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Abstract: Three different iridium(III) complexes, labelled as Ir1–Ir3, each bearing a unique anchoring moi-
ety (diethyl [2,2′-bipyridine]-4,4′-dicarboxylate, tetraethyl [2,2′-bipyridine]-4,4′-diylbis(phosphonate), or
[2,2′-biquinoline]-4,4′-dicarboxylic acid), were synthesized to serve as photosensitizers. Their elec-
trochemical and photophysical characteristics were systematically investigated. ERP measurements
were employed to elucidate the impact of the anchoring groups on the photocatalytic hydrogen
generation performance of the complexes. The novel iridium(III) complexes were integrated with
platinized TiO2 (Pt–TiO2) nanoparticles and tested for their ability to catalyze hydrogen production
under visible light. A H2 turnover number (TON) of up to 3670 was obtained upon irradiation for
120 h. The complexes with tetraethyl [2,2′-bipyridine]-4,4′-diylbis(phosphonate) anchoring groups
were found to outperform those bearing other moieties, which may be one of the important steps in
the development of high-efficiency iridium(III) photosensitizers for hydrogen generation by water
splitting. Additionally, toxicological analyses found no significant difference in the toxicity to lumines-
cent bacteria of any of the present iridium(III) complexes compared with that of TiO2, which implies
that the complexes investigated in this study do not pose a high risk to the aquatic environment
compared to TiO2.

Keywords: Ir(III) cyclometalated; anchoring ligand; carbazole; photosensitizers; biquinoline

1. Introduction

In light of the increasing demand for energy and diminishing global fossil fuel supply,
the quest for alternative energy sources has evolved into a critical and intricate field of
research [1]. Solar power surfaced as a viable solution to contemporary energy challenges
owing to its sustainability and zero-carbon footprint [2]. Photocatalytic technology en-
ables the effective harnessing and conversion of this energy type into various forms of
power [3–10]. Particularly, the solar-driven photocatalytic water splitting technique offers
an easy procedure for producing hydrogen fuel [11,12], a concept initially introduced in
1972 by Fujishima and Honda by utilising a TiO2 photoanode [13]. After this study, the tech-
nology for hydrogen production through water splitting has evolved significantly [14,15].

Iridium(III) cyclometalated complexes, distinguished for their role in dye fabrication,
have significantly contributed to the field of photocatalytic hydrogen production [16].
These complexes are essential for their superior ligand-field stabilisation energy, primarily
attributed to the 5 d valence shell, especially when compared with other metal dyes derived
from first- and second-row transition metals [2,17]. Research led by Bernhard et al. [2,18–20]
has explored the potential of iridium(III) complexes, particularly those following the
formula [Ir(CˆN)2(NˆN)]+ (where CˆN represents the cyclometalating ligand and NˆN
denotes the anchoring group), in applications related to photochemical water splitting for
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hydrogen production. Impressive results, such as a turnover number (TON) of 800, were
achieved utilizing 50 µM of [Ir(ppy)2(bpy)]+ as a photosensitizer within a water–acetonitrile
solvent mixture at a ratio of 1:1 (v/v) [18,21–24]. Subsequently, Ir(III) cyclometalated
complexes have garnered interest for their potential applications as photosensitizers [25–27].
The stability of these complexes is enhanced through CˆN ligands, which provide σ-
donation from carbon atoms bonded to the metal, increasing electron density at the metal
core and improving resilience during photocatalytic experiments [2,28]. Furthermore,
physicochemical properties, including energy gaps, can be effectively tuned by varying the
ligands [29,30], making Ir(III) cyclometalated complexes attractive candidates for dyes in
H2 production through water splitting.

However, Ir(III) cyclometalated complexes often demonstrate weak visible light ab-
sorption, constituting approximately 40% of the sunlight spectrum [26,30–34]. Adjustments
to the structures of Ir(III) cyclometalated complexes are necessary to overcome these
limitations and enhance their hydrogen output. The potential for enhancing hydrogen
evolution performance in iridium-based photosensitizers remains unexplored. Despite
their potential, developing efficient and stable Ir(III) photosensitizers remains crucial for
improving the kinetics of hydrogen production. Recent advancements in the field of Ir(III)
photosensitizers focus on altering the structure of cyclometalating and ancillary ligands
to modify their photochemical and physical attributes [3,16,35,36]. Strategic choices in
chromophores and molecular structures can enhance light absorption, electron transfer
efficiency, and photosensitizer longevity [37]. Optimizing the donor groups on cyclomet-
alating ligands in Ir(III) photosensitizers enhances spectral responses, accelerates charge
transfer, increases stability, and ensures better energy level alignment with TiO2 conduction
band edges, thereby boosting photocatalytic hydrogen production efficacy [38]. Carbazole
(Cz), especially 9-phenyl-9H-carbazole, has been widely used in the synthesis of conjugated
microporous polymers for photocatalysis owing to its excellent electron-donating and
charge-transporting properties and its suitability for post-functionalization [39,40]. The
isoquinoline functional groups have also found extensive application in dyes for water-
splitting reactions owing to their significant charge transfer ability [41]. Combining Cz
with furan and isoquinoline to form a donor–π–acceptor (D–π–A) framework enhances
strong intramolecular charge transfer (ICT) capabilities, resulting in high molar extinction
coefficients in the resultant iridium(III) complexes [42,43].

Previous studies on Ir(III) cyclometalated complexes have found that different anchor-
ing groups on NˆN ligands are used to achieve highly efficient and stable water-splitting
systems [44,45]. Incorporating anchoring groups, including carboxylate, or phosphonic
acid, into the bipyridine ligand structure of [Ir(CˆN)2(NˆN)]+-type dyes [45] facilitates
their stable attachment to semiconductors. The presence of a 2,2′-bipyridine or biquinoline
moiety in these anchoring groups significantly enhances the molar extinction coefficients
of these complexes, thereby increasing their light absorption capacity, which is crucial for
photocatalytic water splitting to generate hydrogen [46]. Complexes with carboxyl func-
tional groups on their anchoring ligands establish strong connections with semiconductors
such as TiO2. This results in improved electron transport and hydrogen production and
increased water solubility due to the acid–base equilibrium in Ir(III) cyclometalated com-
plexes [47–50]. However, the stability of these dyes under photocatalytic conditions may
pose a challenge [51], with the hydrolysis of carboxylate linkages identified as a limiting
factor in the efficiency of electron transfer from the photosensitizer to the TiO2 surface [52].
In contrast, phosphonate linkages demonstrate enhanced stability when bonded to TiO2
surfaces, surpassing the performance of carboxylate linkages [26,52].

Three Ir(III) complexes have been synthesized, denoted as Ir1 to Ir3. These com-
plexes feature diethyl [2,2′-bipyridine]-4,4′-dicarboxylate, tetraethyl [2,2′-bipyridine]-4,4′-
diylbis(phosphonate), or [2,2′-Biquinoline]-4,4′-dicarboxylic acid as anchoring units. They
are designed to serve as photosensitizers in light-driven hydrogen production through water
splitting (Figure 1). The dye molecular structure includes 3-(5-(isoquinolin-1-yl)furan-2-yl)-9-
phenyl-9H-carbazole motifs, forming a donor–π–acceptor (D–π–A) architecture [42,43,53–56].
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Furthermore, [Ir(ppy)2(dcbpy)]Cl was synthesized to serve as a benchmark for evaluating
the light-harvesting abilities and hydrogen generation efficiency of these synthesized dyes.
Therefore, this study aims to investigate the effect of the CˆN ligands and anchoring units
on the properties of these complexes through a comprehensive analysis employing both
electrochemical and photophysical techniques. Furthermore, systematic investigations
into their photocatalytic hydrogen production capabilities through water splitting were
undertaken, including exploring the correlation between the anchoring groups and their
hydrogen generation activities. Additionally, toxicology research was conducted to check
their environmental influence.
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Figure 1. Chemical structures of iridium(III) dyes Ir1–Ir3 and [Ir(ppy)2(dcbpy)]Cl.

2. Results and Discussion
2.1. Synthesis and Characterization

Schemes 1 and 2 illustrate the synthetic methodologies for the CˆN ligands and Ir(III)
photosensitizers, respectively. Photosensitizers structure consists of an Ir(III) core surrounded
by two CˆN cyclometalating ligands and a variable NˆN auxiliary ligand, which is diethyl
[2,2′-bipyridine]-4,4′-dicarboxylate, tetraethyl [2,2′-bipyridine]-4,4′-diylbis(phosphonate), or
[2,2′-Biquinoline]-4,4′-dicarboxylic acid. The CˆN ligand was synthesized utilizing the
Suzuki coupling reaction. For Ir(III) complexes (Ir1–Ir3) generation, a two-stage synthetic
strategy was employed. Initially, µ-chloride-bridged dimeric complexes were synthesized
by reacting Ir(III) chloride hydrate with the CˆN cyclometalating ligand [57,58]. These
dimers were subsequently reacted with the NˆN auxiliary ligands to form the final Ir(III)
complexes (Ir1–Ir3). These Ir(III) complexes demonstrate stability as solid substances under
atmospheric conditions.
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All synthesized organic precursors and ligands underwent characterization using 1H
and 13C NMR spectroscopic techniques. Additionally, a comprehensive analysis of the
Ir(III) complexes was performed utilizing a combination of LC-ESI-Q-TOF MS and 1H NMR
spectroscopy. A distinct peak observed between approximately 8.74 to 9.28 ppm in the 1H
NMR spectra is attributed to the ortho proton of isoquinoline [11]. These spectroscopic
findings corroborate the anticipated molecular structures of the complexes. However,
obtaining high-quality 13C NMR spectra proved challenging owing to the complex limited
solubility in commonly used organic solvents.

2.2. Photophysical Properties of Iridium(III) Dyes

The photophysical characteristics of Ir(III) complexes were investigated in dichloromethane
at ambient temperature (293 K). Table 1 lists their unique UV/Vis absorption spectra, while
Figure 2 graphically represents them. Ir1 to Ir3 demonstrates significant absorption of
approximately 230 nm in the UV region, which is attributed to intra-ligand charge trans-
fer transitions [59]. The prominent band observed at approximately 400 nm is owing to
spin-allowed π to π* electronic transitions within the CˆN and NˆN ligands [36]. Both
metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT) con-
tribute to the extensive absorption bands observed around 400 nm [60]. These compounds
demonstrated superior absorption intensity in the visible spectrum than in the conventional
[Ir(ppy)2(dcbpy)]Cl complex, indicating enhanced light-harvesting efficiency in Ir1–Ir3
over [Ir(ppy)2(dcbpy)]Cl [30,61,62]. The broadened absorption spectra with higher ε values
in 500 nm range result from the extended π-conjugation provided by the electron-donating
Cz group in the Ir(III) dyes [63]. In addition, Ir3 showed a slight redshift with lower
molar absorptivity compared to Ir1, possibly owing to the extension of conjugation in the
anchoring group [39].

Table 1. UV–Vis absorption parameter values of Ir1 to Ir3 in CH2Cl2 at 293 K.

Dye λmax/nm (ε/105 M−1 cm−1) λonset/nm

Ir1 234 (5.45), 280 (2.64), 490 (0.96) 597
Ir2 233 (5.36), 278 (2.64), 306 (2.43), 497 (1.07) 574
Ir3 237 (4.91), 283 (2.51), 492 (0.84) 601

[Ir(ppy)2(dcbpy)]Cl 240 (2.64), 311 (0.86), 340 (0.52), 398 (0.12) 427
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Figure 3 presents the photoluminescence profiles of Ir1 to Ir3 in a dichloromethane
solution at 293 K. Upon photochemical excitation at 480 nm, distinct emission spectra are
observed for all Ir(III) dyes. These emissions originate from a combination of 3MLCT and
LC 3π to π* transitions [64–66]. The photoluminescence spectra of Ir1 and Ir3 demonstrate
only negligible change, indicating the same energy levels. This observation is consistent
with the electrochemical data.
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Figure 3. PL spectra of Ir1–Ir3 in dichloromethane solution at 293 K.

2.3. Electrochemical Properties of Iridium(III) Dyes

Optimizing the energy gap between the TiO2 semiconductor and sacrificial electron
donor in Ir(III) complexes is crucial for efficient hydrogen production through water
splitting. Electron transfer efficacy and charge separation in these complexes depends
on the LUMO energy level being higher than the conduction band of the semiconductor
and the HOMO level being below the sacrificial electron donor. To elucidate the energy
profiles of the Ir(III) complexes, cyclic voltammetry (CV) was employed utilizing a standard
three-electrode set-up. Table 2 summarizes the comprehensive parameters derived from
these experiments.

Table 2. Electrochemical data and energy levels of Ir1–Ir3.

Dye EMax
Ox /V EHOMO

[a]/eV Eg
[b]/eV ELUMO

[c]/eV

Ir1 0.86 −5.66 2.07 −3.59
Ir2 0.85 −5.65 2.16 −3.49
Ir3 0.86 −5.66 2.06 −3.60

[Ir(ppy)2(dcbpy)]Cl 1.39 −6.19 2.90 −3.29
[a] Calculated as −(EMax

Ox + 4.8). [b] Energy band gap, determined from the onset of absorption.
[c] ELUMO = EHOMO + Eg.

The CV results demonstrated significant differences compared to those obtained for
[Ir(ppy)2(dcbpy)]Cl, indicating that the different ligands significantly influenced the energy
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gaps in Ir(III) dyes [29,30]. The CV data indicate that the conduction band of the TiO2
semiconductor, at −4.4 eV, was lower than the ELUMO levels of all Ir(III) dyes, ranging
from −3.60 to −3.49 eV. This difference facilitates effective electron injection during light-
induced hydrogen production [67]. The EHOMO values of Ir1–Ir3 were −5.66 or −5.65 V,
which was more negative than the redox potentials of the sacrificial electron donor (AA)
(−4.65 eV, pH~4) [68,69], thereby enabling effective dye regeneration from the sacrificial
electron donor. All the Ir(III) dyes demonstrated energy levels that meet the prerequisites
for efficient electron injection and charge separation, highlighting their potential suitability
for hydrogen production through water splitting.

Previous research indicates that the HOMO energy levels are primarily located at
the Ir centre and on cyclometalating CˆN ligands and can be readily adjusted. In contrast,
the LUMO energy levels are distributed across the anchoring NˆN groups [26,57]. The
phosphonate anchoring groups establish a stronger chemical linkage to the TiO2 surface,
thereby tuning the LUMO energy level and enhancing the water-splitting hydrogen gen-
eration [45]. The energy level of Ir1 and Ir3 are quite the same, as predicted by PL data
previously (Figure 3).

2.4. Electrochemical Impedance Spectroscopy (EIS) of Iridium(III) Dyes

To investigate the charge recombination properties of Ir(III) complexes, EIS was uti-
lized [70,71]. Figure 4 shows the EIS Nyquist plots for Ir1 to Ir3. It is well-established that a
smaller arc radius on the EIS Nyquist plot indicates reduced resistance to electrical charge
transfer, thereby enhancing hydrogen production performance [70–73]. Ir2 demonstrated
the smallest arc radius among the dyes, signifying its superior charge carrier transfer
capabilities [74]. These observations are consistent with the hydrogen production efficiency
of the dyes in water-splitting processes.
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2.5. Photocurrent Measurements of Iridium(III) Dyes

Photocurrent measurements were utilized to assess the stability and efficiency of
charge separation in the metal complexes [75]. Consistent and rapid photocurrent response
in light-on/light-off tests signifies steady photocatalytic activity [76] while heightened
photocurrent density indicates efficient charge separation [77]. The photocurrent testing
followed a previously established methodology [78]. Figure 5 illustrates the photocurrent
behaviour of Ir1–Ir3 under cycles of visible light exposure, depicting six on–off cycles.
This clearly demonstrates efficient electron transfer [78], indicative of their consistent
photocatalytic performance [76]. Ir2 demonstrated a substantially increased photocurrent
intensity when illuminated and a pronounced setback in its decrease upon light-off. This
suggests greater efficiency in charge separation and an enhanced ability for hydrogen
production compared to other dyes [76,78–80].
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2.6. Electron Paramagnetic Resonance (EPR) Studies of Ir@Pt-TiO2

In this photocatalytic process, the photosensitizer is photoexcited under light irradi-
ation, leading to electron transfer to the conduction band of TiO2. The photo-generated
electrons and holes can undergo recombination in bulk or on the surface of the semiconduc-
tor very quickly, releasing energy in the form of heat or photons. These unreacted electrons
are then relayed to Pt nanoparticles on the TiO2 surface, facilitating proton reduction and
hydrogen release. Electron paramagnetic resonance was conducted to Ir2@Pt-TiO2 and
Ir1@Pt-TiO2 (Figure 6). It is well known that as more electrons are produced, TEMPO+

is increasingly reduced, and as the amount of detectable TEMPO+ decreases, the signal
decreases [81]. It can be inferred that, by observing the increased generation of photogen-
erated electrons by Ir2@Pt-TiO2, it is reasonable to anticipate that it will exhibit a higher
efficiency in hydrogen production [82].
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2.7. Light-Driven Hydrogen Generation Studies of Ir@Pt-TiO2

The process of hydrogen generation through water splitting involved the use of
Ir(III) complexes as photosensitizers. Detailed procedures for synthesizing platinized
TiO2, conjugating Ir(III) complexes to the platinized TiO2, and executing the photocatalytic
water-splitting process, are provided in the experimental section. Generally, each Ir(III)
complex was bonded to the platinized TiO2 utilizing a sonication technique. Subsequently,
the mixture underwent centrifugation and drying before the water-splitting experiment.
Dye coupling effectiveness for each specimen was assessed by measuring absorbance shifts
at the absorption peaks before and post-dye application, indicating a dyeing efficiency of
approximately 100%.

Photocatalytic water splitting for hydrogen generation was performed in a 5 mL AA
solution (0.5 M) at pH 4.0, serving as the sacrificial electron donor. The experimental
configuration employed single-neck 25 mL reaction flasks for the photocatalytic processes.
Continuous illumination was provided by blue LEDs (470 nm). Hydrogen production from
each specimen was qualitatively and quantitatively assessed using gas chromatography,
with methane as the internal standard. Figure 7 illustrates the hydrogen production
profiles over time for each sample. Table 3 presents relevant data, including TON, turnover
frequency (TOF), initial turnover frequency (TOFi), and Activityi. In this photocatalytic
process, the photosensitizer is photoexcited under light irradiation, leading to electron
transfer to the conduction band of TiO2. These electrons are afterwards relayed to platinum
nanoparticles on the TiO2 surface, facilitating proton reduction and hydrogen release. The
oxidized photosensitizer is subsequently regenerated to its ground state by AA [36,57].

Among the tested systems, the Ir2@Pt-TiO2 system demonstrated the most effective
hydrogen generation ability, achieving TON values of 3670. Following closely, the Ir1@Pt-
TiO2 system recorded TON values of 2553. Higher hydrogen production was achieved
when using Ir(III) dyes in the phosphonate anchoring group than in the carboxylate anchor-
ing group. This improvement is attributed to the enhanced anchoring ability provided by
the phosphonate group [44,83–85], a finding consistent with previous literature [45,51]. The
photocatalytic water-splitting experiments for [Ir(ppy)2(dcbpy)]Cl were also performed.
Figure 7 and Table 3 show the experimental results. The results suggest that our new
complexes show higher stability than [Ir(ppy)2(dcbpy)]Cl. These findings indicate that our



Molecules 2024, 29, 2564 10 of 18

new Ir(III) dyes, especially with phosphonate anchoring group, are promising candidates
for highly stable photocatalytic applications.

Molecules 2024, 29, x FOR PEER REVIEW 10 of 18 
 

 

0 20 40 60 80 100 120
0

1

2

3

4

5

6

V
ol

um
e 

of
 H

2 (
m

L)

Time (h)

 Ir1@Pt-TiO2

 Ir2@Pt-TiO2

 Ir3@Pt-TiO2

 [Ir(ppy)2(dcbpy)]+

          @Pt-TiO2

 
Figure 7. Photocatalytic H2 generation curves of Ir1‒Ir3@Pt-TiO2 and [Ir(ppy)2(dcbpy)]+@TiO2 un-
der blue LED irradiation (50 mW). 

Table 3. Photocatalytic H2 generation data for different Ir(III) dyes attached to platinized TiO2 (Ir1‒
Ir3@Pt-TiO2) under blue light irradiation. 

Dye Time/h H2/mL TON [a] TOF [b]/h−1 TOFi [c]/h−1 Activityi [d]/µmol g−1 h−1 
Ir1 120 3.91 2553 21.3 95.7 59,810 
Ir2 120 5.62 3670 30.6 149.4 93,387 
Ir3 120 3.85 2383 19.9 89.0 55,640 

[Ir(ppy)2 

(dcbpy)]+ 84 2.91 1900 22.6 105.8 66,122 

[a] TON for hydrogen production was determined by doubling the moles of hydrogen generated 
compared to the moles of photosensitizer bonded to the platinized TiO2. [b] The TOF of the system 
was calculated on an hourly basis. [c] Initial turnover frequency (TOFi) was measured during the first 
5 h of the reaction. [d] Activityi is described as hydrogen quantity (in micromoles) evolved per hour 
per gram of platinum utilized. 

Among the tested systems, the Ir2@Pt-TiO2 system demonstrated the most effective 
hydrogen generation ability, achieving TON values of 3670. Following closely, the Ir1@Pt-
TiO2 system recorded TON values of 2553. Higher hydrogen production was achieved 
when using Ir(III) dyes in the phosphonate anchoring group than in the carboxylate an-
choring group. This improvement is attributed to the enhanced anchoring ability pro-
vided by the phosphonate group [44,83–85], a finding consistent with previous literature 
[45,51]. The photocatalytic water-splitting experiments for [Ir(ppy)2(dcbpy)]Cl were also 
performed. Figure 7 and Table 3 show the experimental results. The results suggest that 
our new complexes show higher stability than [Ir(ppy)2(dcbpy)]Cl. These findings indi-
cate that our new Ir(III) dyes, especially with phosphonate anchoring group, are promis-
ing candidates for highly stable photocatalytic applications. 

2.8. Toxicity Detection of Ir@Pt-TiO2 
The luminous intensity of luminescent bacteria remains constant under specific con-

ditions but changes upon contact with foreign substances. Within a defined concentration 
spectrum, the modulation of luminescent intensity correlates directly with toxin 
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under blue LED irradiation (50 mW).

Table 3. Photocatalytic H2 generation data for different Ir(III) dyes attached to platinized TiO2

(Ir1–Ir3@Pt-TiO2) under blue light irradiation.

Dye Time/h H2/mL TON [a] TOF [b]/h−1 TOFi
[c]/h−1 Activityi

[d]/µmol g−1 h−1

Ir1 120 3.91 2553 21.3 95.7 59,810
Ir2 120 5.62 3670 30.6 149.4 93,387
Ir3 120 3.85 2383 19.9 89.0 55,640

[Ir(ppy)2
(dcbpy)]+ 84 2.91 1900 22.6 105.8 66,122

[a] TON for hydrogen production was determined by doubling the moles of hydrogen generated compared to
the moles of photosensitizer bonded to the platinized TiO2. [b] The TOF of the system was calculated on an
hourly basis. [c] Initial turnover frequency (TOFi) was measured during the first 5 h of the reaction. [d] Activityi is
described as hydrogen quantity (in micromoles) evolved per hour per gram of platinum utilized.

2.8. Toxicity Detection of Ir@Pt-TiO2

The luminous intensity of luminescent bacteria remains constant under specific condi-
tions but changes upon contact with foreign substances. Within a defined concentration
spectrum, the modulation of luminescent intensity correlates directly with toxin concentra-
tion. This characteristic facilitates the determination of overall toxicity through comparative
assessment of luminous intensity pre- and post-exposure to a substance, employing a ded-
icated luminescent detector [86]. Several studies have suggested that the toxicity levels
of materials can be evaluated through changes in the relative luminous intensity of lu-
minescent bacteria [87–89]. The luminescent intensity was assessed subsequent to the
amalgamation of photocatalytic materials with water samples containing luminescent
bacilli T3 strain. Moreover, given titanium dioxide’s inherent antibacterial properties,
it served as the control group in this study. This choice facilitated the computation of
relative luminous intensity and enabled the comparative assessment of toxicity levels
among various photocatalytic materials [90]. The photocatalytic materials (Ir1@Pt-TiO2,
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Ir2@Pt-TiO2, and Ir3@Pt-TiO2) were acquired following a photocatalytic process spanning
0 to 5 days, with subsequent incubation at room temperature for intervals of 0 and 15 min,
as illustrated in Figure 8. With an increasing duration of the photocatalytic process, the
mean relative luminous intensity of Ir3@Pt-TiO2 ranged from 104.6% to 120.4%, while for
Ir1@Pt-TiO2 and Ir2@Pt-TiO2, it ranged from 81. 8% to 114.4%. However, no noteworthy
alterations were discerned in the relative luminous intensity of the luminescent bacteria
when exposed to the photocatalytic materials (Ir1@Pt-TiO2, Ir2@Pt-TiO2, and Ir3@Pt-TiO2),
relative to those exposed to TiO2. Traditionally, TiO2 particles have been viewed as having
low solubility and minimal toxicity [91]. These findings suggest that the photocatalytic
materials (Ir1@Pt-TiO2, Ir2@Pt-TiO2, and Ir3@Pt-TiO2) do not induce significant toxic
effects within the specified timeframe. It is noteworthy that iridium complexes, due to their
low toxicity, are commonly utilized in biology and life sciences [92]. Ajay et al. [93] found
that iridium exhibits variable oxidation states and dynamic stability in biological systems,
making it a viable option as an anticancer drug. Consequently, the photocatalytic materials
(Ir1@Pt-TiO2, Ir2@Pt-TiO2, and Ir3@Pt-TiO2) utilized in this investigation do not pose an
elevated risk to the aquatic environment compared to TiO2.
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Figure 8. Relative luminous intensity of the photocatalytic materials. Data are expressed as the
mean ± SE (n = 3). There was no significant difference (p > 0.05) in the toxicity of any of the
experimental groups (Ir1@Pt-TiO2, Ir2@Pt-TiO2, and Ir3@Pt-TiO2) to luminescent bacteria compared
to the control group (TiO2).

3. Materials and Methods
3.1. Materials and Reagents

All the reactions were carried out under a nitrogen atmosphere with the standard
Schlenk technique. All the glassware were dried in the oven overnight before use. All the
solvents were dried by distillation with appropriate drying agents under an N2 atmosphere.
All the reagents for chemical synthesis were purchased from Sigma-Aldrich or Dieckmann.
Apart from those specifically stated, all the chemicals were directly used as received.
All the reactions were monitored by thin-layer chromatography (TLC) with Merck silica
gel pre-coated aluminum plates. Purification of the products were achieved by column
chromatography using silica gel (230–400 mesh) or basic aluminum oxide purchased from
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Dieckmann. 1-(furan-2-yl)isoquinoline was synthesized according to a previous report [94].
Details of experiments can be found in the Supplementary Materials.

3.2. Synthesis of Materials

1-(5-bromofuran-2-yl)isoquinoline: To a round bottom flask containing 1-(furan-2-
yl)isoquinoline (2.470 g, 12.630 mmol) in dichloromethane (10 mL), n-bromosuccinimide
(2.701 g, 15.160 mmol) was added slowly. The reaction mixture was then stirred at 293 K
overnight. The mixture was extracted with ethyl acetate and brine. The organic layer
was dried over sodium sulfate, filtered, and concentrated by reduced pressure. The crude
product was purified by silica gel column chromatography using dichloromethane/n-
hexane (1:1, v/v) as eluent to give the final product as a yellow oil (yield: 3.121 g, 90%). 1H
NMR (600 MHz, CDCl3) δ 8.68 (d, J = 8.5 Hz, 1H), 8.53 (d, J = 5.4 Hz, 1H), 7.81 (d, J = 8.1 Hz,
1H), 7.69–7.60 (m, 2H), 7.57 (d, J = 5.6 Hz, 1H), 7.14 (d, J = 3.1 Hz, 1H), 6.55 (d, J = 3.1 Hz,
1H). 13C NMR (151 MHz, CDCl3) δ 155.7, 147.8, 142.1, 137.1, 130.2, 128.0, 127.2, 126.3, 125.3,
123.7, 120.6, 114.8, 113.7. Found: [M + H]+ 273.9869; ‘molecular formula C13H8BrNO’
requires [M + H]+ 273.9862.

L1: To a round bottom flask containing 1-(5-bromofuran-2-yl)isoquinoline (4.110 g,
25.120 mmol) in tetrahydrofuran (250 mL), (9-phenyl-9H-carbazol-3-yl) boronic acid (4.220 g,
37.680 mmol) was added. Tetrakis(triphenylphosphine) palladium(0) (2.902 g, 2.512 mmol)
and 2 M of potassium carbonate (76 mL, 150.720 mmol) were added to the reaction mixture,
which was then heated to 85 ◦C for 48 h. After being cooled to room temperature, the mix-
ture was extracted with ethyl acetate and brine. The organic layer was dried over sodium
sulfate, filtered, and concentrated by reduced pressure. The crude product was purified by
silica gel column chromatography using dichloromethane/n-hexane (1:1, v/v) as eluent to
give the final product as a yellow solid (yield: 4.102 g, 84%). 1H NMR (600 MHz, DMSO)
δ 9.05–8.96 (m, 1H), 8.79 (d, J = 1.8 Hz, 1H), 8.60 (d, J = 5.5 Hz, 1H), 8.41 (d, J = 7.7 Hz,
1H), 8.12–7.98 (m, 2H), 7.93–7.79 (m, 3H), 7.76–7.64 (m, 4H), 7.59 (tt, J = 7.1, 1.4 Hz, 1H),
7.54–7.45 (m, 3H), 7.42 (d, J = 8.2 Hz, 1H), 7.39–7.34 (m, 1H), 7.28 (d, J = 3.5 Hz, 1H). 13C
NMR (151 MHz, DMSO) δ 156.2, 153.1, 148.2, 142.7, 141.2, 140.4, 137.3, 137.0, 130.9, 130.8,
128.9, 128.4, 127.9, 127.3, 127.2, 126.5, 124.9, 123.7, 123.2, 123.1, 122.9, 121.5, 120.9, 120.5,
116.7, 115.9, 110.9, 110.4, 107.2. Found: [M + H]+ 437.1665; ‘molecular formula C31H20N2O’
requires [M + H]+ 437.1648.

Ir1: To a round bottom flask containing L1 (1.000 g, 2.291 mmol), iridium(III) chloride
hydrate (0.270 g, 0.764 mmol) was added with 2-ethoxyethanol/deionized water (3:1, v/v,
total 8 mL). The reaction mixture was heated at 90 ◦C for 20 h. The reagent was purified by
filtration to give the yellow solid as the iridium dimer Ir2L14Cl2. This compound was used
in the subsequent reaction without further purification.

To a round bottom flask containing iridium dimer Ir2L14Cl2 (0.400 g, 0.182 mmol) in
dichloromethane/methanol (1:1, v/v, total 6 mL), diethyl [2,2′-bipyridine]-4,4′-dicarboxylate
(0.137 g, 0.455 mmol) was added. The reaction mixture was then heated to 65 ◦C for 6 h.
After cooling to room temperature, the pH was adjusted to 5 by introducing an appropriate
amount of 1 M HCl. The precipitate was filtered. The crude product was purified by silica
gel column chromatography using dichloromethane/methanol (1:1, v/v) as eluent to give
the final product as a yellow solid (yield: 0.089 g, 36%). 1H NMR (600 MHz, CDCl3) δ
9.41–9.17 (m, 2H), 9.06–8.87 (m, 2H), 8.70–8.54 (m, 2H), 8.33 (d, J = 9.3 Hz, 2H), 8.25–8.07 (m,
4H), 7.94–7.68 (m, 9H), 7.68–7.38 (m, 20H), 7.38–7.30 (m, 5H). Found: [M + NH4]+ 1325.3530;
‘molecular formula C74H46IrN6O6’ requires [M + NH4]+ 1325.3453

Ir2: To a round bottom flask containing iridium dimer Ir2L14Cl2 (0.200 g, 0.091 mmol)
in dichloromethane/methanol (1:1, v/v, total 6 mL), tetraethyl [2,2′-bipyridine]-4,4′-diylbis
(phosphonate) (0.097 g, 0.227 mmol) was added. The reaction mixture was then heated to
65 ◦C for 6 h. After cooling to room temperature, the pH was adjusted to 5 by introducing
an appropriate amount of 1 M HCl. The precipitate was filtered. The crude product was
purified by silica gel column chromatography using dichloromethane/methanol (1:1, v/v)
as eluent to give the final product as a yellow solid (yield: 0.052 g, 39%). 1H NMR (600 MHz,
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CDCl3) δ 8.86–8.72 (m, 1H), 8.71–8.54 (m, 1H), 8.14 (d, J = 8.1 Hz, 3H), 7.98–7.69 (m, 8H),
7.69–7.51 (m, 14H), 7.51–7.29 (m, 17H), 4.34–4.12 (m, 8H), 1.03–0.62 (m, 12H). Found: [M]+

1491.3888; ‘molecular formula C80H64IrN6O8P2’ requires [M]+ 1491.3893.
Ir3: To a round bottom flask containing iridium dimer Ir2L14Cl2 (0.200 g, 0.091 mmol)

in dichloromethane/methanol (1:1, v/v, total 6 mL), [2,2′-Biquinoline]-4,4′-dicarboxylic
acid (0.080 g, 0.227 mmol) was added. The reaction mixture was then heated to 65 ◦C for 6 h.
After cooling to room temperature, the pH was adjusted to 5 by introducing an appropriate
amount of 1 M HCl. The precipitate was filtered. The crude product was purified by silica
gel column chromatography using dichloromethane/methanol (1:1, v/v) as eluent to give
the final product as a yellow solid (yield: 0.044 g, 33%). 1H NMR (600 MHz, CDCl3) δ 8.61
(d, J = 9.6 Hz, 2H), 8.32 (d, J = 1.7 Hz, 1H), 8.25–8.05 (m, 4H), 7.98–7.77 (m, 6H), 7.80–7.66
(m, 6H), 7.68–7.46 (m, 18H), 7.45–7.27 (m, 13H). Found: [M]+ 1407.3763; ‘molecular formula
C82H50IrN6O6’ requires [M]+ 1407.3424.

4. Conclusions

This study introduces novel Ir(III) photosensitizers incorporating 9-phenyl-9H-carbazole,
featuring either the phosphate linker or carboxylic acid anchoring groups. Each Ir(III)
dye underwent thorough characterization and assessment of hydrogen generation rates
through water splitting. Analysis of the UV–Vis absorption spectra of the Ir(III) dyes
revealed significantly heightened intensities extending into the visible region, especially
notable in dyes containing isoquinoline functional groups. This enhancement bolstered
their light-harvesting ability and consequently improved hydrogen production.

The water splitting tests revealed that the Ir2@Pt-TiO2 system, featuring the Cz and
isoquinoline groups with a phosphate anchoring group, achieved the highest TON of
3670 under blue LED irradiation. This finding underscores the advantageous influence of
9-phenyl-9H-carbazole and isoquinoline, attributed to their strong intramolecular charge
transfer ability. In addition, the Ir(III) dye systems employing the phosphate anchoring
group demonstrated superior TON values than those with identical CˆN ligands but
utilizing carboxylic acid. Therefore, the phosphate anchoring group is crucial for designing
highly effective photosensitizers with exceptional stability. Toxicological studies were
concurrently conducted on three iridium(III) complexes and TiO2. The findings revealed
minimal or negligible differences in luminous intensity among them. Furthermore, the
results indicated that iridium(III) complexes do not pose an elevated risk to the aquatic
environment compared to TiO2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules29112564/s1, Figure S1: 1H NMR spectrum of 1-(furan-2-yl)isoquinoline in
CDCl3, Figure S2: 13C NMR spectrum of 1-(furan-2-yl)isoquinoline in CDCl3, Figure S3: 1H NMR
spectrum of 1-(5-bromofuran-2-yl)isoquinoline in CDCl3,Figure S4: 13C NMR spectrum of 1-(5-
bromofuran-2-yl)isoquinoline in CDCl3, Figure S5: 1H NMR spectrum of L1 in CDCl3, Figure S6:
13C NMR spectrum of L1 in CDCl3, Figure S7: 1H NMR spectrum of Ir1 in CDCl3, Figure S8: 1H
NMR spectrum of Ir2 in CDCl3, Figure S9: 13C NMR spectrum of Ir3 in CDCl3, Figure S10: CV results
of (a) Ir1, (b) Ir2, (c) Ir3, and (d) [Ir(ppy)2(dcbpy)]Cl, Figure S11: calibration plot of the integrated
amount of hydrogen relative to the methane, Figure S12: FTIR spectrum of Ir1, Figure S13: FTIR
spectrum of Ir2, Figure S14: FTIR spectrum of Ir3, Figure S15: XPS results of Ir1@Pt-TiO2, Figure S16:
XPS results of Ir2@Pt-TiO2, Figure S17: XPS results of Ir3@Pt-TiO2, Figure S18: The emission spectra
of used LEDs. Table S1. FTIR spectral analysis of Ir1, Table S2. FTIR spectral analysis of Ir2, Table S3.
FTIR spectral analysis of Ir3. Refs. [95–106] are cited in Supplementary Materials file.
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