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Abstract: Type V collagen is considered to be a crucial minor collagen in fish skin with unique
physiological functions. In this research, the cDNAs of three procollagens (Tacol5a1, Tacol5a2, and
Tacol5a3) in type V collagen were cloned from the skin of shortbill spearfish (Tetrapturus angustirostris).
The open reading frames (ORFs) of Tacol5a1, Tacol5a2, and Tacol5a3 contained 5991, 4485, and
5607 bps, respectively, encoding 1997, 1495, and 1869 amino acid residues. Each of the deduced
amino acid sequences of procollagens contained a signal peptide and a fibrillar collagen C-terminal
domain (COLFI). A conserved thrombospondin-like N-terminal domain (TSPN) was found at the
N-terminus of Tacol5a1 and 5a3 procollagens, whereas a von Willebrand factor (VWC) was found
at the N-terminus of Tacol5a2 procollagen. Tacol5a1, Tacol5a2, and Tacol5a3 had their theoretical
isoelectric points of 5.06, 6.75, and 5.76, respectively, and predicted molecular weights of 198,435.60,
145,058.48, and 189,171.18, respectively. The phylogenetic tree analysis revealed that Tacol5a1 of
shortbill spearfish clustered with that of yellow perch (Perca flavescens) instead of broadbill swordfish
(Xiphias gladius). In addition, type V collagen was extracted from the shortbill spearfish skin. The
in silico method demonstrated that shortbill spearfish type V collagen has a high potential for
angiotensin-converting enzyme (ACE) inhibition activity (79.50%), dipeptidyl peptidase IV inhibition
(74.91%) activity, and antithrombotic activity (46.83%). The structural clarification and possible
functional investigation in this study provide the foundation for the applications of exogenous type
V collagen derived from fish sources.
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1. Introduction

Collagen, an integral fibrous protein, is ubiquitously found across vertebrate organs,
notably enhancing skin and bone tissue functionality [1]. As of now, researchers have
identified 29 distinct collagen types [2]. Differentiated into fibrillar and non-fibrillar cat-
egories based on their structural and functional roles. Type II, III, IV, and IX collagen
have been extensively studied in osteoarthropathies [3,4], Ehlers–Danlos syndrome [5],
cardiomyopathic fibrosis [6], ocular diseases [7], Alport syndrome [8,9], and multiple epi-
physeal dysplasia [10], among other pathological disorders. Type V collagen, a minor
fibrillar collagen subtype isolated through pepsin hydrolysis, plays a critical role in the
regulation of procollagen fiber formation within connective tissues expressing type I col-
lagen [11,12]. Comprising three subunits or α chains with similar amino acid sequences,
fibrillar collagen is pivotal in tissue architecture and integrity. Initially secreted by cells
like fibroblasts and chondrocytes, procollagen undergoes extracellular modifications, in-
cluding covalent cross-linking and cleavage of peptide bonds, facilitating the transition
to mature collagen fibers [13]. In fibrillar collagens, procollagen includes N-terminal and
C-terminal prepeptides, N-terminal and C-terminal telopeptides, and a triple-helical struc-
tural domain containing the Gly-X-Y repeater. Typically, the X position is proline, and the Y
is hydroxyproline.
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In fibrous tissues, the composition and ratio of procollagen chains within type V colla-
gen significantly influence health, pathological states, and fibrotic conditions. Markedly
increased levels of type V collagen have been identified in tissues compromised by condi-
tions such as cancer, granulation tissue, atherosclerosis, and fibrosis [14]. Mouse embryos
lacking the pre-α1(V) chain show early fatality, highlighting the chain’s essential role in
development [15]. Notably, mutations in the Col5a1 or Col5a2 genes, which encode the
α1(V) and α2(V) procollagen chains, respectively, were observed in half of the individuals
diagnosed with classical Ehlers–Danlos syndrome (EDS) [16]. Furthermore, elevated ex-
pression of the Col5a3 gene, responsible for the α3(V) procollagen chain, has been inversely
associated with gastric cancer survival rates [17]. Nevertheless, mice genetically modified
to lack the α3(V) gene did not show pronounced EDS-like symptoms, but displayed charac-
teristics associated with obesity, including reduced subcutaneous skin layers. This suggests
that the α3(V) chain interacts directly with cellular surface components, influencing islet
cell functionality and differentiation, potentially leading to insulin resistance [18].

The shortbill spearfish (Tetrapturus angustirostris), a member of the Pacific billfish
family, is recognized as one of the largest bony fishes in oceans [19]. As highly migratory
apex predators exhibiting solitary behaviors, these fish present substantial research chal-
lenges [20]. The harvest of Pacific billfish, including shortbill spearfish, often occurs as a
secondary catch in fisheries targeting more valuable species. Despite an overall increase
in Pacific billfish catches since 1990, the annual catch rates for shortbill spearfish have
consistently declined [21]. Unlike other billfish species such as broad swordfish (Xiphias
gladius) [19,22], current research on shortbill spearfish is limited.

Marine organisms are esteemed as superior sources of collagen, attributed to their
minimal risk of transmitting zoonotic diseases, lack of religious dietary constraints, and
significant collagen yields. In the dermal layers of fish, type I and V collagens predominate
the fibrillar collagen. Despite the prevalence of type I collagen, the architectural and
functional intricacies of type V collagen and its procollagen derivatives from marine
origins have remained largely unexplored. This gap underlines the necessity of a thorough
investigation into the structural and functional attributes of type V collagen derived from
marine species, particularly large fish, to bolster scientific inquiry and application. The
purpose of this study is to identify and characterize the structure of type V collagen in
fish skin of shortbill spearfish, providing a basis for investigating the potential of type V
collagen as a precursor for bioactive peptides.

2. Results and Discussion
2.1. Collagen Identification

Figure 1 displays the SDS-PAGE pattern of type V collagen from the skin of shortbill
spearfish. Type V collagen consisted of α1(V), α3(V), and α2(V) chains, aligning with its
heterotrimeric structure [23]. In contrast, type I collagen included α2(I), along with 2α1(I)
chains exhibiting twice the intensity of the α2(I) chain. The α3 chain in type I collagen
could not be verified due to the overlapping electrophoretic migration position with those
of α3(I) and α1(I) [24]. Furthermore, type I and V collagens isolated from shortbill spearfish
demonstrated remarkable purity and structural integrity. This was prominently indicated
by the absence of any other α subunits in the electrophoretic analyses. Under typical
conditions, β and γ bands are visible in the SDS-PAGE patterns of collagens, suggesting
the presence of cross-links between α chains. However, such bands were notably absent
in the results obtained from these samples. The variability in the degree of collagen cross-
linking observed among the samples may be attributable to seasonal variations in fishing
practices [25,26]. Specifically, it has been observed that collagens extracted from fish that
have endured periods of starvation show a higher degree of cross-linking compared to
those derived from well-nourished counterparts, likely due to adaptive biological responses
to nutritional stress [27].
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Figure 1. SDS-PAGE patterns of type I and V collagens isolated from shortbill spearfish. Lanes M, 1,
and 2 indicate molecular weight markers, type I collagen, and type V collagen, respectively.

Type V collagen consisted of α1(V), α3(V), and α2(V) chains with molecular weights of
154 kDa, 145 kDa, and 127 kDa, respectively, which were larger than those of corroborating
findings of type I collagens with α1(I) and α2(I) chains with molecular weights of 130 kDa
and 120 kDa, respectively, from prior studies on shortbill spearfish skin [28,29]. These
results suggest that type V collagen has extensive intra- and/or intermolecular cross-linking,
more than that of type I collagen. The SDS-PAGE pattern distinctly revealed three unique
procollagens within type V collagen, laying the groundwork for subsequent investigations.

2.2. Physicochemical Properties of Shortbill Spearfish Type V Procollagens

Degenerate primers were constructed for the PCR reaction, which was conserved at
the highest similarity among the nearest genetic relationship of bony fish α1(V), α2(V),
and α3(V) procollagens. The sequence of obtained cDNA fragments was verified using
the BLAST in the NCBI database. The cDNAs encoding Tacol5a1, Tacol5a2, and Tacol5a3
procollagens were cloned successfully. The sequence analysis showed that ORFs of cDNAs
encoding Tacol5a1, Tacol5a2, and Tacol5a3 consisted of 5991, 4485, and 5607 bps, respec-
tively, encoding 1997, 1495, and 1869 amino acid residues with a theoretical isoelectric point
of 5.06, 6.75, and 5.76, respectively (Table 1). The calculated instability indexes of Tacol5a1,
Tacol5a2, and Tacol5a3 procollagens were 32.61, 26.47, and 30.56, respectively, indicating
that the procollagens are stable (Table 1). The determined nucleotide sequences of cDNAs
encoding Tacol5a1, Tacol5a2, and Tacol5a3 procollagens have been deposited in the NCBI
database under the accession numbers OR700193, OR700194, and OR700195, respectively.

Table 1. Physicochemical properties of shortbill spearfish Tacol5a1, Tacol5a2, and Tacol5a3 procollagens.

Encoding Gene
Name

Amino Acid
Residues

Molecular Mass
(kDa) pI Instability

Index

Tacol5a1 1997 198.44 5.06 32.61
Tacol5a2 1495 145.06 6.75 26.47
Tacol5a3 1869 189.15 5.76 30.56

The heatmaps of amino acid compositions of Tacol5a1, Tacol5a2, and Tacol5a3 procol-
lagens are shown in Figure 2. In the compositions, glycine (Gly) was the most abundant
(22–27%), followed by proline (Pro) (12–17%), indicating a rich GC content in the amino
acid sequence of procollagens [30]. This typical structure of collagen chains determines
the regular structure and contributes to the formation of stabilizing bonds [31]. Mean-
while, cysteine (Cys) and tryptophan (Trp), which are not supposed to be in the triple-helix
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structure [24], were present at less than 1%. The results are similar to the amino acid
compositions of α-chains in type I and V collagens isolated from other species [31–34].
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The contents of Gly-Pro-Pro (GPP) and Gly-Gly (GG) motifs in the triple-helical
domains of shortbill spearfish Tacol5a1, Tacol5a2, and Tacol5a3 procollagens are shown in
Table 2. The GPP motif contents in the triple-helical domains of shortbill spearfish type V
procollagens of Tacol5a1, Tacol5a2, and Tacol5a3 (43, 35, and 31, respectively) were higher
than those of shortbill spearfish type I procollagens of Tacol1a1 and Tacol1a2 (29 and 26,
respectively). With the exception of the Tacol5a2 procollagen, aquatic animals contained the
levels of the GPP motif lower than those of terrestrial animals. The content of the GPP motif
was similar among animals from similar living environments. Total GPP motif content is
the major factor influencing the thermal stability of collagen [35]. Estimating the Gly-Pro-
Hyp content in mature proteins is feasible through analysis of the GPP content within the
cDNA sequence, which could be used to predict the thermal stability of collagen [36,37].
Therefore, the higher GPP contents of shortbill spearfish type V procollagen indicated a
more stable structure of type V collagen than type I collagen. This result is consistent with
the thermal behavior reported by Wang et al. [29]. The Tacol5a1 procollagen showed the
highest stability, which was associated with a high cross-linking of α1(V) [38]. However,
the lower GPP content of shortbill spearfish type V procollagen compared with those of
terrestrial animals indicates a lower denaturation temperature, which may be due to their
cold-water habitat. On the other hand, the GG motif could be responsible for the partial
skewing of the triple-helix structure and reduced thermal stability [32,37]. The lower GG
motif content is also attributed to the higher thermal stability of shortbill spearfish type V
collagen compared to zebrafish and sailfish.
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Table 2. Gly-Pro-Pro and Gly-Gly contents in the triple helical domain of shortbill spearfish Tacol5a1,
Tacol5a2, and Tacol5a3 procollagens in comparison with those of other animals.

Triple Helix
Region Length

Gly-Pro-Pro
Content

Gly-Gly
Content

Accession
Number

α1(I) and α2(I) procollagens

Shortbill spearfish
Tacol1a1 1014 29 13 OR700191

Shortbill spearfish
Tacol1a2 1015 26 14 OR700192

α1(V) procollagen

Shortbill spearfish
Tacol5a1 1014 43 4

Zebrafish 1014 42 3 ADG36303.1

Broadbill Swordfish 1014 43 6 XP040014133.1

Human 1014 49 7 NP000084.3

Mouse 1014 44 7 EDL08374.1

Chicken 1014 48 3 NP990121.2

Shortbill spearfish
α2(V) procollagen

Tacol5a2 1017 35 6

Zebrafish 1017 34 11 NP001139254.1

Broadbill Swordfish 1017 32 4 XP040004036.1

Human 1017 30 6 NP000384.2

Mouse 1017 30 6 NP031763.2

Chicken 1017 30 11 XP040532372.1

α3(V) procollagen

Shortbill spearfish
Tacol5a3 1011 31 11

Zebrafish 1011 32 11 NP001177685.1

Broadbill Swordfish 1011 30 10 XP_040013352.1

Human 1011 41 4 NP001845.3

Mouse 1011 43 5 AAF59901.1

Chicken 1011 40 6 XP422303.4

2.3. Primary Structure Analysis of Shortbill Spearfish Type V Procollagens

Regulation of mRNA transcription is critically influenced by the triple-helix struc-
ture [39]. The deduced amino acid sequences of Tacol5a1, Tacol5a2, and Tacol5a3 procolla-
gens from shortbill spearfish are shown in Figure 3. Tacol5a2 procollagen contained one
internal coupling site (GMKGHR). These interleaved coupling structures help stabilize the
collagen fiber structure [40]. Furthermore, Tacol5a1, Tacol5a2, and Tacol5a3 procollagen
contained 1, 6, and 4 arginine–glycine–aspartate (RGD) cell adhesion sites, respectively. It is
noteworthy that potential Asn-X-Thr/Ser glycosylation sites are present in all of Tacol5a1,
Tacol5a2, and Tacol5a3 procollagens (indicated by boxes). Among them, the glycosylation
site of Tacol5a2 procollagen was found only in the C-terminal non-triple-helical struc-
ture. Tacol5a2 procollagen features an amidation reaction site (EGKR), a characteristic
not widely conserved across different fish species. Consequently, while the amino acid
sequence of shortbill spearfish type V procollagens shared similarities with those of other
fish, notable distinctions were also present. Moreover, the putative N- and C-proteinase
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cleavage sites were shown, which were based on data from the other vertebrate procollagen
chains [41]. In the N-terminus of Tacol5a1, Tacol5a2, and Tacol5a3 procollagens, the signal
peptides with 33 amino acid residues (1MDTHIRWKVKRRIRDVQITLAVVLLFVISQASS33),
25 amino acid residues (1MMS-FVHLRTFLFLVVSVAQVLIVTC25), and 28 amino acid
residues (1MDHLIRTRSRRRIPLFLLI-LLHVTTTQA28) were observed, respectively.
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Figure 3. The deduced amino acid sequences of shortbill spearfish Tacol5a1 (A), Tacol5a2 (B), and
Tacol5a3 procollagens (C). A single underlined letter indicates the cleavage site of the putative
signal peptide, arrows indicate cleavage sites of N-propeptides and C-propeptides, and the putative
intermolecular cross-linking sites are marked by black closed circles. The RGD sites that represent
the potential cell adhesion sites are marked by open circles, Asn-X-Thr/Ser indicates glycosylation
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According to the identification of conserved domains, each of the deduced amino
acid sequences of procollagens contained a conservative domain of the fibrillar collagen
C-terminus (COLFI), suggesting that shortbill spearfish type V collagens produced from
Tacol5a1, Tacol5a2, and Tacol5a3 procollagens are members of the fibrillar collagen family
(Figure 4). Moreover, the thrombospondin-like N-terminal domains (TSPN) related to the
heparin-binding and cell adhesion domain of thrombospondin were found in Tacol5a1
and Tacol5a3 procollagens. The presence of TSPN suggested the potential of Tacol5a1 and
Tacol5a3 procollagens to influence the physiology and pathology of cardiovascular dis-
ease [13]. Furthermore, the von Willebrand factor (VWC) domains [42] were observed at the
N-terminus of Tacol5a2 procollagen, potentially suggesting an impact on platelet function.
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2.4. Secondary and Tertiary Structure Prediction of Shortbill Spearfish Type V Collagens

As shown in Figure 5 and Table 3, the contents of α-helix, β-sheet, and turn are
concentrated at the N- and C-termini of shortbill spearfish type V procollagens. Tacol5a1
procollagen showed the highest beta sheet content (13.32%), and lower coil content (71.06%),
indicating the higher stability. These results are consistent with the previous discussion of
the GPP motif content, which could account for the stable structural stability. Furthermore,
alpha helix and beta sheet were mainly distributed in the C- and N-termini of procollagens,
and most of the triple-helix domains were coiled, which is also a special characterization of
collagen structure.
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Table 3. Prediction of secondary structure composition of shortbill spearfish Tacol5a1, Tacol5a2, and
Tacol5a3 procollagens.

% Alpha Helix Beta Sheet Turn Coil

Tacol5a1 9.81 13.32 5.81 71.06

Tacol5a2 3.81 11.64 4.75 79.80

Tacol5a3 12.52 11.56 6.37 69.56

The tertiary structure prediction of shortbill spearfish procollagens by AlphaFold
2 based on Colab is shown in Figure 6, suggesting that the procollagens are spheroidal
(Figure 6a–c). Hence, the Colab-based AlphaFold2 could not predict the 3D structure very
accurately for collagen. Figure 6d,e show the C- and N-terminal structural domain compar-
isons, respectively. Quantitative assessment of similarity between two protein structures
was achieved by calculating RMSD after superimposing them in PyMOL software. In
Figure 6d, the RMSD values between the two procollagens were small (<1.35), indicating a
high level of structural similarity [43]. Further, since no conserved domains were found at
the N-terminus of Tacol5a2 procollagen in Figure 4, only the N-terminal region without
the triple-helix domain of Tacol5a1 and Tacol5a3 procollagens are shown in Figure 6e. The
RMSD level of the structures of Tacol5a3 and Tacol5a1 procollagens was 4.797, indicating
a structural similarity of less than 50% [44]. However, the removal of the N-terminal
telopeptide reduced the RMSD level to 0.560, indicating the structure similarity is higher
than 80% (Figure 6f). These results suggest that Colab-based AlphaFold2 still needs further
deep learning on the tertiary organization prediction of proteins with high coil content and
a special structure.
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Figure 6. Tertiary structure prediction of shortbill spearfish Tacol5a1, Tacol5a2, and Tacol5a3 procol-
lagens. Tertiary structure prediction of Tacol5a1, Tacol5a2, and Tacol5a3 procollagens are shown in
panels (a–c); the C-terminus and N-terminus without triple-helix structures are boxed; (d) indicates
an alignment of the tertiary structure of the C-terminus; (e) denotes an alignment of the tertiary
structure of Tacol5a1 and Tacol5a2 procollagens without triple-helix structural domains; (f) denotes
an alignment of the structure of the N-terminus without telopeptide.

2.5. Multiple Sequence Alignment and Phylogenetic Analysis

Figure 7 presents the comparative homology of amino acid sequences for procollagens
across various species, revealing significant conservation between shortbill spearfish pro-
collagens and those from other species. Figure 7A–C illustrate that the degree of homology
for type V procollagens varies across species, with Tacol5a1 procollagen demonstrating the
most substantial sequence conservation. Notably, the identities between all three shortbill
spearfish procollagens and that of broadbill swordfish exceed 90%. Specifically, the identi-
ties are approximately 89% for Tacol5a1 procollagen, 74% to 83% for Tacol5a2 procollagen,
and 67% to 84% for Tacol5a3 procollagen. Remarkably, Tacol5a1, Tacol5a2, and Tacol5a3
procollagens shared a high degree of identities with broadbill swordfish (97.14%, 90.56%,
and 93.97%, respectively).

Additionally, the phylogenetic tree of shortbill spearfish is shown in Figure 7D, which
was constructed via a multi-locus sequence analysis. All examined sequences were clus-
tered into Col5a1, Col5a1, or Col5a3, with a topology that aligned with the established
phylogeny of bony fish. Notably, the closest homology observed was between shortbill
spearfish and broadbill swordfish, highlighting a distinct evolutionary lineage among bony
fish, amphibians, reptiles, birds, and mammals.
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downloaded from the NCBI protein database. The phylogenetic tree was constructed by joining amino
acid sequences of various species. Numbers at nodes indicate bootstrap values for 1000 replicates.

2.6. Potential Bioactivity of Type V Collagen by In Silico Method

All the bioactivities in the database were selected to evaluate the feasibility of the three
shortbill spearfish type V procollagens all together as a precursor for bioactive peptides
by comparing the A values [45]. The A value denotes the frequency of occurrence of
the bioactive fragments in collagen. A higher A value represents the higher potential of
the protein to produce bioactive fragments. The frequency of occurrence for bioactive
fragments in each bioactive type is shown in Figure 8. It is evident from this figure that
fragments with dipeptidyl peptidase IV inhibition activity (74.91%), ACE inhibitory activity
(75.90%), and thrombin inhibitory activity (46.83%) dominate the sequences of all type V
procollagens. This suggests a significant presence of these activities within the collagen
sequence. The BIOPEP-UWM database contains 48 major types of peptide bioactivities,
of which 34 subclasses of peptide bioactivities could be identified in the obtained type
V collagen amino acid sequence, indicating that type V collagen is a valuable potential
candidate for the production of bioactive peptides.
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3. Materials and Methods
3.1. Materials

Shortbill spearfish specimens (body weight: 12–18 kg) were purchased from fishermen
in Kesen-Numa City, Miyagi Prefecture, Japan. They were frozen immediately after being
caught and transported to the laboratory of Tokyo University of Marine Science and
Technology. Pepsin (1:10,000) (from Porcine Stomach Mucosa, EC 3.4.23.1), NaOH, acetic
acid, HCl, NaCl, tris-(hydroxymethyl)-aminomethane (Tris), butanol, and bromophenol
blue were purchased from FUJIFILM Wako Pure Chemical Industries, Ltd. (Osaka, Japan).
Ultrapure water was prepared by Milli-Q system (Millipore, Tokyo, Japan).

3.2. Fish Skin Pretreatment

The fish skin was washed after removing the flesh and cut into small pieces (less
than 0.5 × 0.5 cm2). A solution of 0.1 M of NaOH was used to soak the skin at a ratio of
1:30 (w/v) at 4 ◦C for 48 h in order to remove the non-collagenous protein, refreshing the
alkaline medium solution every 6 h. The skin pieces were cleaned to a neutral pH with cold
water, followed by treatment with 10% butanol. Concurrently, non-collagenous proteins
and alkaline-soluble collagens were eliminated, and the remaining materials were rinsed
with cold ultrapure water until it reached a neutral to slightly basic pH level. The defatted
skin was cleaned and stored at −25 ◦C. Before use, the skin was chilled at −85 ◦C for 6 h
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and then minced with a grinder (SKF-H100, Tiger Magic Bottle Co., Ltd., Osaka, Japan). All
steps were conducted at 4 ◦C, with continuous agitation using a magnetic stirrer.

3.3. Preparation of Type V Collagen

The extraction of distinct collagen types was performed using the method described
by Han et al. [28]. The pretreated skin was agitated in 0.5 M acetic acid containing 0.1%
pepsin (w/v) at a 1:20 (w/v) ratio for 48 h, then centrifuged at 10,000× g for 60 min. The
supernatant underwent salting out by the addition of NaCl to achieve a final concentration
of 1.2 M, followed by centrifugation at 10,000× g for 60 min. The resulting precipitate
was redissolved in 0.5 M Tris-HCl buffer (pH 7.5), and the NaCl concentration was sub-
sequently adjusted to 4.0 M. The precipitate was redissolved and then added with 2.4 M
NaCl to separate the type V and type I collagens into supernatant and precipitate fractions,
respectively. The supernatant was dialyzed against ultrapure water with dialysis mem-
branes (MWCO:12–14 kDa, standard RC tubing, Repligen Corp., Waltham, MA, USA). The
precipitate was dissolved into 0.5 M acetic acid and dialyzed against 0.1M acetic acid and
ultrapure water, successively. The pepsin-soluble collagen solutions were stored at −25 ◦C
after lyophilization. All procedures were performed at 4 ◦C.

3.4. SDS–Polyacrylamide Gel Electrophoresis (SDS-PAGE) Pattern

SDS-PAGE of pepsin-soluble collagen extracted from the fish skin was performed
according to the method of Laemmli [46] with some modifications. A sample at 2 mg/mL
in 0.5 M acetic acid was treated with 2× sample loading buffer (60 mM Tris–HCl, pH
8.0, containing 25% glycerol, 2% SDS, 0.1% bromophenol blue) in the presence of 2%
β-mercaptoethanol. SDS-PAGE of pepsin-soluble collagen was conducted on 8% resolving
gel and 5% stacking gel on a cPAGE Ace Twin (WSE-1025W, ATTO Co., Ltd., Tokyo, Japan).
After electrophoresis, the gel was stained with 0.1% (w/v) Coomassie blue R-250 and
then destained.

3.5. cDNA Cloning of Procollagens
3.5.1. RNA Extraction and cDNA Synthesis

The skin was dissected out from shortbill spearfish, cut into small pieces, and trans-
formed into liquid nitrogen immediately. Frozen tissues were put into a 50 mL tube and
homogenized with TRIzol™ Reagent (Invitrogen, Carlsbad, CA, USA) to isolate total RNA.
Poly A+ RNA was isolated and purified from total RNA using illustra™ QuickPrep Micro
mRNA Purification Kit (GE Healthcare, Tokyo, Japan) according to the manufacturer’s
instructions. The quality, purity, and integrity of RNA were assessed by the A260/280 ratio.

Synthesis of double-stranded cDNA (ds cDNA) was performed with Marathon® cDNA
Amplification Kit (Clontech Lab, Mountain View, CA, USA) according to the manufacturer’s
introductions.

3.5.2. Cloning of cDNA Encoding Procollagens

The gene-specific primers (GSPs) of procollagens nucleotide sequences (Tacol5a1,
Tacol5a2, and Tacol5a3) were constructed based on the conserved regions selected from
broadbill swordfish Xiphias gladius (XM040158199.1, XM040148102.1, XM040157418.1),
mandarin fish (Siniperca chuatsi) (XM044175423.1, XM044215955.1, XM044180658.1), redfin
perch (Perca fluviatilis) (XM039779366.1, XM039817710.1, XM039825796.1), leopard coral
grouper (Plectropomus leopardus) (XM042508952.1, XM042494419.1, XM042504858.1), yellow-
tail amberjack Seriola (lalandi dorsalis) (XM023422226.1, XM023423150.1, XM023401417.1),
barramundi perch (Lates calcarifer) (XM051072972.1, XM018683186.2, XM018705093.2), and
banded archerfish (Toxotes jaculatrix) (XM041058269.1, XM041056572.1, XM041061690.1)
using the ClustalW program (https://www.genome.jp/tools-bin/clustalw, accessed on 19
March 2023) (Supplementary Materials).

The cDNA sequences encoding Tacol5a1, Tacol5a2, and Tacol5a3 were obtained using
the template diluted 250 times from the adapted ds cDNA. The PCR reaction was carried

https://www.genome.jp/tools-bin/clustalw
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out in a total volume of 25 µL using Ex Taq DNA polymerase (Takara, Otsu, Japan). PCR
thermal cycling conditions were 30 cycles of 98 ◦C for 10 sec for denaturation, 53–55 ◦C
30 sec for annealing, and 72 ◦C for 1 sec for extension, with a final extension step at 72 ◦C
for 3 min. The detailed annealing temperature depended on each primer pair. The cDNAs
of Tacol5a1, Tacol5a2, and Tacol5a3 were obtained using the sets of adaptor primers (AP1:
CCATCCTAATACGACTCACTATAGGGC, AP2: ACTCACTATAGGGCTCGAGCGGC)
with GSP-AR (5′-end) or GSP-AF (3′-end) (Supplementary Materials). PCR products were
gel-purified by FastGene™ Gel/PCR Extraction Kit (Nippon Gene, Tokyo, Japan), sub-
cloned into the pGEM-T easy vector (Promega, Masison, WI, USA), treated with a BigDye
Terminator V3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), and
sequenced with an ABI 3130 Genetic Analyzer (Applied Biosystems). The cDNA sequences
of Tacol5a1, Tacol5a2, and Tacol5a3 were generated by overlapping the fragments.

3.6. Bioinformatics Analysis

The cDNA sequences and deduced amino acid sequences were analyzed using
SnapGene software (www.snapgene.com, accessed on 1 April 2023). The open reading
frames (ORFs) were identified using the NCBI ORF Finder (http://www.ncbi.nlm.nih.
gov/projects/gorf/, accessed on 1 August 2023). Sequence similarity was explored using
the BLAST tool (http://blast.ncbi.nlm.nih.gov/, accessed on 1 August 2023). Physical
and chemical parameter calculations were performed using the Expasy-ProtParam tool
(https://web.expasy.org/protparam/, accessed on 5 August 2023). Secondary structure
prediction was carried out using ESPript V3.0 (https://espript.ibcp.fr/ESPript/ESPript/,
accessed on 7 August 2023). The prediction of conserved domains in the amino acid se-
quence was performed using the SMART program (http://smart.embl-heidelberg.de/,
accessed on 7 August 2023). The signal peptides were determined using the software
SignalP 4.0 (https://services.healthtech.dtu.dk/services/SignalP-4.1/, accessed on 8 Au-
gust 2023). ColabFold V1.4 was used to model the tertiary structure of Tacol5a1, Tacol5a2,
and Tacol5a3 procollagens [47]. To quantitatively assess the similarity between two pro-
tein structures, the root mean square deviation (RMSD) was calculated by superimposing
the structures using PyMOL Molecular Graphics System v2.4.0 (Schrodinger, LLC.; New
York, NY, USA) [48]. A phylogenetic neighbor-joining tree was constructed using Mega11
V11.0.13 [49], and 1000 bootstrap trials were conducted to increase the confidence values
for the resulting phylogenetic tree.

3.7. Assessment of Bioactive Peptides in Type V Collagen

The assessment of potential bioactive peptides in type V collagen was carried out using
BIOPEP-UWM analysis (https://biochemia.uwm.edu.pl/en/biopep-uwm-2/, visited on
January 2024) [50]. The amino acid sequence of each procollagen chain was subjected to
“profiles of potential biological activity”. The potential bioactive peptides from type V
collagen derived from shortbill spearfish were screened. The frequency of fragments with
bioactivities in protein sequences, denoted as A%, was characterized using the follow-
ing equation:

A(%) =
a
N

× 100

where a is the number of fragments and N is the number of amino acid residues of
the protein.

4. Conclusions

This study marks the cloning of cDNAs encoding type V procollagen from shortbill
spearfish skin. The findings highlight Tacol5a1, Tacol5a2, and Tacol5a3 procollagens for
exceptional thermal stability. Analysis of the deduced amino acid sequences revealed that
shortbill spearfish type V collagens shared fundamental biological functions with those in
other bony fish (more than 90%). Additionally, in silico analysis confirmed the potential
of shortbill spearfish type V collagens to generate bioactive fragments. The investigation

www.snapgene.com
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://blast.ncbi.nlm.nih.gov/
https://web.expasy.org/protparam/
https://espript.ibcp.fr/ESPript/ESPript/
http://smart.embl-heidelberg.de/
https://services.healthtech.dtu.dk/services/SignalP-4.1/
https://biochemia.uwm.edu.pl/en/biopep-uwm-2/
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of the bioactivity of shortbill spearfish type V collagens is the forthcoming work in our
research. Improving the accuracy of collagen tertiary structure prediction will also be a
future research goal.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29112518/s1, Table S1: Primer names and sequence
information. Figure S1: Primers location at each coding regions of shortbill spearfish procollagens.
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