significantly down-
regulating the levels of p-Src, p-B-Raf, and p-ERK1/2 proteins. Li et al. [99] found that
ginsenoside M1 induces cell apoptosis by increasing the expression of pro-apoptotic protein
p53, promoting DNA breakage, and inhibiting the cell cycle. In addition, ginsenoside M1
(64) dose-dependently inhibits the colony formation and migration of SAS and OEC-M1
cells and reduces the expression of the transfer-related protein vimentin. Li et al. [100]
found that riparsaponin (65) inhibits OSCC metastasis by down-regulating the expression
of cellular-mesenchymal epithelial transition factor (c-MET), MMP-2, and MMP-9 and by
up-regulating the expression of E-cadherin; it also shows significant anti-OSCC activity by
inducing mitochondria-mediated apoptosis.
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7. Other Compounds

In addition to the above compounds, many other compounds (Figures 8 and 9) induce
oral cancer cell cycle arrest, promote cell apoptosis, and inhibit tumour cell metastasis.
Cordycepin (66) not only regulates the OEC-MI cell cycle but also exerts anti-cancer effects
on human OSCC cells when combined with irradiation [101]. Cordycepin (66) and IR
synergistically induce ATG5 and p21 to inhibit cell proliferation in an autophagy cascade-
dependent manner [102]. Li et al. [103] found that doxazosin (67) has obvious antioxidant
and protective effects on normal cells and can effectively induce the death of oral cancer
KB cells by inducing apoptotic signalling. Methylnaltrexone (68) strongly inhibits the
proliferation, cloning activity, invasion, and migration of FaDu and MDA686Tu cells and
inhibits tumour growth in HNSCC-bearing mice [104]. 4-Nitroquinoline (69) induces
the expression of cancer stem cell (CSC) markers in rat tongue cancer, and candidate
CSCs increase in infiltrating areas after SCC [105–107]. Dasatinib (70) exhibits strong
anti-growth, anti-angiogenic, and pro-apoptotic effects on two types of OCC cells (YD-38
and HSC-3) by regulating multiple cell targets and pathways [108]. Ligustilid (71) e
inhibits the migration of anoxic TW2.6 cells and induces caspase-dependent apoptosis. Hsu
et al. [109] demonstrated that ligustilide induces C-MYC-dependent apoptosis in hypoxic
oral cancer cell lines (including TW2.6 and OML1) via ER stress signalling. Anlotinib
induces G2/M arrest and apoptosis in two oral cancer cell lines, Cal-27 and SCC-25,
by targeting the antiangiogenic activity of several tyrosine kinases, including vascular
endothelial growth factor receptor, fibroblast growth factor receptor, and platelet-derived
growth factor receptor [110]. Olaparib (74) treatment significantly reduces the proliferation,
migration, invasion, and adhesion of OSS cells. Olaparib inhibits the mRNA expression of
markers related to tumourigenesis and EMT, and significantly inhibits tumourigenesis and
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bone invasion [111]. Orlistat (75) induces the apoptosis and cell cycle arrest of HSC-3 cells
in the G2/M phase by decreasing the expression of cyclins D1 and E and increasing the
phosphorylation of CDK1 [112]. Ricinine (76) analogues exert anti-cancer activity by down-
regulating protein tyrosine phosphatase (PTP1B) and cyclooxygenase-2 (COX-2) enzymes
through highly activated PTP1B protein [113]. Entinostat (77) reduces the proliferation
and promotes the apoptosis of OSCC cells by causing GO/G1 phase arrest. It can also
increase the expression of acetylated histones H3 and H4 and alter the expression of cell
cycle-related proteins, such as p21 [114]. Dibenzylideneacetone (78) inhibits cell viability
and induces apoptosis by degrading specific Spl [115]. It also increases Bax expression,
resulting in conformational changes, translocation to the mitochondria, and oligomerisation.
In addition, siRNA and miramycin A induce Bax protein expression to increase apoptosis
by down-regulating Spl expression.
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Metformin (79) inhibits the growth and metastasis of oral cancer by down-regulating
the expression of Aurora-A and Late SV40 Factor. It also suppresses tumourigenesis in
xenotransplantation models [116]. The inhibitory effect of metformin on oral cancer is
associated with the decreased expression of OrorA-A. Lycopene (80) inhibits the migration
and promotes the apoptosis of OSCC cells by blocking the insulin-like growth factor 1 path-
way [117]. Dimethyl fumarate (81) slows the progression and growth of OSCC by regulating
apoptosis and reducing oxidative stress. It also reduces the migration ability of tumour
cells by regulating the expression of EMT markers N-cadherin and E-cadherin [118,119].
Tang et al. [120] found that CHW09 (82) induces the apoptosis, oxidative stress, and DNA
damage of OCC without exerting cytotoxicity to normal cells. Thiodigalactoside (83) sig-
nificantly inhibit the growth, induce the cell cycle arrest and apoptosis, and prevent the
angiogenesis of OSCC cells [121]. CuCl2 alone or in combination with disulfiram (84) signif-
icantly reduces ROS levels in the mitochondria of OECM-1 and SG cells [122]. In addition,
the binding of disulfiram to Cu2+ significantly increases the cytotoxicity of OECM-1 OCC.
Bortezomib (85) reduces TRAF6 expression via autophagy-mediated lysosomal degrada-
tion, which weakens the tumourigenicity of OSCC cells [123]. Celecoxib (86) inhibits oral
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EMT and cell migration by reducing the expression of transcription factors [124]. Nar-
ciclasine (87) inhibits oral cancer metastasis by regulating ERK pathways and cathepsin
B [125]. Ketorolac (88) down-regulates DDX3 expression in the human OSCC cell line
(H357) and directly inhibits ATP hydrolysis with DDX3 [126]. In addition, treatment with
ketoate decreases the number and severity of tongue tumour lesions in a mouse model
of carcinogen-induced tongue tumour. Betanin (89) can inhibit cell viability, MMP, and
inflammation via the NF-kB/PI3K/Akt pathway and increase ROS levels in SCC131 and
SCC4 OCC to induce apoptosis [127].
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8. Conclusions

The incidence and mortality of oral cancer are serious threats to human life and health.
This review summarises different types of oral cancer drugs and describes their sources,
curative effects, and mechanisms of action, which include inhibiting the proliferation
and migration, blocking the cell cycle, and enhancing the autophagy and apoptosis of
oral cancer cells (Table 1), but their mechanisms of action are complex and their targets
are different. Among many signalling pathways, the AKT/mTOR pathway has been
studied the most, which is targeted by 6-gingerol, liquiritigenin, linalool, etc. The anti-
oral mechanism of curcumin, phloretin, 6-MITC, and entinostat is through the inhibition
of cell cycle. In addition, the promotion of apoptosis and autophagy is also the focus
of antitumour small-molecule drug research and development, such as PAC, which has
both capabilities. In particular, the IC50 value of entinostat is 0.54 µM, which is the best
antitumour proliferation activity among these molecular agents. It is worth noting that
dasatinib acts as an anti-growth, anti-angiogenesis, and pro-apoptotic agent by regulating
multiple targets, including Src, EGFR, STAT-3, STAT-5, PKB, ERK-1/2, S6, eIF-2α, GRP78,
caspase-9/3, Mcl-1, and HIF-1α. Therefore, dasatinib can be used as the first choice of
anti-oral drugs.

Table 1. Anti-oral cancer small-molecule agents.

No. Name Source Cell Line Activity
(IC50) Target or Signalling Pathway Reference

1 6-Gingerol Isolated from ginger YD10B and Ca9-22 - AKT/mTOR signalling pathway [30]

2 Platyphyllenone
Isolated from Alnus
nepalensis Isolated from
leaves

SCC-9 and SCC-47 - AKT and c-Jun N-terminal kinase
(JNK) pathways [31]

3 Resveratrol Isolated from grapes
HSC-2 and HSC-3,
HSC-4, Ca9-22, and
SAS

- Autophagy [32,33]
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Table 1. Cont.

No. Name Source Cell Line Activity
(IC50) Target or Signalling Pathway Reference

4 Phloretin Isolated from plants SCC-1 12.5 µM ROS-mediated apoptosis and
G0/G1 phase arrest. [34]

5 Piperlongumine Isolated from Piper
longum SAS and CGHNC8 - TNF-α, IL-6, and NF-κB [35,36]

6 Curcumin Isolated from ginger SCC-25 - Cell cycle arrest [37]
7 GO-Y078 Synthetic SCC-9 and HSC-3 <0.5 µM Caspase-mediated apoptosis [38]

8 PAC Synthetic Ca9-22 3 µM Apoptosis, autophagy, and
oxidative stress [39]

9 Caffeic acid phenethyl ester Isolated from propolis
TW2.6, OSF, GNM,
TSCCa, SAS and
OEC-M1

72.1, 90.6, 101.0,
120.9, 129.7 and
159.2 µM

Apoptosis-related proteins [40]

10 Rosmarinic acid Isolated from
Rosemarinus officinalis SCC-15 20–40 µM Apoptosis and G2/M phase arrest [41,42]

11
and
12

delta-8- and
delta-9-tetrahydrocannabinol Isolated from cannabis Ca9-22 13 and

10 µg/mL

Decreased ROS production and
increased glutathione and
glutathione expression

[43]

13 Pterostilbene Isolated from rosewood SAS and OECM-1 - c-Jun N-terminal kinase (JNK)
pathways [44]

14 Bis(hydroxymethyl)propionate
analogs Synthetic CAR 32.58 µM Autophagy [45]

15 7,8-Dihydroxyflavone Isolated from plants HN22 and HSC4 - Cell cycle arrest and apoptosis [49]
16 Liquiritigenin Isolated from liquorice CAL-27 and SCC-9 - PI3K/AKT/mTOR pathway [50]

17 Chrysin Isolated from bignonia MC3 - MAPK/extracellular signalling
pathway [51]

18 Fisetin Isolated from
toxicodendron sylvestre Ca9-22 - Wnt, mTOR, and NF-xB signals’

pathway [52]

19 Quercetin Isolated from plants HSC-6 and SCC-9 50 µM Mitochondrial apoptosis pathway [53,54]

20 Baicalein Isolated from Scutellariae
Radix

SCC25, CAL27 and
HSC3 - Sp1 [55]

21 luteolin
Isolated from chamomile
tea, celery, perilla leaf,
and green peppers

SAS and GNM - Interleukin-6/signal transduction
and transcription 3 signalling [56]

22 Hydroxygenkwanin Isolated from Daphne
genkwa Sieb. et Zucc. SAS and OCEM1 - p21 and endogenous apoptotic

pathways [57]

23 Apigenin Isolated from fruits and
vegetables SCC-25 - Cell cycle arrest and apoptosis [58]

24 Hesperidin Isolated from fruit of
immature citron HN6 169.53 µM Programmed Death-Ligand 1

Expression [59]

25 Luteolin-7-O-Glucoside Isolated from plantain
herb

HSC-3, FaDu, and
CA9-22 - Signalling regulates the kinase

pathway [60]

26 Sulforaphane Synthetic SCC-9 and SCC-14 - Cathepsin S [61,62]

27 Benzyl Isothiocyanate Isolated from Carica
papaya L. SCC-25 29.80 µM. Apoptosis [63]

28 6-MITC Isolated from Wasabia
japonica SAS and OECM-1 - G2/M phase [64]

29 I7447 Semi-synthetic SAS and OECM-1 10.3 and
13.1 µM. G2/M phase [64]

30 I7557 Semi-synthetic SAS and OECM-1 10.1 and
9.6 µM. G2/M phase [64]

31 Chrysophanol Isolated from rhubarb FaDu and SAS 9.64 and
12.60 µM.

Cell death, metastasis, and
reactivity oxygen production [65]

32 Aloe emodin Isolated from Rheum
undulatum L. SCC15 160.7 µM Apoptosis [66]

33 Plumbagin Isolated from Plumbago
zeylanica L CR-SAS 4.379 µM

ROS-mediated endoplasmic
reticulum stress and mitochondrial
dysfunction

[67]

34 Shikonin Isolated from alkanet SCC-25 and HSC-3 - β-catenin pathway [69]

35 Acetylshikonin
Isolated from
Lithospermum
erythrorhizon

YD10B - Interleukin-8/matrix
metalloproteinase axis [70]

36 Atorvastatin Synthetic HN13 - VEGF-A after ROS formation [74]

37–42
Lovastatin, Simvastatin,
Fluvastatin, Pravastatin,
Pitavastatin, Rosuvastatin

Synthetic MOC1 - PD-1 [75]

43 Linalool Isolated from aromatic
camphor OECM-1 65 µM PI3K/AKT signalling pathway [76]

44 Dehydroandrographolide Isolated from sinularia
flexibilis

Ca9-22, SCC-9,
OECM-1,
CAL 27, OC-2, and
HSC-3

- Apoptosis and oral DNA damage [78]

45 Coronarin D Isolated from
garland-flower SCC-9 and SAS - JNK1/2 signalling pathway [79]

46 Costunolide Isolated from costustoot YD-10B, YD-38 and
Ca9-22 than in YD-9 - Protein kinase B pathway [80]

47 4-Carbomethoxyl-10-
epigyrosanoldie E

Isolated from sinularia
sandensis Ca9-22 and Cal-27 - Apoptosis and autophagy [81]

48 Sinularin Isolated from S.
manaarensis Ca9-22 and CAL 27 23.5 and

36.6 µM
Oxidative stress-mediated cell
G2/M block and apoptosis [82]
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Table 1. Cont.

No. Name Source Cell Line Activity
(IC50) Target or Signalling Pathway Reference

49 Dihydrosinularin Isolated from S. flexibilis Ca9-22, OECM-1,
CAL 27, and SCC-9

0.39, 0.69, 0.8
and 0.65 mM Apoptosis and DNA damage [83]

50 Trichodermin Isolated from
trichoderma viride, Ca922 and HSC-3

9.65 ± 1.1 µM
and 11.49 ±
1.26 µM

Apoptosis, mitochondrial
dysfunction, and hdac-2-mediated
signalling

[84]

51 Triptolide Isolated from Thunder
God vine SAS 1.686 nM

Interferon γ modulates the
expression of PD-L1 in oral cancer
cells in microenvironment

[85]

52 Antimycin A Isolated from
Streptomyces CAL-27 and Ca9-22 4.72 and

14.85 µM ROS [86]

53 Nitrated [6,6,6]Tricycles Synthetic Ca9-22, CAL 27, and
HSC-3

7.93, 12.46 and
12.46 µM Apoptosis and DNA damage [87]

54 Pseudolaric Acid B Isolated from
pseudolarix kaempferi PAB, HN22 approximately

0.7 µm/mL Apoptosis [88]

55 Gambogic Acid
Isolated from garcinia
hanburyi and garcinia
morella trees

SCC-9 and SAS - p38 signals apoptosis in oral cells [89]

56 Paclitaxel Isolated from pacific yew
tree tea8113 - Epidermal growth factor receptor

signalling pathways [90]

57 Ursolic acid Isolated from bearberry
leaf Ca922 and SCC2095 11.5 and

13.8 µM Induce apoptosis and autophagy [92]

58 Cis-3-O-p-hydroxycinnamoyl Isolated from Elaeagnus
oldhamii Maxim Ca9-22 and SAS 24.0 and

17.8 µM
ROS-dependent p53-mediated
mitochondrial apoptosis [93]

59 Buddlejasaponin IV Isolated from
clinopodium umbrosum HN-5 and HUVEC 19.1 and 18.6 Mitochondrial apoptosis pathway [94]

60 Ursodeoxycholic Acid Isolated from gallbladder
of Ursus thibetanus HSC-3 - Apoptosis [95]

61 Betulinic Acid Isolated from plants KB - ROS-regulated p53 signalling [96]

62 Lupeol Isolated from plants SCC131 and SCC084 26.1 and
21.42 lmol Oncogenic EGFR pathway [97]

63 20(S)-Ginsenoside Rh2 Isolated from panax
ginseng

YD10B and
Ca9-22 - G0/G phase arrest [98]

64 Ginsenoside M1 Isolated from panax
ginseng OEC-M1 - Apoptosis [99]

65 Riparsaponin Isolated from homonoia
riparia

Cal-27, SCC-9
and Detroit 562 - Apoptosis [100]

66 Cordycepin Isolated from cordyceps
sinensis

SCC-9, SCC-25, and
SAS - Autophagy [101]

67 Doxazosin Synthetic KB - Modulation of antioxidant and
apoptotic pathway [103]

68 Methylnaltrexone Synthetic FaDu and MDA686Tu - mu-opioid receptor [104]

69 4-Nitroquinoline Synthetic cancer stem cell - Cancer stem cell [105–
107]

70 Dasatinib Synthetic YD-10B and HSC-3 - Multi-targeted mechanisms [108]

71 Z-Ligustilide Isolated from angelica
sinensis TW2.6 and OML1 - C-MYC-dependent apoptosis in

hypoxic oral cancer cell lines [109]

72 Anlotinib Synthetic Cal-27 and SCC-25 - Antiangiogenic activity of several
tyrosine kinases [110]

74 Olaparib Synthetic EMT -
mRNA expression of markers
related to tumourigenesis and
EMT

[111]

75 Orlistat Synthetic HSC-3 - Apoptosis and cell cycle arrest [112]
76 Ricinine Isolated from castor bean SAS 90 µM PTP1B and COX-2 [113]

77 Entinostat Synthetic WSU-HN6 and
WSU-HN12

0.54 µM and
23.31 µM Inhibition of cell cycle [114]

78 Dibenzylideneacetone Isolated from Curcuma
longa L

HSC-4,
HSC-2, YD-10B and
SCC-15

- Specificity protein 1 and Bax [115]

79 Metformin Synthetic SAS, Cal27 and SCC25 -

Malignant behaviour of oral
squamous cell carcinoma via a
novel signalling involving Late
SV40 factor/Aurora-A

[116]

80 Lycopene Isolated from love apple CAL-27 and
WSU-HN6

0.95 vs.
0.83 mM IGF1 Pathway [117]

81 Dimethyl Fumarate Synthetic CAL27, HSC-2 and
HSC-3 - Apoptosis, oxidative stress and

epithelial–mesenchymal transition
[118,
119]

82 CHW09 Synthetic Ca9-22 40 µg/mL Apoptosis, oxidative stress, and
DNA damage [120]

83 Thiodigalactoside Isolated from ilex
cornuta

SCC-4, SCC-9 and
SCC-25 - Cell cycle arrest and apoptosis,

and prevent the angiogenesis [121]

84 Disulfiram Synthetic OECM-1 and SG - Aldehyde dehydrogenase [122]

85 Bortezomib Synthetic SAS - Autophagy-mediated TRAF6
oncoprotein degradation [123]

86 Celecoxib Synthetic HSC-3 - Transcription factors [124]

87 Narciclasine Isolated from narcissus SAS and SCC-47 - Cathepsin B and extracellular
signal-related kinase pathways [125]

88 Ketorolac Synthetic H357 2.6 mM DDX3 [126]

89 Betanin Isolated from beets SCC131 and SCC4 30 µM NF-κB/PI3K/Akt signalling
pathway [127]
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The research on the mechanism of small-molecule anti-oral cancer is still mostly at the
characterisation level, and the research on upstream and downstream signal transduction
pathways needs to be further deepened. Although there are many studies on small-
molecule drugs for oral cancer, there are few clinical studies reported. Therefore, how
to improve the availability of drugs, enhance the targeting and accuracy of drugs, so as
to better apply in clinical research, is the focus of follow-up research of small-molecule
drugs. The application of disulfiram in the treatment of oral cancer provides us with a new
idea for the development of antitumour drugs. The new use of old drugs can perfectly
avoid the key problems of cancer drug research and development, such as long research
and development cycle, high cost, and low success rate. Exploring and understanding the
mechanism of action of known active anti-oral cancer compounds is of great significance
for the search for new anti-oral cancer drug targets and designing anti-oral cancer drugs
with strong effect, good effect, and small side effects.
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