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Abstract: Quinone imines are important derivatives of quinones with a wide range of applications in
organic synthesis and the pharmaceutical industry. The attack of nucleophilic reagents on quinone
imines tends to lead to aromatization of the quinone skeleton, resulting in both the high reactivity
and the unique reactivity of quinone imines. The extreme value of quinone imines in the construction
of nitrogen- or oxygen-containing heterocycles has attracted widespread attention, and remarkable
advances have been reported recently. This review provides an overview of the application of quinone
imines in the synthesis of cyclic compounds via the domino annulation reaction.
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1. Introduction

With the rapid development of medicinal and natural product chemistry, the diversity
and complexity of organic molecules are increasing [1–6]. Therefore, developing efficient
organic synthesis strategies to cope with this situation is very necessary. By exploring a
series of reliable synthetic methods, it is possible to efficiently construct the structurally
complex molecular frameworks found in natural products and biologically active com-
pounds, including carbocyclic and heterocyclic structures, thereby facilitating the discovery
of potential new drugs and pesticides [7–12]. Among the numerous reported synthetic
strategies, domino reactions have attracted considerable attention due to their potential
to conserve resources, reduce waste generation during the synthesis process, and align
with the principles of green chemistry [13–16]. Most importantly, they enable the rapid
assembly of polycyclic structures from simple starting materials [17–22]. This strategy
has been successfully applied in the synthesis of natural products and bioactive com-
pounds, demonstrating its potential to streamline the construction of complex molecular
architectures [23–26]. By designing new synthons and optimizing domino reaction path-
ways, researchers can efficiently construct complex organic molecular structures and make
breakthroughs in synthesizing natural products and drugs. In addition, domino reactions
can provide ample space for developing new catalysts and reaction conditions to drive
innovation and progress in organic synthesis. As domino reaction technology continues to
be refined, new opportunities are emerging in organic synthesis.

Quinones and their derivatives have attracted increasing attention in organic syn-
thesis because of their wide applications in medicine, pesticides, dyes, energy storage,
and various fine chemical products [27–31]. Quinone imines, as highly reactive elec-
trophiles containing multiple active sites, can be used in aromatic functionalization, am-
ination, and cyclization reactions, providing efficient tools and methods for synthetic
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chemistry [32–39]. In particular, annulation reactions involving quinone imines have
been widely used to efficiently construct heterocycles, especially nitrogen- and oxygen-
containing fused aromatic rings, providing an efficient method for the synthesis of complex
molecules. The disclosed quinone imines mainly include ortho-quinone monoimines, ortho-
quinone diimines, para-quinone monoimines, para-quinone diimines, and quinone imine
ketals, which are defined by the number and locations of the imine groups attached to the
quinone structure (Figure 1). The ortho-quinone monoimines can be used as aza-dienes
for [4 + 2] annulation with alkenes or ketene enolates. The ortho-quinone diimines can be
selected as imines to participate in [2 + n] cyclization reactions, and as 1,4-diazadienes to
undergo [4 + n] cycloaddition reactions. The para-quinone monoimines commonly undergo
[3 + 3] and [3 + 2] annulations. The para-quinone diimines are always used as C–C–N
units to construct indole derivatives. The [3 + 2], [4 + 2], and [5 + 2] annulations can be
achieved using quinone imine ketals as electrophilic species. Although the annulation reac-
tion involving quinone imines has become an efficient platform for obtaining heterocyclic
compounds, there is no comprehensive summary of this research area [40]. Therefore, a
timely and relevant review on this topic is urgently needed, which is important for the
future development of this field. Herein, for the first time, we discuss in detail the recent
advances in the construction of cyclic compounds by the annulation reactions of quinone
imines. This review is organized into five sections according to the types of quinone imines,
including ortho-quinone monoimines, ortho-quinone diimines, para-quinone monoimines,
para-quinone diimines, and quinone imine ketals.
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2. Domino Reactions of Ortho-Quinone Imines
2.1. Domino Reaction of Ortho-Quinone Monoimines

In 2006, Lectka et al. developed an asymmetric [4 + 2] cycloaddition reaction involving
ortho-quinone monoimines 1 and in situ generated ketene enolates (Scheme 1) [41]. In
this report, the ketene enolate intermediates in situ generated from the reaction between
benzoylquinidine C1 and acid chlorides 6 underwent Michael addition to ortho-quinone
monoimines 1, leading to aromatization. Subsequently, intramolecular cyclization led to
the formation of a series of 1,4-benzoxazines 7 in moderate yields and excellent enantiose-
lectivities. Notably, the authors also disclosed a one-pot transformation to enable the highly
stereoselective synthesis of chiral α-amino acid derivatives [42].
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Scheme 1. Asymmetric (4 + 2) cycloaddition of ortho-quinone monoimines and in situ generated
ketene enolates.

Soon after, Chen et al. also developed an organocatalytic enantioselective inverse-
electron-demand hetero-Diels–Alder reaction (HDAR) of ortho-quinone monoimines 1 with
aldehydes 8 (Scheme 2) [43]. The 1,4-benzoxazinones 10 were smoothly obtained with ex-
cellent stereoselectivities (up to 99% ee) after pyridinium chlorochromate (PCC) oxidation.
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Another study on the construction of 1,4-benzoxazine derivatives based on ortho-
quinone monoimines was reported by Peddinti et al. in 2012 (Scheme 3, top) [44]. In
this research, highly reactive ortho-quinone monoimines 1 were in situ generated from
ortho-aminophenol 11 by oxidation with diacetoxyiodobenzene (DAIB) as an oxidizing
agent. The newly generated ortho-quinone monoimines 1 were then captured by vinylic
(thio)ethers 12 to afford the desired 1,4-benzoxazine derivatives 13 in up to 78% yield. In
2020, Zhong et al., also developed an oxidative [4 + 2] cycloaddition of ortho-aminophenols
11 with cyclic enamines 14 (Scheme 3, bottom) [45]. For the mechanism, biomimetic Mn(III)
catalyzed the oxidation of ortho-aminophenols 11 to furnish ortho-quinone monoimines 1,
which underwent the [4 + 2] cycloaddition with cyclic enamines 14 to give various tricyclic
1,4-benzoxazines 15 in up to 94% yield.

In 2021, Beccalli et al. disclosed a divergent oxidative cyclization of in situ generated
ortho-quinone monoimines (Scheme 4) [46]. Selecting hypervalent iodines as the oxidant,
Pd(OAc)2 enabled 6-exo-trig cyclization involving N-allyl-N-tosyl 2-aminophenol 16 to
afford functionalized dihydro-1,4-benzoxazines 17 in a generally good yield. In the absence
of a palladium catalyst, sequential nucleophilic addition and intramolecular Diels–Alder
reactions gave a functionalized tricyclic system 18 in up to 71% yield. The present protocol
featured that the oxidant acted as both a nucleophilic donor and an oxidizing agent. The fol-
lowing year, the group of Broggini developed a copper-catalyzed dimerization/cyclization
reaction involving aminophenols (Scheme 5) [47]. The authors proposed that the ortho-
quinone-type intermediates 24, generated in situ from aminophenols 22 via phenyliodine
diacetate (PIDA) oxidation, underwent a cyclization reaction with 2-benzylamino-phenols
22 to form the key intermediates 25. According to the proposed mechanism, the inter-
mediates 25 could also be produced through an alternative pathway (not shown). The
intermediates 25 was further oxidized by PIDA to generate the intermediates 26, followed
by intramolecular cyclization and oxidation reactions of the intermediates 26, ultimately
furnishing the 5H-oxazolo[4,5-b]phenoxazine compounds 18 in up to 82% yield.



Molecules 2024, 29, 2481 4 of 27Molecules 2024, 29, x FOR PEER REVIEW 4 of 29 
 

 

 

Scheme 3. The oxidative [4 + 2] cycloaddition reaction between newly generated ortho-quinone mo-

noimines and electron-rich olefins. 

In 2021, Beccalli et al. disclosed a divergent oxidative cyclization of in situ generated 

ortho-quinone monoimines (Scheme 4) [46]. Selecting hypervalent iodines as the oxidant, 

Pd(OAc)2 enabled 6-exo-trig cyclization involving N-allyl-N-tosyl 2-aminophenol 16 to af-

ford functionalized dihydro-1,4-benzoxazines 17 in a generally good yield. In the absence 

of a palladium catalyst, sequential nucleophilic addition and intramolecular Diels–Alder 

reactions gave a functionalized tricyclic system 18 in up to 71% yield. The present protocol 

featured that the oxidant acted as both a nucleophilic donor and an oxidizing agent. The 

following year, the group of Broggini developed a copper-catalyzed dimerization/cycliza-

tion reaction involving aminophenols (Scheme 5) [47]. The authors proposed that the or-

tho-quinone-type intermediates 24, generated in situ from aminophenols 22 via phenylio-

dine diacetate (PIDA) oxidation, underwent a cyclization reaction with 2-benzylamino-

phenols 22 to form the key intermediates 25. According to the proposed mechanism, the 

intermediates 25 could also be produced through an alternative pathway (not shown). The 

intermediates 25 was further oxidized by PIDA to generate the intermediates 26, followed 

by intramolecular cyclization and oxidation reactions of the intermediates 26, ultimately 

furnishing the 5H-oxazolo[4,5-b]phenoxazine compounds 18 in up to 82% yield. 

 

Scheme 3. The oxidative [4 + 2] cycloaddition reaction between newly generated ortho-quinone
monoimines and electron-rich olefins.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 29 
 

 

 

Scheme 3. The oxidative [4 + 2] cycloaddition reaction between newly generated ortho-quinone mo-

noimines and electron-rich olefins. 

In 2021, Beccalli et al. disclosed a divergent oxidative cyclization of in situ generated 

ortho-quinone monoimines (Scheme 4) [46]. Selecting hypervalent iodines as the oxidant, 

Pd(OAc)2 enabled 6-exo-trig cyclization involving N-allyl-N-tosyl 2-aminophenol 16 to af-

ford functionalized dihydro-1,4-benzoxazines 17 in a generally good yield. In the absence 

of a palladium catalyst, sequential nucleophilic addition and intramolecular Diels–Alder 

reactions gave a functionalized tricyclic system 18 in up to 71% yield. The present protocol 

featured that the oxidant acted as both a nucleophilic donor and an oxidizing agent. The 

following year, the group of Broggini developed a copper-catalyzed dimerization/cycliza-

tion reaction involving aminophenols (Scheme 5) [47]. The authors proposed that the or-

tho-quinone-type intermediates 24, generated in situ from aminophenols 22 via phenylio-

dine diacetate (PIDA) oxidation, underwent a cyclization reaction with 2-benzylamino-

phenols 22 to form the key intermediates 25. According to the proposed mechanism, the 

intermediates 25 could also be produced through an alternative pathway (not shown). The 

intermediates 25 was further oxidized by PIDA to generate the intermediates 26, followed 

by intramolecular cyclization and oxidation reactions of the intermediates 26, ultimately 

furnishing the 5H-oxazolo[4,5-b]phenoxazine compounds 18 in up to 82% yield. 

 

Scheme 4. The switchable oxidative reactions of N-allyl-2-aminophenols.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 29 
 

 

Scheme 4. The switchable oxidative reactions of N-allyl-2-aminophenols. 

 

Scheme 5. The oxidative dimerization/cyclization of 2-benzylaminophenols. 

2.2. Domino Reaction of Ortho-Quinone Diimines 

The ortho-quinone diimines are a class of structurally stable variants that possess 

structural motifs including diene, imine, and 1,4-diazadiene. Based on these features, they 

can serve as arylation reagents for 1,4-conjugate addition [48,49], as imines to participate 

in [2 + n] cyclization reactions, and as 1,4-diazadienes to undergo [4 + n] cycloaddition 

reactions. 

There is only one study using ortho-quinone diimines as imines to participate in a 

domino reaction. In 2005, Nair et al. developed a three-component [3 + 2] cycloaddition 

reaction of ortho-quinone diimines, dimethyl acetylenedicarboxylate (DMAD), and isocy-

anates, which led to the construction of the spiroiminolactam derivatives 30 in moderate 

yields (up to 64%) (Scheme 6) [50]. In the transformation, the reaction between DMAD 28 

and isocyanate 29 smoothly generated a zwitterionic intermediate, which then underwent 

a 1,3-dipolar cycloaddition reaction with the imine group of the ortho-quinone diimine to 

furnish spiroiminolactam. 

 

Scheme 6. The three-component [3 + 2] cycloaddition involving ortho-quinone diimines. Cy, cyclo-

hexyl. 

The main application of ortho-quinone diimines 2 is mainly focused on using them as 

1,4-diazadienes to participate in [4 + 2] cycloaddition for constructing dihydroquinoxaline 

derivatives. In 2006, Lectka et al. successfully developed the asymmetric [4 + 2] cycload-

dition reaction between ortho-quinone diimines 2 and acid chlorides 6 (Scheme 7) [51]. In 

the reaction process, benzoylquinidine C1 and Hünig’s base cooperatively activated the 

acid chlorides 6 to generate ketene enolates, which then underwent [4 + 2] cycloaddition 

with Lewis acid-activated ortho-quinone diimines 2, resulting in the formation of biologi-

cally active quinoxalinone derivatives 31 with excellent stereoselectivities (all cases >99% 

Scheme 5. The oxidative dimerization/cyclization of 2-benzylaminophenols.



Molecules 2024, 29, 2481 5 of 27

2.2. Domino Reaction of Ortho-Quinone Diimines

The ortho-quinone diimines are a class of structurally stable variants that possess struc-
tural motifs including diene, imine, and 1,4-diazadiene. Based on these features, they can
serve as arylation reagents for 1,4-conjugate addition [48,49], as imines to participate in [2 + n]
cyclization reactions, and as 1,4-diazadienes to undergo [4 + n] cycloaddition reactions.

There is only one study using ortho-quinone diimines as imines to participate in a
domino reaction. In 2005, Nair et al. developed a three-component [3 + 2] cycloaddition
reaction of ortho-quinone diimines, dimethyl acetylenedicarboxylate (DMAD), and isocyanates,
which led to the construction of the spiroiminolactam derivatives 30 in moderate yields
(up to 64%) (Scheme 6) [50]. In the transformation, the reaction between DMAD 28 and
isocyanate 29 smoothly generated a zwitterionic intermediate, which then underwent a
1,3-dipolar cycloaddition reaction with the imine group of the ortho-quinone diimine to
furnish spiroiminolactam.
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The main application of ortho-quinone diimines 2 is mainly focused on using them as
1,4-diazadienes to participate in [4 + 2] cycloaddition for constructing dihydroquinoxaline
derivatives. In 2006, Lectka et al. successfully developed the asymmetric [4 + 2] cycloaddi-
tion reaction between ortho-quinone diimines 2 and acid chlorides 6 (Scheme 7) [51]. In the
reaction process, benzoylquinidine C1 and Hünig’s base cooperatively activated the acid
chlorides 6 to generate ketene enolates, which then underwent [4 + 2] cycloaddition with
Lewis acid-activated ortho-quinone diimines 2, resulting in the formation of biologically
active quinoxalinone derivatives 31 with excellent stereoselectivities (all cases >99% ee).
It is worth mentioning that the selective removal of nitrogen protecting groups could be
achieved by trifluoroacetic acid (TFA) to furnish the compounds 32.

In 2009, Chen et al. reported the asymmetric inverse-electron-demand HDAR be-
tween N-benzoyl ortho-quinone diimine 2 and aldehydes 8 (Scheme 8) [39]. Under the
catalysis of proline-derived siloxane C2 and benzoic acid, the reaction exhibited excellent
enantioselectivities (95–99% ee). Another cyclization reaction of ortho-quinone diimines
2 with aldehydes 39 was disclosed in 2019 (Scheme 9) [52]. In this report, the chiral N-
heterocyclic carbene C4 activated α-haloaldehydes 39 to generate enol intermediates, which
then underwent [4 + 2] cycloaddition reactions with ortho-quinone diimines 2 to give chiral
dihydroquinoxaline products 40 with generally excellent ee values (92–98%).

The cycloaddition reaction of in situ generated ortho-quinone diimines represents a
powerful tool for streamlining the synthesis of functionalized tetrahydroquinoxalines and
has potential applications in the construction of nitrogen-containing heterocycles. Recently,
Zhong et al. employed an in situ oxidative activation strategy to accomplish a [4 + 2]
cyclization reaction between ortho-phenylenediamine 41 and alkenes 12 (Scheme 10) [53].
This transformation is compatible with a range of alkene derivatives, such as styrenes,
vinylic (thio)ethers, benzofurans, and indoles, affording a series of tetrahydroquinoxaline
derivatives 42 in up to 94% isolated yield.
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Scheme 10. The [4 + 2] cyclization reaction between in situ formed ortho-quinone diimines and
electron-rich olefins.

More recently, Mei et al. reported, for the first time, the diversity-oriented catalytic
asymmetric dearomatization of indoles 43 through reacting with ortho-quinone diimides 2
(Scheme 11) [54]. When 2,3-dimethylindoles were involved in the asymmetric dearomatization
with chiral phosphoric acid C5 as the catalyst, the arylation reaction afforded the products 44
with high reactivity and excellent stereoselectivity (68–93% yields, 92–99% ee). The reaction
of tryptophols/tryptamines with ortho-quinone diimides could also be realized via a sequen-
tial dearomatization–cyclization process, leading to polycyclic indoline skeletons 45 that are
widely present in biologically active compounds. Moreover, the dearomatic [4 + 2] cycload-
dition reactions between ortho-quinone diimides and 3-substituted indoles were facilitated
by chiral phosphoric acid C6. This transformation proceeded with high yields and excellent
stereoselectivities, resulting in the fused indolines 46 in 76–96% yields with 63–98% ee.
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3. Domino Reactions of Para-Quinone Imines
3.1. Domino Reaction of Para-Quinone Monoimines

In 2010, Jørgensen et al. presented the [3 + 2] cycloaddition of aldehydes with in situ
formed para-quinone monoimines by combining electrocatalysis and asymmetric organic
catalysis (Scheme 12) [55]. Anodic oxidation of N-toluenesulfonyl-4-aminophenol 50a
proceeded smoothly to give para-quinone monoimine. The in situ generated para-quinone
monoimine reacted with aldehydes 8 under the catalysis of proline-derived siloxane C2 to
furnish corresponding products 51, which smoothly converted into the final products 52 by
treatment with NaBH4. In addition, the developed transformation could also be achieved
via the chemical oxidation process in 70–98% yields with 93–98% ee values.
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Scheme 12. The enantioselective [3 + 2] cycloaddition of aldehydes with in situ formed para-
quinone monoimines.

In 2014, Zhang et al. pioneered the asymmetric domino cyclization reaction involving
para-quinone monoimines (Scheme 13) [56]. Under the catalysis of chiral phosphoric
acid C5, 3-substituted indoles 43 underwent an asymmetric [3 + 2] cyclization reaction
with para-quinone monoimines 3, successfully affording a series of benzofuroindoline
derivatives 53 with high stereoselectivities (up to 99% ee). This transformation features
that the bifunctional phosphoric acid C5 activated both the 3-methylindoles and the para-
quinone monoimines (shown as 54). The 3-substituted indoles attacked the para-quinone
monoimines from the Re face to give the intermediates 55, which were promptly aromatized
to produce the phenol intermediates 56. Subsequently, an intramolecular cyclization
occurred to generate the final products 53.

In 2015, Shi et al. successfully developed a three-component [3 + 3] cycloaddition
reaction involving para-quinone monoimines, aldehydes, and amino-esters (Scheme 14,
top) [57]. Under the catalysis of GaBr3, the condensation of aldehydes 8 with amino-esters
57 resulted in the formation of azomethine ylides 60, which completed the Michael addition
reaction with para-quinone monoimines to form intermediates 63. After keto-enol tautomer-
ization, the generated intermediates 64 underwent intramolecular cyclization reactions,
leading to the formation of dihydrobenzoxazine derivatives 58 in 41–98% yields. The in situ
generated azomethine ylides 60 might also undergo a formal [3 + 2] cycloaddition process
with the C=C bond of para-quinone monoamines to give compounds 59 but not the major
products. Subsequently, Guo and his collaborators also reported the [3 + 3] cycloaddition
reaction between para-quinone monoimines 3 and the azomethine ylide precursor 65 using
racemic binaphthol-derived phosphoric acid C7 as a catalyst, in which the transformation
furnished dihydrobenzoxazine derivatives 58 in up to 96% yield (Scheme 14, bottom) [58].
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The Shi group also demonstrated the catalytic asymmetric [3 + 2] cycloaddition of
para-quinone monoimine 3 with 3-vinylindoles 69 (Scheme 15) [59]. The cyclization prod-
ucts 70 were obtained in generally high yields with good to excellent stereoselectivities (up
to 99% yield, 95:5 dr, 96:4 er), and no formal [4 + 2] cyclization products 71 were observed.
In the reaction process, the spiro-chiral phosphoric acid C8 promoted the enantioselective
vinylogous Michael addition of 3-vinylindoles 69 to para-quinone monoimines 3 via the
transition state 72 and formed the transient intermediate 73, which then underwent in-
tramolecular oxa-Michael addition to give the chiral indole-based 2,3-dihydrobenzofuran
derivatives 70. In the same year, Zhang et al. developed the asymmetric [3 + 2] cyclization
reaction between para-quinone monoimines 3 and cyclic enamines 14 under the catalysis of
chiral phosphoric acid C5 (Scheme 16) [60]. Various polycyclic 2,3-dihydrobenzofurans 74
were obtained in moderated to excellent enantioselectivities (11–99% ee). In their report, the
acyclic enamines could also undergo the desired transformation but exhibited very poor
diastereoselectivities. Moreover, the para-quinone monoimine or cyclic enamine bearing a
methyl group was not suitable for the developed protocol (not shown).
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Scheme 16. The asymmetric [3 + 2] cyclization reaction between para-quinone monoimines and
cyclic enamines.

Co-catalysis involves the collaborative action of two or more catalysts to enhance a
chemical reaction. These catalysts can carry out distinct functions, such as triggering differ-
ent substrates, expediting various reaction steps, or boosting the effectiveness. By working
in tandem reaction, co-catalysis often results in an increased reaction speed, selectivity,
and overall efficacy compared to using a single catalyst [61]. Jiang et al. developed the
first example of an Ag/Sc-catalyzed transformation involving para-quinone monoimine
(Scheme 17) [62]. The disclosed reaction features an Ag/Sc-catalyzed 6-endo-dig cyclization
reaction of aromatic ortho-alkynyl ketones 75 to furnish intermediates 78, which underwent
a proton transfer to give 1-naphthols 79 with simultaneous release of the Ag catalyst. The
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formed 1-naphthols 79 underwent a 1,4-addition reaction with para-quinone monoimines
to give intermediates 80, which then aromatized, followed by an intramolecular cycliza-
tion and dehydrogenation, finally providing tetracyclic naphtho[1,2-b]benzofurans 76 in
moderate yields (46–62%).
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Scheme 17. Silver/scandium-catalyzed transformation involving para-quinone monoimines and
β-alkynyl ketones.

Spiroketal moieties are commonly found in natural products and pharmaceutical com-
pounds, and they can impart unique biological characteristics and chemical reactivity to
molecules. Xu et al. first developed the synthesis of spirocyclic compounds with a spiroke-
tal skeleton by using para-quinone imines as three-atom building blocks (Scheme 18) [63].
Under the action of a gold catalyst, 2-ethynylbenzyl alcohol 82 underwent intramolec-
ular 5-exo-dig cyclization to form enol ether intermediates 84. The Michael addition of
intermediates 84 to para-quinone monoimines 3 afforded intermediates 85, followed by
intramolecular cyclization to generate the desired 5,5-benzannulated spiroketals 83 in up
to 93% yield.
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Scheme 18. Gold-catalyzed cycloisomerization-spiroketalization of 2-ethynylbenzyl alcohol with
para-quinone monoimines.

Pterocarpen derivatives exhibit a wide range of biological activities, including anti-
HCV and antiestrogen properties [64–66]. Therefore, the efficient construction of these
compounds has increasingly attracted the attention of synthetic chemists. In 2019, Zhang
et al. presented the efficient synthesis of a novel class of pterocarpen analogs 87 through
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a [3 + 2] cyclization–elimination reaction between para-quinone monoimines 3 and α,α-
dicyanoolefins 86 (Scheme 19) [67]. Using triethylamine (TEA) as a catalyst, the α,α-
dicyanoolefins 86 underwent a Michael addition reaction with para-quinone imines 3,
followed by aromatization to generate intermediates 89. Subsequently, the intramolecular
cyclization reaction occurred to form the intermediates 90, which then eliminated malonon-
itrile to produce the final products 87 in up to 75% yield. It should be noted that a benzo-
five-membered ring, benzo-seven-membered ring, and 2-cyclohexylidenemalononitrile did
not react with the para-quinone imine under standard conditions.
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Scheme 19. TEA-catalyzed [3 + 2] cyclization-elimination cascade of α,α-dicyanoolefins with para-
quinone monoimines.

The first example of an asymmetric cycloaddition reaction between para-quinone
monoimines generated by in situ oxidation and substituted indoles 43 was demonstrated
by Zhong et al. (Scheme 20) [68]. In this report, the (salen)Mn(III) complex C3 was used
as a biomimetic surrogate of the metallocofactor to accomplish the in situ oxidation of
4-hydroxyanilines 50 for generating transient para-quinone monoimines 3. Subsequent
catalysis by chiral phosphoric acid C9 induced the annulation of para-quinone monoamine
3 with substituted indoles 43, resulting in the formation of chiral benzofuroindoline deriva-
tives 91 in moderate to excellent yields with excellent stereoselectivities.

The asymmetric dearomatization reaction, one of the efficient approaches for the
synthesis of chiral heterocycles, has received wide attention from chemists [69–71]. Over
the past 10 years, a variety of aromatic compounds, including naphthol, indole, benzofuran,
and benzothiophene, have been used in asymmetric dearomative reactions. In contrast,
the asymmetric dearomative cyclization of isoxazoles has only recently been achieved.
In 2020, the Zhang group first reported the chiral phosphoric acid-catalyzed asymmetric
dearomative cyclization reaction of 5-amino-isoxazoles 93 (Scheme 21) [72]. Chiral phos-
phoric acid C10 catalyzed the enantioselective dearomative [3 + 2] annulations between
5-amino-isoxazoles 93 and para-quinone monoimines 3 in 1,2-dimethoxyethane (DME)
at 0 ◦C to give the corresponding polycyclic compounds 94. Furthermore, the reactions
involving ethyl 4-acetate-isoxazol-5-amines and para-quinone monoimines afforded the
bridged polycyclic scaffolds 95 in moderate yields with high ee values. Recently, the
Zhang group also disclosed the dearomative cyclization reaction of 4-amino-isoxazoles 99
(Scheme 22) [73]. Similar to their previous report, highly enantioselective [3 + 2] annulation
of 4-amino-isoxazoles 99 with para-quinone monoimines 3 was achieved under the catalysis
of chiral phosphoric acid C11, providing access to structurally diverse isoxazoline-fused
dihydrobenzofurans 100 with generally excellent enantioselectivities.
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Scheme 22. Chiral phosphoric acid-catalyzed enantioselective dearomative [3 + 2] annulation of
4-amino-isoxazoles with para-quinone monoimines.

In 2021, Zhang et al. also demonstrated an enantioselective [3 + 2] annulation in-
volving para-quinone monoimines 3 and 3-hydroxymaleimides 104 (Scheme 23) [74]. The
chiral phosphoric acid C5 catalyzed the transformation to produce fused succinimide and
dihydrobenzofuran 105 with generally excellent results (up to 99% yield, 99% ee).
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Scheme 23. Chiral phosphoric acid-catalyzed enantioselective [3 + 2] annulation of 3-hydroxymaleimides
with para-quinone monoimines.

The [3 + 3] cyclization reaction involving para-quinone monoimines was reported by
Zhen et al. in 2021 (Scheme 24) [75]. In their report, 2-indolylmethanols 108 acted as nucle-
ophiles at the C3-position attacking para-quinone monoimines 3 to form the intermediates
110, which underwent proton transfer and loss of water to form the intermediates 111.
A final intramolecular nucleophilic attack led to the formation of the desired cyclization
products 109 in good to excellent yields.
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Scheme 24. The formal [3 + 3] cyclization reaction of 2-indolylmethanols with para-quinone monoimines.

Zhang et al. also developed a divergent reaction between para-quinone monoimines 3
and α-cyano-α-arylacetates 112. In 2019, they found that tandem conjugate addition and
C–O ester migration occurred in refluxing acetonitrile to give various 2,2-diarylacetonitriles
in generally good yields (not shown) [76]. In 2021, they found that an organic base could
also promote the [3 + 2] cycloaddition reaction of para-quinone monoimines 3 with α-cyano-
α-arylacetates 112 but resulted in the formation of 2-aminobenzofuran 113, which was pro-
tected with di-tert-butyl dicarbonate to give 114 in moderate to good yields (Scheme 25) [77].
For the reaction mechanism, 1,4-diazabicyclo[2.2.2]octane (DABCO) promoted the depro-
tonation of phenyl α-cyano arylacetates 112 to give enolates 115. Nucleophilic addition
of the enolates 115 to para-quinone monoimines followed by aromatic rearrangement and
protonation led to the formation of intermediates 117. Then, the nucleophilic addition of
DABCO to intermediates 117 gave zwitterions 119, and subsequent C−C cleavage and
intramolecular proton transfer generated intermediates 121. Finally, the intramolecular
nucleophilic addition of the phenoxy anion to the nitrile group led to the cyclization process
to form intermediates 123, which then isomerized to form the final products 113.
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In 2022, Xu et al. reported the successful construction of spiro-fused 2,3-dihydrobenzofurans
126 via a one-pot three-component cyclization reaction of para-quinone monoimines, 2-
aminoacetophenones, and isocyanates (Scheme 26) [78]. Under Lewis acid catalysis, the
[4 + 2] cyclization reaction of 2-aminoacetophenones 124 and isocyanates 125 smoothly gen-
erated an intermediate 129, which subsequently underwent a domino [3 + 2] cyclization re-
action with para-quinone monoimines 3, affording the spiro-fused 2,3-dihydrobenzofurans
126 in a maximum yield of 92%.
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3.2. Domino Reaction of Para-Quinone Diimines

Cyclization reactions involving para-quinone diimines are commonly used to construct
nitrogen-containing heterocycles. Currently, the cyclization reactions of para-quinone di-
imines are mainly categorized into two types: one involving their use as the C–N unit in
[3 + 2] cycloaddition reactions to construct spirocyclic compounds, and the other involv-
ing their participation as the C–C–N unit in [3 + 2] cycloaddition reactions to construct
polycyclic compounds.

There is only one reported case of using para-quinone diimines as a C–N unit to
construct the spirocyclic framework. Nair et al. investigated a three-component [3 + 2] cy-
cloaddition reaction involving para-quinone diamines 4, dimethyl acetylenedicarboxylates
(DMADs) 28, and isocyanides 131 (Scheme 27) [50]. The reaction mechanism involved the
nucleophilic attack of isocyanides 131 on DMADs 28, resulting in the in situ formation of
zwitterionic species 133, and finally a 1,3-dipolar cycloaddition with the imine group of the
para-quinone diimines to furnish γ-iminolactams 132 in up to 72% yield.

In 2018, Chandra et al. developed the first asymmetric [3 + 2] cycloaddition reaction
involving para-quinone diimides (Scheme 28) [79]. In the presence of quinine-derived
bifunctional thiourea C12, the α-cyanoacetates 112 first underwent nucleophilic attack
to para-quinone diimides 4, followed by aromatization, proton transfer, and intramolec-
ular cyclization processes to afford chiral fused cyclic imidines 136 with up to a 91% ee
value. Through DFT calculations, the authors suggested that multiple hydrogen bonds and
tertiary amine in the chiral catalyst activated the quinone diimides and α-cyanoacetates,
respectively, facilitating the interaction between the substrates and leading to the formation
of the key chiral intermediates.
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Scheme 28. Organocatalyzed asymmetric [3 + 2] cycloaddition reaction between para-quinone
diimides and α-cyanoacetates.

Masson et al. described the synthesis of chiral 2,3-disubstituted indolines with the
[3 + 2] cycloaddition of enamides and para-quinone diimides under the catalysis of chi-
ral phosphoric acid (Scheme 29) [80]. For acyclic enamides 137, chiral phosphoric acid
C5-catalyzed [3 + 2] cycloaddition reactions provided indoline derivatives 138 in good to
excellent yields with moderate diastereoselectivities and generally excellent enantioselec-
tivities. In the presence of chiral phosphoric acid C13, the [3 + 2] cycloaddition reactions
between cyclic enamides 14 and para-quinone diimides 4 showed better stereoselectivities,
allowing for the formation of polycyclic compounds 139 with the highest enantiomeric
excess (up to >99% ee).

In 2023, Wan et al. also used enamide derivatives as the C–C unit to achieve a
formal [3 + 2] cycloaddition reaction with para-quinone diimides (Scheme 30) [81]. Under
Zn(OTf)2 catalysis, the isomers 143 of enamide ketones underwent a 1,4-nucleophilic
addition reaction with para-quinone diimides 4 to give intermediates 144. The aromatization
and intramolecular cyclization reaction of intermediates 144 led to the formation of the
intermediate 146. Finally, the elimination of HNMe2 resulted in the formation of indoles
141 in moderate to good yields. Of note, this protocol has potential applications in the
derivatization of certain natural products.
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4. Domino Reactions of Quinone Imine Ketals

Quinone imine ketals (QIKs) have been widely used as aryl group surrogates in organic
chemistry. Although Swenton et al. prepared and reported the first stable and separable
QIK in 1986 [82], the low reaction selectivity caused by multiple reactive sites severely limits
their application. However, with recent advances in catalytic selectivity, the use of QIKs in
organic synthesis has gradually expanded. Currently, chemical transformations involving
QIKs include carbon functionalization and annulation. Research on the cycloaddition
reactions involving QIKs mainly includes [2 + n] annulation, formal [4 + 2] cycloaddition,
[3 + 2] cycloaddition, and [5 + 3] annulation.
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The [2 + n] annulation reactions involving QIKs include their participation as C–
N units in [2 + 4] and [2 + 2] cycloaddition reactions, as 4C units in a formal [4 + 2]
cycloadditions reaction, and as dienophiles in Diels–Alder reactions. Swenton and Chou
first illustrated the application of QIKs as C–N units in the synthesis of natural products [83].
In 2011, Reisman et al. used the chiral N-tert-butanesulfinyl QIK 5 as a C–N unit to react
with an organometallic reagent and realized the [2 + 4] annulation in 2011. With the obtained
chiral product 148 as a key intermediate, they also performed the six-step enantioselective
total synthesis (−)-3-demethoxyerythratidinone 149 (Scheme 31) [84]. In 2020, Cheng et al.
also developed DABCO-catalyzed [2 + 2] cycloaddition reactions between QIKs 5 and
allenoates 150 to generate functionalized azaspirocycles 151 in moderate to excellent yields
(Scheme 32) [85].
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Scheme 32. Organocatalyzed [2 + 2] cycloaddition reactions between QIKs and allenoates.

In 2016, Fan et al. used 2-alkynyl QIKs as the 4C building block to successfully
developed a metal-free three-component domino reaction that resulted in a series of func-
tionalized quinoline derivatives with yields up to 90% (Scheme 33) [86]. During the reaction
process, a secondary amine 153 reacted with QIKs 5 to form intermediates 156, which sub-
sequently underwent transamination and aromatization to give intermediates 158. The
secondary amines 153 acted as nucleophiles on the triple bond in intermediates 158 to
direct the intramolecular nucleophilic cyclization, giving intermediates 159, followed by
the retro-Strecker reaction to generate the desired products 155.

The only reported case of Diels–Alder reaction involving QIKs was reported by
Maruoka in 2015 (Scheme 34) [87]. In their study, the selection of axially chiral dicar-
boxylic acids as the catalyst enabled the high-yield construction of chiral cycloadducts.
More importantly, when asymmetric QIKs were used in the developed transformation,
changing the type of catalyst led to the selective reaction of the C=C bond. When the chiral
dicarboxylic acid C14 was used as the catalyst, the cyclization reaction took place at the
unsubstituted C=C bond of QIKs, giving the corresponding products 161 in up to 85% yield
and a 96% ee value. The chiral dicarboxylic acid C15 promoted the reaction to occur at
the more sterically hindered C=C bond, providing the cycloadducts 163 bearing a chiral
all-carbon quaternary center with generally good stereoselectivities.
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In the study of the [3 + 2] cycloaddition reaction involving QIKs, Zhang et al. con-
ducted extensive research and successfully constructed a series of indoline derivatives. In
2014, they first developed the formal [3 + 2] reaction between QIKs 5 and 3-methylindoles 43
(Scheme 35, top) [88]. Under the Zn(OTf)2 catalysis, the elimination of the methoxy group
in QIK produced the quinone imine oxonium 165, which was then subjected to nucleophilic
addition by 3-methylindole to form the intermediate 166. Subsequently, the aromatization
and intramolecular cyclization led to the final product 164 in up to 86% yield. Subsequently,
they also developed a Cu(OTf)2-catalyzed [3 + 2] annulation cyclization reaction involv-
ing acyclic QIKs 5 and enamides 137, successfully constructing 2-carbamate-indolines
compounds 168 with a maximum yield of 86% (Scheme 35, bottom) [89].
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In 2022, Zhang et al. also reported a Sc(OTf)3-catalyzed dearomative [3 + 2] annula-
tion reaction involving QIK 5 and 5-amino-isoxazolines 169, which led to the synthesis
of a series of indoline-fused isoxazolines 170 in moderate to high yields with excellent
diastereoselectivities (Scheme 36) [90]. The reported reaction mechanism is similar to their
previous findings.
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The Yan group successfully utilized QIKs 5 as 1,4-nucleophilic addition acceptors
to participate in the Michael/aza-Michael addition reaction with acyclic enamines 137,
achieving the synthesis of molecularly diverse bridged ring compounds 174 in excellent
yields (Scheme 37) [91]. Recently, Sun et al. performed a detailed study on the divergent
transformation of QIKs (Scheme 38) [92]. By varying the type of Lewis acid and additives,
they were able to achieve carbon functionalization (not shown) and annulation. Using
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst, cascade Michael/oxa-Michael
addition reactions were successfully performed, yielding oxygen-bridged compounds 176
in excellent yields. In the presence of trifluoromethanesulfonic acid (TfOH), hydrolysis
of the QIKs produced the para-quinone monoimines 3, followed by the preferential attack
from the β-ketoesters 175. Subsequent aromatization led to the formation of the interme-
diate 182. TfOH promoted the dehydration of intermediates 182 to give the benzofuran
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derivative 177. In the absence of water, iron bromide and TfOH jointly catalyzed the
reaction between β-ketoesters 175 and QIKs 5 to achieve C2-site alkylation and to give
intermediates 180. Subsequent aromatization and dehydration led to the formation of the
indole derivatives 178.
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Scheme 38. Acid-regulated divergent catalytic reaction between QIKs and 1,3-dicarbonyl compounds.

Chen et al. further explored the possibilities of using QIKs to construct chiral polycyclic
compounds. In 2016, they reported a sequential asymmetric multi-step cyclization of QIKs
5 and 2,4-dienals 183 under the catalysis of proline-derived siloxane C2, and salicylic
acid (Scheme 39) [93]. Via a domino Diels–Alder–aromatization–hemiaminal formation
sequence, chiral benzo[d,e]quinolone derivatives 184 were obtained in good yields with
excellent enantiocontrol. Further transformations of the products were also investigated,
providing additional chiral polycyclic compounds.
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5. Summary and Outlook

As described in this review, the widespread application of quinone imines in the
efficient construction of cyclic compounds, especially nitrogen-containing heterocycles, has
gained considerable attention from numerous research groups. Several quinone imines,
including preformed and in situ generated quinone imines, have been designed, synthe-
sized, and used in cyclization reactions. The use of quinone imines is widespread in the
construction of polycyclic, spirocyclic, and bridged ring compounds. However, further
research is required to overcome some of the remaining challenges. These challenges
include, but are not limited to, the following issues. For ortho-quinone monoimines, their
transformation only covers [4 + 2] cyclization reactions, which restricts the application of
this class of compounds. Exploring other types of cyclizations to construct structurally
diverse heterocyclic compounds is necessary. The cyclizations of ortho-quinone diimines are
only used to construct five- and six-membered heterocyclic rings through [3 + 2] and [4 + 2]
cyclization reactions, so it is desirable to synthesize medium-sized rings. The para-quinone
imines are mainly selected as C–C–O(N) building blocks to participate in the [3 + n] cy-
cloaddition reactions for the construction of oxygen- or nitrogen-containing heterocycles,
but there are no reports of their involvement as C–C building blocks in annulation reac-
tions. The QIKs exhibit versatile and flexible applications in domino reactions, including
participation as a C–N unit in [2 + n] annulation reactions, serving as a C–C–N moiety
for [3 + 2] cycloadditions, acting as a dual receptor for the construction of bridged ring
compounds, functioning as a dienophile in Diels–Alder reactions, and enabling multi-site
reactions for the construction of polycyclic compounds. However, research on asymmetric
transformations involving QIKs is still quite limited. Despite the many challenges, we are
confident that this area of research will reach a higher level in the coming years through
the persistent efforts of chemists. We hope that this analysis will be a valuable reference for
synthetic chemists interested in this field of study. The authors would also like to apologize
in advance for the unintentional omission of any relevant literature report.
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