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Abstract: Microdroplet-based fluidic systems have the advantages of small size, short diffusion
time, and no cross-contamination; consequently, droplets often provide a fast and precise reaction
environment as well as an analytical environment for individual molecules. In order to handle diverse
reactions, we developed a method to create organic single-micron droplets (S-MDs) smaller than
5 µm in diameter dispersed in silicone oil without surfactant. The S-MD generation microflow device
consists of a mother droplet (MoD) generator and a tapered separation channel featuring multiple
side channels. The tapered channel enhanced the shear forces to form tails from the MoDs, causing
them to break up. Surface treatment with the fluoropolymer CYTOP protected PDMS fluid devices
from organic fluids. The tailing separation of methanol droplets was accomplished without the use of
surfactants. The generation of tiny organic droplets may offer new insights into chemical separation
and help study the scaling effects of various chemical reactions.

Keywords: organic microdroplets; single-micron droplets; fluid control; surface treatment

1. Introduction

Microfluidics involves manipulating continuously flowing microscopic amounts of
fluids within channels of nanometer/micron dimensions. This technology originated in
the 1950s when Skeggs proposed an automated approach for colorimetric analysis by
controlling fluid flow [1], followed in 1998 by a paper by Xia and Whitesides [2] on a
polydimethylsiloxane (PDMS) soft lithography method. The surface–volume ratio of a
fluid in a microfluidic device gradually increases as the fluid volume decreases, which
leads to properties distinct from those of macroscopic fluids. Microfluids exhibit three main
characteristics: efficient mass/heat transfer, sufficient viscosity for overcoming inertial
forces, and significant surface effects [3–5]. These features make it possible to control and
manipulate individual fluids and fluid interfaces using miniaturized devices, enabling the
application of microfluidics in areas such as physics, chemistry, biology, medicine, and
engineering [6–8]. In 2001, Thorsen et al. achieved droplet shearing, enabling the successful
development of droplet microfluidic devices [9]. A new branch of discontinuous-flow
microfluidic systems, known as droplet microfluidic systems, uses two immiscible liquids
to form droplets on the micron or nanometer scale at the flow interface. Recent advances in
droplet preparation and manipulation techniques allow for the sorting [10], merging [11],
splitting [12], mixing [13], and capturing [14] of droplets inside microfluidic devices. These
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technologies have led to dramatic advances in cell culture technology in droplets [15–18].
Joachim D. J. and colleagues reported that concentrating the droplets improved gene
detection rates by five times and reduced background noise by half [19]. Wang et al. [20]
reported that a microdroplet-based surface-enhanced Raman spectroscopy (microdroplet
SERS) platform was constructed to envelop individual cells with microdroplets, followed
by droplet immunization using immunomagnetic beads. Extracellular vesicle proteins (EV
proteins) were detected by SERS assay [20]. Single-cell analysis is expected to be further
developed with technology that stably generates single-micrometer droplets. Microdroplets
have also been applied in the field of chemistry [21–23]. Ashleigh B. and colleagues
used microfluidic technology and a new fluorous-tagged palladium catalyst to generate
droplet reactors with catalytically active walls and used these compartments for small
molecule synthesis [24]. Tim-A. M. et al. reported analyzing the progress of reactions in situ
through the surface-enhanced Raman spectroscopic monitoring of fast-moving individual
droplets [25]. In recent years, the analysis of microdroplet generation and agitation has been
performed using CFD simulation and image analysis [26–28]. M. Rahimi et al. reported a
detailed analysis and discussion of droplet generation related to the Co-axial Flow Focusing
based on simulation and image analysis [29].

Droplet separation and recovery devices mainly utilize multilayer flow extraction and
separation to isolate the target products [30]. So far, we have succeeded in generating single-
micron droplets from approximately 100 µm droplets using water and oil by applying the
tailing phenomenon [31]. Most experiments to date have been conducted on an aqueous
phase dispersed in an oil phase. Organic solvents play crucial roles in organic reactions,
but there have been few studies on the application of relevant organic droplets.

Here, we generated organic droplets less than 5 µm in diameter to provide a suitable
environment for chemical reactions at the nanoscale. However, it was necessary to address
two critical problems. The first was the incompatibility of organic solvents with conven-
tional microfluidic devices fabricated by soft micro-electromechanical system processes
using PDMS because PDMS tends to swell upon contact with organic solvents, leading
to the deformation of the flow path. The second was the typical need for surfactant addi-
tion to generate tiny droplets because surfactants can react electrostatically with substrate
molecules, which results in reactions that interfere with the target reaction [32].

We are interested in studying the scaling effects of chemical reactions. We thus aimed
to generate organic droplets less than 5 µm in diameter without the use of surfactants.
Here, we chose methanol, which has a low interfacial tension, as the organic solvent for
droplet generation, and silicone oil as the continuous phase to stabilize the generated
droplets. Furthermore, we intended to use a PDMS device to generate organic droplets
over an extended period and to reduce the affinity of organic solvents for the inner walls of
the flow channel. To this end, we surface-treated the inner walls with the fluoropolymer
CYTOP (CTL-809M, AGC Inc., Tokyo, Japan) to alter the surface wettability. Finally, organic
droplets less than 5 µm in diameter were successfully separated from the parent droplets
by configuring the flow channel and fluid pressure.

2. Results and Discussion
2.1. Fluid Simulation (CYTOP Surface Treatment)

Figure 1 shows scenes of the three-dimensional CFD simulation in a T-junction. The
contact angle of the methanol to the channel wall was changed. The methanol in blue ink
is injected in the mainstream of the silicone oil in red ink. Figure 1a shows CFD scenes
for a contact angle of 30 degrees (which simulates on the PDMS wall). The methanol is so
wettable that the methanol stream creeps on the PDMS wall. Figure 1b shows CFD scenes
for a contact angle of 150 degrees. Since the methanol is less wettable (which simulates
on the CYTOP wall), the methanol stream takes off from the wall in the T-junction. After
that, the disintegrated ethanol stream generates a series of droplets. The CFD simulation
confirms the role of wettability (by coating of CYTOP) to generate a series of droplets.
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Figure 1. Scenes of three-dimensional CFD simulation in T-junction [28]: (a) Contact angle of
30 degrees. (b) Contact angle of 150 degrees.

2.2. Fluid Experiments

The S-MD separation performance of the device was evaluated by optical microscopy
observations at the droplet separation section of the branched channel. Figure 2 illustrates
an example of such separation, where the flow rates of the methanol and oil are 1.2 µL/min
and 4.5 µL/min, respectively. Several MoDs can be observed in the main channel at the
top of the image. After entering the side channel section, the deformed MoDs experience
pressure in the direction of the side channels and shear forces from the channel corners,
leading to the generation of a tail and its separation into the S-MDs. As observed in Figure 2,
the MoDs are subjected to forces from the flow into the up-stream side channel to form a
tail. The S-MDs are separated during the continuous motion owing to the differences in
velocity and the direction of the motion of the MoDs and the tails. The separated S-MDs
are then extracted into the downstream side channel. Thus, the fabricated device allowed
the continuous generation of the S-MDs efficiently.
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Figure 2. Optical microscopy images showing S-MD formation.

2.3. Relationship between Continuous-Phase Flow Rate and S-MD Diameter

To investigate the relationship between the flow rate of the continuous phase (sili-
cone oil) and the diameter of the generated S-MDs, the flow rate of the dispersed phase
(methanol) was fixed at 1.5 µL/min, and the flow rate of the continuous phase was set to 3,
4, 5, or 6 µL/min.

The diameters of the S-MDs generated at the fifth side channel are plotted against the
flow rate in Figure 3. The S-MDs of 1.1–3.3 µm were formed under all flow conditions.
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2.4. Drop Diameter Distribution Based on Image Analysis

Image analysis was conducted for the fluid experiment movies at the continuous flow
rates of 3 µL/min, 4 µL/min, 5 µL/min, and 6 µL/min, and for fixed dispersed flow at
1.5 µL/min.

Figure 4 shows the relationship between flow rate and droplet size distribution. The
size of S-MD droplets was determined by the semantic segmentation of high-speed video
frames. When the continuous flow rate is 3 µL/min, the generated droplets exhibit the
most stable size distribution. Upon increasing the flow rate to 3, 4, 5, and 6 µL/min for
continuous flow, the percentage of S-MD droplets with diameters below 2 µm is 99.47%,
45.83%, 59.08%, and 68.95%, respectively. Furthermore, approximately 100,000 S-MDs were
generated per second at a flow rate of 3 µL/min.
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Figure 4. Relationship between the diameter of the generated S-MDs and continuous flow velocity.

In addition, the number and average diameter size of the droplets produced in the
three consecutive channels at the central position was counted, as shown in Figure 5. By
comparison, we can analyze that the higher the flow rate of the continuous phase, the
higher the number of S-MD droplets generated, and the size of the generated S-MD is
relatively stable (the average size is controlled below 2 µm). At a flow rate of 6 µL/min,
droplets with a diameter of 2 µm were efficiently generated, and at a flow rate of 3 µL/min,
droplets with a diameter of 1 µm were efficiently generated.
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Consequently, we conclude that within the proposed flow pathway structure in this
experiment, higher continuous flow rates result in a greater number of generated S-MD
droplets and larger droplet diameters. The results of this fluid experiment suggest that it is
possible to control the number and size of the S-MDs generated by changing the flow rate
of the continuous phase.

3. Experimental Section
3.1. Fluid Simulation

Methanol is highly wettable for the PDMS wall, so a methanol stream cannot move
apart from the wall to form droplets. In this experiment, a thin CYTOP layer was coated on
the internal microfluidic device wall since methanol is less wettable for the CYTOP layer
for droplet generation.

In order to quantify the effect of wettability, three-dimensional computational fluid
dynamics (CFD) simulations were performed to evaluate droplet formation in a T-junction
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channel surface. The mass continuity and Navier–Stokes equations for incompressible
fluids with constant density and the viscosity of the methanol and silicone oil described
the momentum field. The set of questions was solved with commercial CFD software Star-
CCML version 2023.6. The width and height of the T-junction were 50 µm. The wettability
of the methanol in silicone oil for the PDMS wall was investigated as a function of the
contact angle.

3.2. Device Design and Fabrication

The design of the device used in this study is illustrated in Figure 6A). The device
consists of two components: a mother droplet (MoD) generator and a single-micron droplet
(S-MD) separator. The basic structure of the fluidic device is an adaptation of the device
design we developed in 2021 [31] for methanol.
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Figure 6. Schematic diagram and dimensions of the device. (A) Device design. (B) Comparison of
the flow paths with and without added surfactant.

The MoD generator has two inlets for the dispersed and continuous phases arranged
to form a T-shaped channel. The tapered flow channel in the S-MD separator allows the
droplet to be easily deformed by the external forces from the flow channel.

As shown in Figure 6B), when the MoD enters the separation section from the main
channel, tailing occurs due to the forces from the flow towards the main channel and the side
channel. Figure 6(Ba) shows the S-MD generation device developed in 2021. This design
required a surfactant even in methanol. On the other hand, the device developed in this
research eliminates the need for a surfactant by tapering the channel width (Figure 6(Bb)).

Two outlets for MoD and S-MD collection were provided at the end and side of the
device, respectively. The overall depth of the device was 30 µm. The width of the main
channel was 100 µm, gradually narrowing to 50 µm by the end of the side channel region.
Fifteen side channels, with a width of 25 µm and a length of 200 µm, blanched from the
main channel spaced 75 µm apart. Methanol has a lower density and viscosity than water,
so it tends to become unstable in the flow path, but by gradually constricting the main
channel, the stable control of MoDs was achieved.

In this study, PDMS flow channel devices were fabricated by soft lithography followed
by the surface treatment of the channels. The detailed process is summarized in Figure 7a.
First, a mold was prepared on a silicon substrate by SU-8 (SU-8 3050, Kayaku Advanced
Materials, Westborough, MA, USA) photolithography. This mold was then used to transfer
the channel structure onto the PDMS. Next, the transferred PDMS was thermally cured,
and the device was obtained by plasma bonding on a glass substrate with a PDMS thin film.

In addition, the channel wall surfaces were modified with CYTOP, which is chemi-
cally resistant to organic fluids and highly transparent, such that it did not interfere with
fluid observations. Furthermore, CYTOP repels both water and oil, enabling the use of
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aqueous and organic dispersed phases. The surface modification was conducted as shown
in Figure 7(b1–b4). 1. Introduce the CYTOP from the inlet of the microfluidic device.
2. Introduced air from the inlet to exhaust unnecessary CYTOPs. 3. Bake on a hot plate at
180 degrees for 60 min. 4. Repeat steps 1–3 three times.
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3.3. Fluid Experiments

Figure 8 shows the appearance of the microfluidic device and the experimental system.
Figure 8a is an external photograph of a PDMS microfluidic device. Four S-MD generation
devices are fabricated on one chip, allowing efficient fluid experiments. Furthermore, since
this PDMS device is coated with CYTOP, it is difficult for dirt to build up inside the flow
path, so it can be used for repeated experiments.

Figure 8b shows the fluid experiment system. Silicone oil and methanol were used
as the continuous and dispersed fluids, respectively. It is noteworthy that neither of
these solutions contains any surfactant. The liquids were injected using syringes (1750CX,
Hamilton, Reno, NV, USA) through PTFE tubing (i.d. 500 µm) or PVC tubing (i.d. 1000 µm),
and syringe pumps (KDS, KD Scientific Inc., Holliston, MA, USA) were utilized to control
the flow rate for the methanol and oil. In addition, we used an optical microscope and
a high-speed video camera to observe the flow changes inside the flow path and record
images and videos on a computer.
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4. Conclusions

This study successfully developed a PDMS-based fluid device for separating S-MD
with a diameter below 3 µm. Fluid experiments were carried out at flow rates of 3, 4, 5,
and 6 µL/min for continuous flow, and at 1.5 µL/min for fixed dispersed flow. Single-
micron droplets were stably generated under all conditions. These findings enhance
our understanding of the relationship between flow rates and droplet generation for
determining suitable conditions for studying the chemical reactions related to organic
synthesis and provide valuable insights for further research and applications in related
fields. Our study employed advanced techniques and methods, utilizing high-speed video
frames and semantic segmentation to provide accurate and reliable data on droplet size
and quantity. Furthermore, the incompatibility between PDMS and organic substances
has always been a difficult problem to overcome. We successfully solved this problem
by surface treatment using CYTOP, which extended the experimental time for organic
liquids. The S-MD separation experiment was performed through the flow structure
without the addition of any surfactant, creating a pure environment for the study of organic
synthesis and biotechnology. Through this study, we successfully separated organic S-MDs,
providing a platform for biological experiments and the production of new substances. We
believe that this technology will have a positive impact on research in the fields of organic
synthesis and biotechnology and provide new ideas and methods for the development of
PDMS-based droplet separation systems.
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