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Abstract: We present a systematic review of the methods developed for the synthesis of the aromath-
ecin family of compounds (benz[6,7]indolizino[1,2-b]quinolin-11(13H)-ones) and their derivatives.
These methods can be broadly classified into four categories based on the construction of pentacyclic
structures: Category 1: by constructing a pyridone moiety (D-ring) on the pyrroloquinoline ring
(A/B/C-ring), Category 2: by constructing a pyridine moiety (B-ring) on the pyrroloisoquinolone ring
(C/D/E-ring), Category 3: by constructing an indolizidinone moiety (C/D-ring) in a tandem reaction,
and Category 4: by constructing a pyrrolidine moiety (C-ring) on the isoquinolone ring (D/E-ring).

Keywords: aromathecin family; rosettacin; 22-hydroxyacuminatine; acuminatine

1. Introduction

The indolizidine and quinolizidine moieties, which form the central core of indolizidine
and quinolizidine alkaloids, are widely distributed in nature. It has been reported in the
literature that natural products containing indolizidine and quinolizidine moieties in their
structures exhibit various biological activities [1–3]. As a result, chemical compounds
containing indolizidine or quinolizidine moieties have attracted significant attention from
many medicinal and organic chemists. An indolizidine ring features a five-membered
ring fused with a six-membered ring; these two rings share a nitrogen atom. A quino-
lizidine ring features two fused six-membered rings that share a nitrogen atom. These two
heterocycles are often used together in structure–activity relationship studies of chemical
compounds that contain them. This is because extending the five-membered ring moiety of
indolizidine to a six-membered ring results in the formation of quinolizidine. Figure 1A
shows the camptothecins (1–4), aromathecin family (5–7), and 8-oxoprotoberberine (8),
which contain indolizidine and quinolizidine in their core structures.

Camptothecin (1) was isolated by Wani et al. [1] from the Chinese tree Camptotheca
acuminata in 1966. Camptothecin features a pentacyclic structure where an indolizidin-2-one
ring (C/D-ring) is fused with a quinoline (A/B-ring) and a lactone ring (E-ring). It has been
shown that this alkaloid potently inhibits tumor growth by binding to the topoisomerase I
enzyme (Top1). Subsequently, drug development studies were conducted where 1 was the
lead compound, and irinotecan (2), topotecan (3), and belotecan (4) with substituents on the
A/B-ring were developed for clinical studies. However, the hydrolysis of the E-ring lactone
moiety produces hydroxycarboxylates with a high affinity for the human serum albumin
protein; thus, the E-ring lactone hydrolysis product is responsible for reducing the activity
of the derivatives of 1 [4]. To address this issue, the development of novel anticancer drugs
has focused on the aromathecin family of compounds (benz[6,7]indolizino[1,2-b]quinolin-
11(13H)-ones) where the lactone moiety of 1 is replaced by a benzene ring. To this day, three
members of the aromathecin family are known: rosettacin (5), 22-hydroxyacuminatine (6),
and acuminatine (7). 5 has been synthesized during the investigation of the application
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scope of novel synthetic method for 1, and has been first reported as benz[6,7]indolizino[1,2-
b]quinolin-11(13H)-one in 1969 [5]. It was later named “rosettacin” (5) by Hecht et al. [6].
Together with 1, 6 has been isolated in a very low yield from C. accuminata seeds [7].
Furthermore, it has been reported that rosettacin, its derivatives, and 6 exhibit weak Top1
inhibitory activity. Therefore, aromathecins can be considered as a new class of Top1
inhibitors that can replace camptothecins in the development of therapeutics. To this day,
many approaches to synthesizing aromathecins have been reported.
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Figure 1. (A): camptothecins (1–4), aromathecin family (5–7), and 8-oxoprotoberberine (8) containing
indolizidine and quinolizidine; (B): other typical alkaloids (9–11) containing these two heterocycles
in their core structure.

Additionally, protoberberine alkaloids and their derivatives exhibit a broad range
of biological activities and have been predominantly used as active components in many
traditional medicines, especially in China and other Asian countries [8].

In particular, 8-oxoprotoberberine alkaloids, such as oxypalmatine (8) [9], are tetracyclic
compounds containing quinolizidin-2-one, which carries a carbonyl group in the quinolizidine
moiety of protoberberine. It has been reported that these compounds feature unique structures
and exhibit a wide range of therapeutic properties, including antitumor activity.

It is anticipated that their biological activities have antibacterial, antidiabetic, anti-
cancer, and antihypertensive effects; as a result, they have attracted significant attention.
Many approaches for synthesizing biologically active protoberberine alkaloids have been
reported in the literature.

Furthermore, aromathecin and 8-oxoprotoberberine alkaloids feature similar structures
and both exhibit anticancer activity. It is highly desirable to develop an efficient strategy for
synthesizing both aromathecins and 8-oxoprotoberberines and to conduct structure–activity
relationship studies.
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Additionally, Figure 1B shows other typical alkaloids containing these two heterocycles
in their core structure. Many indolizidine alkaloids with various substituents on a simple
indolizidine ring have been reported in the literature. Since the structure of these natural
products consists of several chiral centers, their structural characteristics and biological
activities have attracted the attention of the research community, and asymmetric synthesis
studies have been conducted. Details have been reported by Michael [2].

The indolizidine alkaloid septicine (9), which carries an aryl group at the 3- and
4-positions of indolizine, was isolated by Russel [10] from Ficus septica, which is a plant
belonging to the Moraceae family; this plant is considered a biogenetic precursor to the
phenanthroindolizidine alkaloid tylophorine (10) [11].

It has been reported that indolizidine alkaloids, such as septicine, exhibit anti-
inflammatory [12] and anticancer activities [13]. On the other hand, phenanthroindolizidine
alkaloids, such as tylophorine (10), are pentacyclic compounds where a phenanthrene ring
is fused with an indolizidine ring.

Furthermore, pentacyclic compounds, such as cryptopleurine (11) [14], are referred
to as phenanthroquinolizidine alkaloids where the indolizidine moiety of phenanthroin-
dolizidine is replaced by quinolizidine.

Phenanthroizidine alkaloids (phenanthroindolizidine and phenanthroquinolizidine),
such as tylophorine (10) and cryptopleurine (11), are a group of plant-derived compounds
that can be potentially used as therapeutic agents. These plant extracts have been used
in herbal medicine, and isolated compounds exhibit various promising therapeutic prop-
erties such as anti-ameobicidal [15], antiviral [16], anti-inflammatory [17] and anticancer
activities [18]. Additionally, they are considered important target molecules by both syn-
thetic and medicinal chemists, and numerous synthetic strategies have been developed to
further investigate their biological activities. Details have been reported by Huang et al. [3].

As mentioned above, various synthetic strategies of natural products, including in-
dolizidine and quinolizidine, have been reported, and significant research on drugs that
can be used in the development of medicines has been conducted.

In this review, we present various strategies that have been developed to this day for
the total synthesis of the aromathecin family of compounds, including the 8-oxoprotoberberine
synthesis. To simplify the discussion, these strategies are broadly classified into four cate-
gories based on their synthetic routes and precursors.

A pentacyclic structure can be constructed using the following methods:

Category 1: by constructing a pyridone moiety (D-ring) on the pyrroloquinoline ring
(A/B/C-ring).
Category 2: by constructing a pyridine moiety (B-ring) on the pyrroloisoquinolone ring
(C/D/E-ring)
Category 3: by constructing an indolizidinone moiety (C/D-ring) in a tandem reaction.
Category 4: by constructing a pyrrolidine moiety (C-ring) on the isoquinolone ring (D/E-ring).

2. Review of Synthetic Methods
2.1. Category 1

Camptothecin (CPT: 1) was isolated by Wani et al. [1] in 1966. Its binding with Top1
showed that it can potently inhibit tumor growth. Subsequently, drug development studies
were conducted considering CPT as the lead compound, and various efficient methods for
synthesizing CPT were reported. Among them, a method for synthesizing aromathecins
was developed to investigate the scope of application of this method.

In this category of synthetic methods, various strategies for synthesizing a pyrrolo-
quinoline ring (A/B/C-ring) have been reported. A pyridone ring (D-ring) is formed to
construct a pentacyclic structure. Three synthetic routes are presented below.

In 1980, Pandit et al. [19] developed a synthetic route for 1 using pyrroloquinoline as
the key compound and reported the total synthesis of 5 as an application of their method.
Initially, the key precursor pyrroloquinoline (15) was synthesized using the method shown
in Scheme 1 [20]. By heating 3-oxopyrrolidine (12) and 2-aminobenzaldehyde (13) together
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with p-toluenesulfonic acid (pTSA) at 190–195 ◦C, the Friedlander reaction occurred, and
N-(ethoxycarbonyl)pyrroloquinoline (14) was obtained with an 88% yield (Scheme 1). To
remove the ethoxycarbonyl group of 14, 14 was treated in 48% hydrobromic acid (HBr)
under reflux conditions to obtain the desired pyrroloquinoline (15) as a stable dihydrobro-
mide salt [21]. Before its use, 15·2HBr was treated using Et3N to obtain a free 15, and the
following reaction was performed without purification. β-Formylamide (17) was obtained
from the reaction of 15 and 3-acetoxyphthalide (16) in the presence of potassium acetate
(KOAc) in toluene at 80 ◦C with a 41% yield. Subsequently, when the amide (17) reacted
with KOAc in acetic acid at 60 ◦C, an intramolecular cyclization reaction occurred, and a
pyridone ring was formed, resulting in the total synthesis of 5 with a 76% yield.
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Scheme 1. Total synthesis of rosettacin from pyrroloquinoline.

In 2003, Cushman et al. [22] synthesized 5 and 8,9-dimethoxyrosettacin (20) as a
derivative to study the structure–activity relationship of tetracyclic indenoisoquinoline
derivatives. Additionally, they evaluated the cytotoxicity and Top1 inhibitory activity of
these two compounds and reported their results.

As shown in Scheme 2, dimesylate (18) [23,24] was treated using liquid NH3 in
tetrahydrofuran (THF) at room temperature (rt) to obtain pyrroloquinoline (15); then,
the excess NH3 was removed. Et3N and THF were added to the resulting solution of
intermediate 15; after stirring for 30 min at rt, bromide (19a) or chloride (19b) was added,
and the mixture was further stirred to obtain 20 and 5 with 53% and 55% yields (in three
steps), respectively.

In 2016, Gao et al. [25] proposed a flexible strategy for the efficient synthesis of CPT
based on a cascade cyclization reaction for the construction of the indolizidinone scaffold.
Additionally, they presented the total synthesis of rosettacin and 22-hydroxyacuminatine.
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3-Aminomethyl-2-ethynylquinoline (26) was synthesized from 2-chloroquinoline-3-
carbaldehyde (21) in six steps (Scheme 3A). A reduction of 21 using NaBH4 in THF followed
by an alcohol treatment using diphenylphosphoryl azide (DPPA) in the presence of 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) in THF was performed to obtain the azide (22). 22
was treated using triphenylphosphine (PPh3) to convert the azido group into an amino
group; then, the amine was treated using Boc2O (Boc: tert-butyloxycarbonyl) to obtain the
N-Boc-amine (23) form with a 78% yield (in four steps). The Sonogashira reaction of 23 with
tetramethylsilyl (TMS)-acetylene (24) in the presence of bis(triphenylphosphine)palladium(II)
chloride (PdCl2(PPh3)2), triethylamine (Et3N), and CuI produced 2-TMS-ethynylquinoline
(25); then, 2-ethynylquinoline (26) was obtained with an 88% yield (in two steps) by treating
25 using K2CO3 in methanol (MeOH) to remove the TMS group.
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Scheme 2. Total synthesis of rosettacin and its derivative from pyrroloquinoline.

Next, as shown in Scheme 3B, the Sonogashira reaction of 26 with triflate (27a,b) in
the presence of PdCl2(PPh3)2, Et3N, and CuI produced 2-arylethynylquinolines (28a,29)
with 70% and 89% yields, respectively. Furthermore, 29 was treated using I2 and potassium
hydroxide (KOH) in MeOH to convert its formyl group into a methoxycarbonyl group, and
the methyl ester (28b) with a 70% yield was produced.

As shown in Scheme 3C, the obtained 28a,b was treated using trifluoroacetic acid
(TFA) in CH2Cl2 to remove its Boc group; then, the resulting crude amine reacted with
Cs2CO3 in MeOH. Exo-type hydroamination initially occurred between the alkyne moiety
and the amino group, and intermediate pyrroloquinolines (30a,b) were produced; then,
spontaneous lactamization resulted in the construction of the indolizidine moiety. As
a result, 5 with a 90% yield was obtained (in two steps), and its derivative (31) was
synthesized. Furthermore, 31 was treated using 2N HCl in MeOH to obtain 6 with a 70%
yield (in three steps). They also reported the synthesis of several aromathecin derivatives
as an application of this synthetic route. In addition, they reported the total synthesis of the
8-oxoprotoberberine alkaloid oxypalmatime and its derivatives using this synthetic route.
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Scheme 3. (A): Synthesis of 2-ethynylquinoline. (B): Synthesis of the key precursor 2-
arylethynylquinolines. (C): Total synthesis of rosettacin and 22-hydroxyacuminatine using a cascade
cyclization reaction of 2-arylethynylquinoline as a key reaction.

2.2. Category 2

In this category, various methods for synthesizing a 2,3-dihydropyrrolo[1,2-b]iso-
quinolin-1,5-dione structure have been reported. A pentacyclic structure can be synthesized
by constructing a quinoline ring (A/B-ring) through the Friedlander reaction between
pyrroloisoquinolin-1,5-dione (C/D/E-ring) and 2-aminobenzaldehyde derivatives. Five
synthetic routes are presented below.
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In 1969, Shamma and Novak [5] developed a method for synthesizing tricyclic
pyrroloisoquinoline-1,5-dione using pyrrolidine-3-one ethylene ketal and reported the
synthesis of rosettacin.

As shown in Scheme 4, the pyrrolidin-3-one ethylene ketal (32) was prepared from
pyrrolidin-3-one and treated using methyl 2-(chlorocarbonyl)benzoate (33) and K2CO3
to produce the amide (34) with an 89% yield. Next, a reduction of 34 using NaBH4 was
performed to obtain an alcohol (35) with a 69% yield, which was then oxidized using
MnO2 to produce an aldehyde (36) with a 92% yield. Subsequently, when 36 was treated
in conc.H2SO4 at rt, the deketalization and cyclization proceeded in one step, producing
pyrroloisoquinoline-1,5-dione (37) with a 55% yield. Finally, the Friedlander reaction of 37
and 2-aminobenzaldehyde (13) with Triton B in EtOH produced 5 with a 62% yield.
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In 2006, Kanazawa et al. [26] reported the synthesis of 22-hydroxyacuminatine using a
flash vacuum pyrolytic (FVP) cyclization and the Friedlander reaction as key reactions.

Initially, hydroxypyridone (38) was treated using Tf2O in pyridine to obtain a triflate
(39) with an 89% yield, followed by the Heck reaction of 39 with methyl 2,4-pentadienoate
(40) in the presence of PdCl2(PPh3)2 and Et3N to obtain an alkene (41) with a 64% yield
(Scheme 5). Next, 41 was subjected to FVP cyclization to obtain pyrroloisoquinolin-5-
one (42) with a 77% yield; to introduce a carbonyl group to the 1-position, a ketone
(43) with a 75% yield was obtained through SeO2 and Dess–Martin periodinane (DMP)
oxidations. The Friedlander reaction of 43 and N-(2-aminobenzylidene)-p-toluidine (44)
with pTSA in toluene produced methoxycarbonyl-rosettacin (45) with a 95% yield, which
was used to construct a quinoline moiety. Finally, a reduction in the ester moiety of 45
using diisobutylaluminium (DIBAL) hydride in CH2Cl2 was performed to obtain 6 with
a 70% yield. Furthermore, the 22-hydroxyacuminatine derivatives synthesized by using
this method and evaluated for antiproliferative activity on cancer cell lines and for Top1
inhibitory activity [27].

In 2008, Daïch et al. [28] developed an efficient method for constructing pyrroloiso-
quinolinone rings where a domino N-amide acylation/aldol-type condensation occurred
between a hydroxybenzotriazole (HOBt) ester and a lactam in the presence of NaH. The
HOBt ester (48) was prepared in a quantitative yield (QY) by treating a 2-(methoxycar-
bonylmethyl)benzoic acid (46) and 1-hydroxybenzotriazole (47) with dicyclohexylcarbodi-
imide (DCC) in THF (Scheme 6). The obtained 48 and 49 reacted with NaH to obtain
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pyrroloisoquinolone (50) with an 82% yield through a key reaction where N-acylation of
the amide followed by intramolecular cyclization proceeded continuously. 50 was treated
using Brederek’s reagent, followed by NaIO4, and the 1-position of 50 was oxidized to
produce pyrroloisoquinoline-1,5-dione (51) with a 60% yield. The Friedlander reaction of
51 and 13 with pTSA in toluene produced 6-methoxycarbonyl-rosettacin (52) with a 51%
yield. Finally, 52 in 48% HBr was heated at 135 ◦C to decarboxylate the methyl ester moiety,
and 5 with a 61% yield was produced.
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In 2012, Park et al. [29] reported a synthesis method for rosettacin; they developed an
efficient and practical rhodium(III)-catalyzed intramolecular annulation of alkyne-tethered
hydroxamic esters for the synthesis of 3-hydroxyalkyl isoquinolones as a key reaction.

N-((5-(Trimethylsilyl)pent-4-yn-1-yl)oxy)benzamide (57) was synthesized using the
method shown in Scheme 7. Pent-4-yn-1-ol (53) and N-hydroxyphthalimide (54) were
treated using PPh3 and diisopropyl azodicarboxylate (DIAD); subsequently, they were sub-
jected to the Mitsunobu reaction to obtain 2-((but-4-yn-1-yl)oxy)isoindoline-1,3-dione (55)
with a 91% yield. Then, 55 reacted with trimethylsilyl trifluoromethanesulfonate (TMSOTf)
in the presence of Zn(OTf)2 and Et3N in CH2Cl2 to obtain 2-((5-(trimethylsilyl)pent-4-yn-1-
yl)oxy)isoindoline-1,3-dione (56) with a 97% yield. Next, 56 was treated using hydrazine to
obtain O-alkoxylamine and then benzoylated to obtain 57 with a 92% yield. 57 was treated
using (Cp*RhCl2)2 and CsOAc in MeOH at 60 ◦C to obtain isoquinolone (58) with a 98%
yield. Subsequently, 58 was treated using DIAD and PPh3 to construct a pyrrolidine ring
using intramolecular Mitsunobu-type cyclization; then, the TMS group was removed using
tetra-n-butylammonium fluoride (TBAF) treatment to obtain pyrroloisoquinolone (59) with
an 89% yield. Subsequently, 59 was subjected to SeO2 and DMP oxidations to obtain a
ketone (37) with an 83% yield. Finally, 5 with a 94% yield was obtained from the reaction of
37 with 44 under Friedlander reaction conditions to construct the quinoline moiety.
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In 2017, Glorius et al. [30] developed an efficient and highly regioselective synthetic
method for isoquinolones by employing a Cp*CoIII-catalyzed intramolecular C–H activa-
tion approach as a key reaction and achieved the total synthesis of rosettacin.

The key precursor N-((pent-4-yn-1-yl)oxy)benzamide (61) was synthesized using a
similar synthetic route, as shown in Scheme 8. Initially, 2-((but-4-yn-1-yl)oxy)isoindoline-
1,3-dione reacted with hydrazine to obtain (pent-4-yn-1-yl)oxyamine (60); then, 60 and ben-
zoyl chloride reacted with K2CO3 in EtOAc-H2O to obtain the desired 61 with a 64% yield.
61 was treated with Cp*Co(CO)I2, AgSbF6, CsOPiv, and PivOH in 2,2,2-trifluoroethanol
(TFE) at 100 ◦C to obtain isoquinolone (62) with an 86% yield. A Mitsunobu reaction of the
isoquinolone 62 with DIAD and PPh3 in THF produced pyrroloisoquinolone (59) with a
93% yield. Subsequently, 59 was subjected to a sequential oxidation using SeO2/PCC to
prepare a ketone (37). 37 and 44 were treated using pTSA in toluene at 130 ◦C to obtain 5
with a 95% yield.
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2.3. Category 3

Transition-metal-catalyzed cyclization reactions via C-H activation have been widely
used as an efficient method for constructing complex molecules. In particular, regarding
the insertion of alkynes into aromatic compounds with different directing groups, a direct
aryl C-H functionalization using these catalysts is a widely investigated reaction, and its
usefulness in synthesizing diverse heterocycles has been demonstrated.

In this category of synthetic methods, the key precursors used are synthesized by
appropriately combining quinoline (A/B-ring), benzamide (E-ring), and alkynes. Then, this
compound reacts in the presence of a transition metal catalyst, and an indolizidinone ring
(C/D-ring) is constructed through a cascade reaction. As a result, a pentacyclic structure is
constructed. Five synthesis routes are presented below.

Eycken et al. [31–33] developed and reported three rhodium(III)-catalyzed synthetic
methods for constructing fused indolizidinone moieties with an aromatic or a heteroaro-
matic ring. By applying these methods, they synthesized rosettacin.

In the first method [31] of the synthesis of fused indolizidinone (2017), an efficient
rhodium(III)-catalyzed intramolecular annulation was developed for benzamides, which
were substituted by an aryl group carrying an alkynyl group on the nitrogen. The syn-
thesis of the key isoquinolone synthesis precursors N-((2-trimethylsilylethynylquinolin-3-
yl)methyl)benzamide (65) was based on the method shown in Scheme 9. The Sonogashira
reaction of 2-chloroquinoline (23) with tert-butyldimethylsilyl (TBS)-acetylene (63) in the



Molecules 2024, 29, 2380 11 of 18

presence of PdCl2(PPh3)2, CuI, and Et3N in toluene produced 2-ethynylquinoline (64). 64
was treated with TFA in CH2Cl2 to remove the Boc group, followed by acylation with ben-
zoyl chloride to obtain the desired 65 with a 50% yield (in three steps). Next, 65 was treated
with (Cp*RhCl2)2, Cu(OAc)2, and CsOAc in t-AmOH at 110 ◦C to obtain 6-TBS-rosettacin
(66) with a 71% yield. Subsequently, 66 reacted with TBAF to remove the TBS group, and
5 was obtained with an 88% yield. In addition, they reported the total synthesis of the
8-oxoprotoberberine alkaloid oxypalmatime using this synthetic route.
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N-substituted benzamides as a key step.

In the second method (2018) [32], an intermolecular cascade annulation of 2-acetylenic
aldehydes with O-substituted N-hydroxybenzamides through a rhodium(III)-catalyzed
C–H activation was developed for the construction of hydroxyindolizidinone moieties.

As shown in Scheme 10, the Sonogashira reaction of 2-chloroquinoline-3-carbaldehyde
(21) and TBS-acetylene (63) with PdCl2(PPh3)2 and CuI in Et3N produced 2-ethynylquinoline
(67). 67 and N-pivaloyloxybenzamide (68) were treated using (Cp*RhCl2)2, CsOAc, and
PivOH in MeCN at 60 ◦C to obtain 6-TBS-rosettacin (69) with a 65% yield. Subsequently, 69
was treated with TBAF to remove the TBS group, followed by treatment using
BF3·Et2O/Et3SiH to produce 5 with a 42% yield in a one-pot synthesis.
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Scheme 10. Total synthesis of rosettacin using intermolecular cascade annulation of 2-acetylenic
aldehydes with O-substituted N-hydroxybenzamides as a key step.
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In the third method (2019) [33], a novel intramolecular cascade annulation of O-
substituted N-hydroxybenzamides was developed for the synthesis of indolizidinones
through a rhodium(III)-catalyzed sequential C(sp2)-H activation and a C(sp3)-H amination.

The synthesis of the key isoquinolone synthesis precursor hydroxamic ester (74)
was based on the method shown in Scheme 11. A reduction of 2-ethynylquinoline-
3-carbaldehyde (67) using NaBH4 in THF-H2O was performed to obtain the alcohol
(70). Then, 70 was treated using CBr4 and PPh3 in CH2Cl2 to convert the hydroxy
group into a bromo group, and N-hydroxyphthalimide reacted with DBU to produce
N-alkyloxyphthalimide (72). Next, 72 was treated using hydrazine in MeOH-CH2Cl2 to
obtain O-alkylhydroxylamine (73). The acylation of 73 and benzoyl chloride with K2CO3
in EtOAc-H2O produced the desired 74. Then, 74 reacted with (Cp*RhCl2)2 and CsOAc
in 1,4-dioxane at 60 ◦C under air to produce 13-hydroxy-6-TBS-rosettacin (69) with a 46%
yield. Subsequently, 69 was treated with TBAF to remove the TBS group, followed by
a reduction of the resulting 13-hydroxyrosettacin under BF3·Et2O/Et3SiH conditions to
obtain 5 with a 46% yield (in two steps).
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In 2018, Evano et al. [34] developed a copper-catalyzed photoinduced radical domino
cyclization reaction of ynamides. In this process, a radical intermediate was generated from
the C-I bond using a copper catalyst, and a 5-exo-dig cyclization reaction occurred on the
C≡C triple bond. As a result, a vinylic radical intermediate was obtained, which was then
cyclized to obtain an arene through a 6-endo-trig process to construct an indolizine ring
and, finally, aromatized to synthesize rosettacin.

The synthesis of the key isoquinolone precursor ynamide (77) was based on the method
shown in Scheme 12. Initially, the acylation of 3-aminomethyl-2-iodoquinoline (75) and ben-
zoyl chloride using Et3N in CH2Cl2 was performed to obtain the benzamide, followed by
treatment of the benzamide and [(trimethylsilyl)ethynyl]phenyliodonium triflate (76) using
potassium bis(trimethylsilyl)amide (KHMDS) in toluene to obtain the desired ynamide (77)
with a 40% yield (in two steps). Next, 77 reacted with [(DPEphos)(bcp)Cu]PF6, Cy2NiBu
and K2CO3 in MeCN in a photoreactor under a 420 nm wavelength irradiation to produce
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6-TMS-rosettacin (78) with a 71% yield. Finally, 78 was treated with TBAF to remove the
TMS group, and 5 with an 88% yield was obtained.
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Scheme 12. Total synthesis of rosettacin using a copper-catalyzed photoinduced radical domino
cyclization reaction of ynamide as a key step.

In 2018, Reddy et al. [35] developed a one-pot method for the efficient synthesis of tetra-
cyclic 7-hydroxyisoindolo[2,1-b]isoquinolin-5(7H)-one scaffold from N-(pivaloyloxy)amides
and 2-alkynyl aldehydes through a rhodium(III)-catalyzed C−H functionalization.

Scheme 13 shows an application of their proposed key reaction for synthesizing
rosettacin. 2-Ethynylquinoline-3-carbaldehyde (80) with a quantitative yield (QY) was
initially synthesized from 2-chloroquinoline-3-carbaldehyde (21) through the Sonogashira
reaction and removal of the TMS group. 80 and N-pivaloyloxybenzamide (68) reacted
with (Cp*RhCl2)2 and CsOAc in acetone to produce 13-hydroxyrosettacin (81) with a 66%
yield. Finally, a reduction of the aminal moiety of 81 using BF3·Et2O/Et3SiH in CH2Cl2
was performed to obtain 5 with a 74% yield.
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2.4. Category 4

In this category of synthetic methods, isoquinolone (D/E-ring) is synthesized to which
quinoline (A/B-ring) is attached. The synthesis is performed by constructing a pentacyclic
structure where a pyrrolidine ring (C-ring) is finally constructed. Three synthesis routes
are presented below.

In 2015, Daïch et al. [36] achieved the synthesis of rosettacin using an N-alkylation
lactam, followed by an aryl radical cyclization of enamides, which contained either a
bromine or a chlorine atom as a radical precursor, as a key reaction.

As shown in Scheme 14, the homophthalic acid (82) was treated using thionyl chloride
(SOCl2) to obtain the homophthalic anhydride (83) with a 98% yield. Subsequently, 83
reacted with N,N-dimethylhydrazine in AcOH by employing reflux to produce an imide
(84) with an 80% yield. After performing a reduction of 84 with NaBH4 in CH2Cl2–MeOH
at 0 ◦C, 3M HCl was added to the reaction mixture and stirred at rt to obtain an enamide
(85) with an 83% yield (in two steps). 85 was then treated using magnesium monoperox-
yphthalate in MeOH to cleave the hydrazine moiety, and isoquinolone (86) with a 68% yield
was obtained. 86 and 2-chloro-3-chloromethylquinoline (87) were treated using K2CO3,
KI, and 18-crown-6 in toluene by employing reflux to obtain N-alkylated isoquinolone (88)
with an 88% yield. Finally, by refluxing 88 in toluene using azobisisobutyronitrile (AIBN)
and tris(trimethylsilyl)silane, a radical cyclization occurred, and the desired 5 with a 45%
yield was synthesized.
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Scheme 14. Total synthesis of rosettacin using an N-alkylation lactam and an aryl radical cyclization
of enamide as a key reaction.

In 2018, Huang et al. [37] reported a method for synthesizing rosettacin using an
N-heterocyclic carbene (NHC)-catalyzed aerobic oxidation of an isoquinolinium salt to
obtain isoquinolone as a key step. The isoquinolinium salt 91 was prepared using 2-
bromo-3-bromomethylquinoline (89) and isoquinoline (90) in MeCN (Scheme 15). 91 was
treated using 2-mesityl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazolium tetrafluoroborate
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(92) and DBU in THF at −40 ◦C air conditions to obtain isoquinolone (93) with a 73% yield.
Subsequently, 93 reacted in the presence of a Pd(OAc)2 catalyst, and a pyrrolidine ring
was formed, and 5 with a 99% yield was synthesized. In addition, they reported the total
synthesis of the 8-oxoprotoberberine alkaloid (±)-gusanlung D and ilicifoline using this
synthetic route.
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In 2023, Choshi et al. [38] developed a method for synthesizing the pentacyclic scaffold
of the aromathecin family by constructing the indolizidinone moiety after the isoquinolone
synthesis as a key step.

The synthesis of the key isoquinolone precursor 2-ethynylbenzaldehyde oxime was
based on the method shown in Scheme 16. 2-Iodo-3-hydroxymethylquinoline (94) and
methyl iodide were treated using NaH to provide 2-iodo-3-methoxymethylquinoline (95)
with an 86% yield. The Sonogashira reaction of 95 with 2-ethynylbenzaldehydes 96a,b
in the presence of PdCl2(PPh3)2, CuI, and Et3N produced benzaldehydes 97a,b with 84%
and 87% yields, respectively. By treating 97a,b and hydroxylamine in the presence of
AcONa, the desired oximes 98a,b were obtained with 86% and 81% yields, respectively.
Subsequently, oximes 98a,b were heated in 1,2-dichlorobenzene (1,2-DCB) at 80 ◦C to obtain
N-oxides 99a,b with 73% and 26% yields, respectively. The Reissert–Henze-type reaction
of 99a,b in Ac2O at 50 ◦C under microwave irradiation produced isoquinolones 100a,b
with 73% and 52% yields, respectively. Finally, 100a was treated using conc.H2SO4 in EtOH
at 110 ◦C to obtain 5 with an 88% yield. However, although 100b reacted under similar
conditions, the desired 22-hydroxyacuminatine (6) was not obtained; instead, acuminatine
(11) with a 79% yield was obtained. In addition, they reported the total synthesis of the
8-oxoprotoberberine alkaloid (alangiumkaloids A and B) using this synthetic route [39].
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be used to efficiently synthesize derivatives, and new anticancer drugs will be developed
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