
Citation: Membrat, R.; Kondo, T.E.;

Agostini, A.; Vasseur, A.; Nava, P.;

Giordano, L.; Martinez, A.; Nuel, D.;

Humbel, S. The Adaptative

Modulation of the

Phosphinito–Phosphinous Acid

Ligand: Computational Illustration

Through Palladium-Catalyzed

Alcohol Oxidation. Molecules 2024, 29,

4999. https://doi.org/10.3390/

molecules29214999

Academic Editor: Hajime Hirao

Received: 19 September 2024

Revised: 7 October 2024

Accepted: 14 October 2024

Published: 22 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

The Adaptative Modulation of the Phosphinito–Phosphinous
Acid Ligand: Computational Illustration Through
Palladium-Catalyzed Alcohol Oxidation
Romain Membrat 1, Tété Etonam Kondo 1 , Alexis Agostini 1, Alexandre Vasseur 1,2 , Paola Nava 1,
Laurent Giordano 1, Alexandre Martinez 1, Didier Nuel 1,* and Stéphane Humbel 1,*

1 Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille, France; romainmembrat@gmail.com (R.M.);
alexandre.vasseur@univ-lorraine.fr (A.V.); paola.nava@univ-amu.fr (P.N.);
laurent.giordano@centrale-marseille.fr (L.G.); alexandre.martinez@centrale-marseille.fr (A.M.)

2 Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
* Correspondence: didier.nuel@centrale-med.fr (D.N.); stephane.humbel@univ-amu.fr (S.H.)

Abstract: The phosphinito–phosphinous acid ligand (PAP) is a singular bidentate-like self-assembled
ligand exhibiting dissymmetric but interchangeable electronic properties. This unusual structure has
been used for the generation of active palladium hydride through alcohol oxidation. In this paper,
we report the first theoretical highlight of the adaptative modulation ability of this ligand within a
direct H-abstraction path for Pd and Pt catalyzed alcohol oxidation. A reaction forces study revealed
rearrangements in the ligand self-assembling system triggered by a simple proton shift to promote the
metal hydride generation via concerted six-center mechanism. We unveil here the peculiar behavior
of the phosphinito–phosphinous acid ligand in this catalysis.
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1. Introduction

In homogenous catalysis, the ligands of a reactive metal center have an enormous
impact on the reactivity. The fine tuning of the ligands is thus desirable to achieve the syn-
thesis of highly functionalized stereospecific targets with a straightforward approach [1]. In
this context, bidentate diphosphines are interesting ligands, because the rigidity due to the
chelate effect can contribute to the stereocontrol [2–5]. Dissymmetric di-organophosphorus
ligands bearing both strong σ-donor and π-acceptor units (Figure 1(1)) proved to be partic-
ularly efficient in enantioselective hydroformylations [6].
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Figure 1. Covalent and H-bond assisted self-assembled bidentate di-phosphorus ligands.

However, the introduction of purely covalent spacing groups between the two donat-
ing sites requires time-consuming, tedious and stepwise synthesis. Another approach relies
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on the harnessing of noncovalent interactions between two monodentate organophospho-
rus ligands [7–9] to mimic the structure of a bidentate ligand through a self-assembling
process as illustrated by Reek et al. in 2009 (Figure 1(2)) [10,11]. The chemistry of the
phosphinito–phosphinous acid (PAP) ligand is based on this paradigm. The PAP ligand
is obtained by coordination of two secondary phosphine oxides (SPOs, Scheme 1) in their
phosphinous acid form (PA, Scheme 1) [12] and their self-assembling by hydrogen bonding
is triggered by deprotonation (Scheme 1) [13–19]. M/PAP complexes have been widely used
as catalysts in a broad range of reactions, as overviewed by Ackermann [20], Achard [21],
and more recently by Verdaguer [22] and van Leeuwen [23]. The PAP ligand allows us to
achieve high performances in CC bond formation [12,24,25].
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phosphines (Scheme 1b) results in a switch of the electronic properties of the two phos-
phorus moieties [26,27]. The PAP ligand can indeed present a dissymmetric structure with 
one phosphinous acid (moderate σ-donor) and one phosphinito moiety (excellent σ-do-
nor) as evidenced by our group in 2011 [28]. The presence of a single signal in 31P NMR 
for Pd/PAP complexes in CDCl3 reflects an equilibrium between the two forms in solution 
(see ESI) [16]. 
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7, and acetic acid was shown to result in the formation of monoreduced dba (dibenzyli-
deneacetone) 9 as a by-product (Scheme 2) [29]. This experimental feature clearly indicates 
that the self-assembled negatively charged structure of the PAP ligand in Pd/PAP and 
Pt/PAP complexes enables the generation of active metal-hydride intermediates 8 from H-
donors. 
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Scheme 1. (a) The self-assembled phosphinito–phosphinous acid ligand/metal complex (M/PAP).
(b) The dissymmetric nature of the M/PAP catalyst.

It should be stressed that a simple proton shift in the “pincer” formed by the two
phosphines (Scheme 1b) results in a switch of the electronic properties of the two phos-
phorus moieties [26,27]. The PAP ligand can indeed present a dissymmetric structure with
one phosphinous acid (moderate σ-donor) and one phosphinito moiety (excellent σ-donor)
as evidenced by our group in 2011 [28]. The presence of a single signal in 31P NMR for
Pd/PAP complexes in CDCl3 reflects an equilibrium between the two forms in solution
(see ESI) [16].

The synthesis of the self-assembled Pd/PAP complex 10 from Pd2(dba)3, tBuPhP(O)H
7, and acetic acid was shown to result in the formation of monoreduced dba (dibenzylide-
neacetone) 9 as a by-product (Scheme 2) [29]. This experimental feature clearly indicates
that the self-assembled negatively charged structure of the PAP ligand in Pd/PAP and
Pt/PAP complexes enables the generation of active metal-hydride intermediates 8 from
H-donors.

This property has been recently exploited through palladium and platinum cat-
alyzed anaerobic alcohol oxidations [30,31], coordination complex synthesis [16], isomeriza-
tions [16] or one-pot oxidation–fragmentation reactions [32]. However, it is quite surprising
to observe that relatively moderately hindered phosphinous acids (Cy2POH or Ph2POH)
(p-cymene) are also suitable for cross-coupling procedures [33]. This result suggests a
particular effect of the PAP ligand within the catalytic cycle.

The anaerobic alcohol oxidation seemed well suited to clarify the behavior of the PAP
ligand as a part of a catalytic cycle (Scheme 3) [34,35].
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Herein, we report a mechanistic study highlighting an adaptive self-modulation of the
PAP ligand during the M/PAP catalyzed alcohol oxidation. Our theoretical study focuses
on the oxidation part of the catalytic cycle (Scheme 3, top).

2. Results
2.1. Experimental Study: Comparison of PAP Ligand with Classical Phosphorus Ligands

In order to know more about the role of the anionic self-assembling of the PAP
ligand during the oxidation process, we ran comparative oxidation reactions of the same
tetramethylpiperidin-4-ol 11, using various structurally similar Pd and Pt catalysts (Table 1).
The methyl vinyl ketone 13 acted as a sacrificial reoxidant for the catalyst. The reactions
were carried out at room temperature under slightly basic conditions. The yields in
tetramethylpiperidin-4-one 14 are reported in Table 1.

The best catalyst Pt/PAP complex 12a (Table 1, entry 1) led to very good yield (74%),
and the use of a similar Pd-based complex 12b also resulted in a robust catalytic system
despite a lower yield (entry 2). The replacement of 12b by commercial catalysts 12c or
12d resulted in instantaneous black Pd deposit (Table 1, entries 3 and 4). In these two
cases, the generated neutral Pd(II) hydride suffered from degradation by the reductive
elimination of HCl. To ensure a better comparison with the PAP ligand, we replaced 12b
by the Hermann Beller catalyst 12e with a neutral bidentate ligand bearing both ligand
types L and X, with the same charge and same oxidation state as 12b. This catalyst should
lead easily to a cationic Pd-H intermediate, which is necessary for the alcohol oxidation.
The obtaining of a Pd black deposit (Table 1, entry 5) clearly indicates that the PAP pincer
has other characteristics in the metal chelate structure. This catalyst (12e) has a clear and
fixed dissymmetry: a Pd-C bond on one side and a Pd-P bond on the other, while the PAP
ligand (as in 12b) can modulate the nature of the two Pd-P bonds through an inter-ligand
hydrogen bonding [26,27]. Hence, this H bond seems important.

Thus, we studied the performances of the purely monodente neutral ligand system
composed of two phosphinous acids (12f), which can feature an inter-ligand H bond as
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in 12b. However, it resulted in a quick black Pt deposit after about two turn-overs, so the
inter-ligand H-bond is not sufficient for the reaction to proceed smoothly. The catalyst
12g is a derivative of 12a, where the H-bonding proton has been replaced by a BF2 moiety,
according to Leung’s procedure [36]. As for 12a, 12b, and 12e, this catalyst can generate
a neutral Pt–hydride species. It also features a clear inter-ligand bonding through Lewis
Acid-Base pairings. It gives 14 in a good yield (74%, Table 1, entry 7). It should be noticed
that in this case, the 19F NMR analysis of the crude mixture at the end of the reaction
suggests that the chemical integrity of the O-BF2-O moiety is preserved throughout the
transformation.

Table 1. Comparison between M/PAP complex 10 and structurally similar catalysts a.
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The contrasting results obtained here can all be attributed to the specific feature of
an adaptive ligand that modulates its electronic donation ability along the reaction path.
We unveiled this distinctive characteristic in a previous work on an unusual C-C bond
formation [26,27]. The self-assembling of the PAP ligand seems to be robust and imperative
for this alcohol oxidation reaction. In the calculations, we considered a simplified PAP
ligand (PMe2O..H..OPMe2) to study the isopropanol oxidation. Such a model will be used
in DFT computations to better understand the role of this versatile PAP ligand.

2.2. Mechanistic Computational Study

The standard β-H elimination (Scheme 4, top) is the generally accepted mechanism
for the alcohol oxidation reaction [37,38]. Starting from a complex (A-B), it involves an
intramolecular Pd-assisted deprotonation, that leads to C, followed by a water elimination
to Cβ and a β-hydride elimination that leads to Dβ. It has been confirmed by a significant
number of theoretical studies [39–43].
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Scheme 4. Compared pathways for the alcohol oxidation.

In 2006, Goddard et al. proposed a “reductive β-elimination” for an aerobic alcohol
oxidation catalyzed by Pd-NHCs’. It was shown to be slightly more favorable (by about
3 kJ/mol) compared to the classical β-hydride elimination [44,45], but it does not apply to
our case of an anaerobic alcohol oxidation (an enone reoxidant is in excess in the reaction
media to complete the catalytic cycle). Hence, we discarded Goddard’s pathway.

Another interesting pathway would involve an outer sphere-mechanism involving the
participation of the P-O-H-O-P moiety, as described by van Leeuwen et al. [46]. However,
through a study of the isomerization of cis-stilbene, we provided strong indications that
a metal hydride intermediate was involved in our case (see ESI pp 9–10). We showed
previously that an HO− X-type ligand at the metal center was required for a positive
outcome of the process [31]. Moreover, the absence of BrØnsted base effect on the reaction
rate (ESI 2.7 p14) and the non-detection of a Pd alcoholate by ESI-MS analysis of the Pd
crude reaction mixture [30] led us to consider a pathway involving a direct H abstraction
(Scheme 4, bottom). This second mechanism has been considered for instance by Sheldon
et al. [47] with Pd-OH as an effective catalytic species. It proceeds through a hydrogen
bond-assisted reorganized system (A-B)’ and a direct concerted six-membered ring hydride
abstraction that leads to D’. This direct mechanistic pathway is rarely considered [38,47]
We computationally investigate it and compare it to the standard β-H elimination route.

2.2.1. β-Hydride Elimination vs. Direct H Abstraction

The β-H elimination, as shown in Scheme 5, requires that the alcohol’s proton first
transfers to the hydroxyl ligand (TS1), then the proton of the pincer transfers within the
PAP pincer from one oxygen to the other (TS-HT). It shall be noted that these proton
transfers (A-B → TS1 → I → TS-HT → C) have very low barriers on a shallow surface (see
Table 2).

For the last step of β-elimination (Cβ → TSβ → Dβ), we need to free a position in
the square planar metal complex. We considered that this water molecule could either be
removed, as stated previously, or stay in interaction in the complex with a rotation that frees
a position on the square planar catalyst (reorientation). If water is removed, it will bind to
another (external) molecule nearby, alcohol or water, and they will bind together by about
13.5 kJ·mol−1 [48]. Even if this was taken into account, the removal of the water molecule
was found about 20 kJ·mol−1 higher in energy than the reorientation. With this in mind, we
kept the water molecule during the β-elimination path and simply reoriented the groups of
atoms (C → Cβ in Figure 2). For the Pd/PAP catalyst, the β-elimination mechanism has its
highest point of the path at 55.6 kJ·mol−1 above (A-B). Similar calculations for the Pt/PAP
catalyst gave similar energetics (55.9 kJ·mol−1—Table 2).
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Table 2. B3LYP/def2TZVP relative energies (kJ·mol−1) with D3 dispersion and including Zero Point
Correction (ZPC) a,b.

Pd-PAP Pt-PAP

Separated reactants 82.9 84.2

β-H Elimination
(A-B) 0.0 0.0
TS1 4.3 6.5

I 4.7 a - b

TS_HT −0.5 a - b

C 3.0 a 4.2
(the substrate and H2O are reoriented)

Cβ 29.8 38.4
TSβ 55.6 55.9
Dβ 44.9 21.8

Direct H abstraction
(A-B)’ 24.8 25.0

TS’ 55.9 51.3
D’ 13.4 9.7

Separated products 122.7 125.5

Energetic Balance 39.7 41.3
a When the ZPC is taken into account, some distortion of the potential energy surface can push an intermediate
over a transition state. b The intermediate I could not be located for Pt-PAP, so the proton transfer in the pincer is
only a shoulder on the path.

The direct H-abstraction mechanism is a one-step mechanism that requires an initial
rearrangement of the reactant from (A-B) to (A-B)’. In (A-B)’, the alcohol molecule is
reoriented in such a way (Figure 2) that the metal hydride is made in the same step as H2O.
That (A-B)’ conformation is 24.8 kJ·mol−1 over (A-B), and the transition state TS’ that leads
to the D’ product is at 55.9 kJ·mol−1, which is very close in energy to TSβ (55.6 kJ·mol−1).

These computations were also carried out for the Pt-PAP catalyst. The energies were
similar, although a slightly lower path was obtained for the direct oxidation with Pt and
TS’ being at 51.3 kJ·mol−1.
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We can see from this study that the direct H-abstraction mechanism is comparable in
energy to the two-step β-hydride elimination, and it shall be relevant is some cases, for
instance for the Pt analog.
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Figure 2. (A-B) and (A-B)’ conformations and labels used to differentiate the key oxygen and
hydrogen atoms. The proton in the pincer is labeled Hab, while the proton of the alcohol is labeled
H12. Structures C and Cβ show the reorientation in the catalyst to free a position during the β-
elimination.

We also note that the energetic balance of the oxidation can be evaluated by the energy
difference between the separated reactants (Cat-OH + Alcohol) and separated products
(Cat-H + H2O + ketone). It does not depend on the mechanism, and is unfavorable (by
about 40 kJ·mol−1). This indicates that the choice of the sacrificial enone reoxidant is crucial
for the catalytic cycle to proceed.

In the next section, we wish to better describe the behavior of this system on the
path, around the transition state. For the sake of simplicity, only the direct mechanism
is described.

2.2.2. Reaction Force Analysis

The energy (E) and reaction force (RF) plots of the direct mechanism are displayed in
Figure 3. The reaction processes from the left (A-B)’, alcohol reactive) to the right (D’, ketone
formation), with a focus on the transition state TS’ region. TS’ is perfectly located at RC = 0,
but both (A-B)’ and D’ would be outside the figure, along the horizontal axis. The plots
are along the IRC path. They follow the reaction coordinate (RC). The IRC path converges
very slowly to D’, and because the plots are close to the transition state, it is not possible
to reach the D’ geometry. The same applies to (A-B)’, and the global exothermicity of the
reaction cannot be read from the energy curve. This would require a further reorganization
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of the reactive on the left, and of the product on the right. The energy does not include the
ZPC; thus, the estimated barrier height appears higher than the value reported in Table 2.
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Figure 3. Energy (plain) and reaction force (dots) plots for direct H abstraction (arbitrary units) as a
function of the reaction coordinate (RC). The energy is not ZPC-corrected. The energy of TS’ is set to
zero. The RC axis corresponds to 125 points along the path, and the unit (RCunit) is arbitrary. The
origin corresponds to geometry of the transition state TS’, and this RC axis is oriented in such a way
that (A-B)’ is on the left, and D’ on the right.

The dotted curve shows the variation in the reaction force (RF) (Equation (1)) along
RC (in kJ/mol/RCunit). It is set that RF = 0 at the geometry of TS’, and as usual [49–51].
It is negative on the left of the transition state, and positive on the right. RF shows an
unusual shape, with two extrema before the transition state, instead of one. Each extremum
corresponds to a chemical event during the reaction [52,53]. To better illustrate those two
events, we plotted the distance variation during the IRC path (Figure 4). The RC axis is the
same as that of Figure 3.

The reaction corresponds to the alcohol oxidation, and the C=O1 double bond is
formed. Consistently, it can be seen on Figure 4 that the C-O1 distance decreases from
about 1.4Å to about 1.2Å. Simultaneously, the CH and O1H12 distances increase (red curves).
This corresponds to the direct oxidation mechanism, where both hydrogens migrate from
the alcohol. This event corresponds to the second peak, at RC = −1, of the RF curve
(Figure 3). The first peak in RF, at RC = −3, corresponds to the Hab transfer in the PAP
pincer, from Ob to Oa. The black curve (Figure 4) shows that the Ob-Hab distance varies
from about 1.1Å to 1.5Å. The dash curve in the top part of Figure 4 shows that the OaOb
distance slightly shortens to ease the transfer [54].

The CH distance is not converged, but rather rises continuously, which is consistent
with the aforementioned reorganization around the Pd atom, which is not completed
during the IRC.
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During the Hab transfer another reorganization takes place in the catalyst. Here, we
have the opportunity to better describe the equilibrium between phosphinito–phosphinous
acid in the PAP ligand (Scheme 1b). It can be seen in Figure 5 that the Pd-Pa distance
increases from ~2.25Å to ~2.35Å while Pd-Pb decreases. Meanwhile, the P-O’s distances
vary similarly. It looks like the Hab’s transfer prepares the ligands so that Pa becomes
a phosphinous acid ligand, in trans to the upcoming hydride. As such, we observe an
elongated Pa-O bond and a larger Pd-Pa distance (2.35Å), more like an L-type ligand. On
the contrary, Pb becomes more like a phosphine oxide (phosphinito) ligand, close to an
X-type ligand (Pd-Pb = 2.15Å), in trans to the upcoming water ligand. It is shown that the
PAP ligand continuously adapts its electronic structure during the reaction path by the
pincer’s proton transfer.
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3. Materials and Methods: Computational Details

All calculations were performed at the B3LYP/def2TZVP level with Grimme’s disper-
sion terms D3 [55–58]. The transition states were checked with analytic second derivative
analysis. They always have a unique imaginary frequency.

For a deeper understanding of PAP ligand’s behavior, we performed a reaction force
analysis within the Intrinsic Reaction Coordinate (IRC) model [59]. An analytical calculation
of the second derivatives was requested at each of the 125 steps of the IRC, and the path
energies were used to obtain the reaction force through a numerical derivative of the energy
with respect to the reaction coordinate (1) [50].

RF(RC) = −∆E(RC)
∆RC

(1)

The calculations were carried out with the Gaussian 09 software [60] with the default
parameters, notably for the B3LYP method. Except for the IRC’s energies, the Zero Point
Correction (ZPC) is included.

4. Conclusions

The self-assembled PAP ligand presents a very specific behavior during this catalytic
alcohol oxidation. The hydrogen bond assisted linkage (PAP pincer) makes it unique and
significantly different to purely covalent bidentate diphosphines. This study demonstrated
that the Pd/PAP and Pt/PAP performances for anaerobic alcohol oxidation could not
be matched by conventional commercial phosphorus ligands. We also highlighted an
unprecedented direct H-abstraction mechanism instead of classical β-hydride elimination
for the same reaction. Mentioned in 2002 by Sheldon et al. [47], to the best of our knowl-
edge, this concerted hydrogen bond-assisted pathway has not been studied by molecular
modeling. The analysis of reaction forces revealed a continuous adaptive modulation of
the PAP ligand electronic properties, and led us to give a plausible explanation for this
unusual mechanism. This advance in PAP ligand behavior understanding would probably
give further help to visit challenging reactions in catalysis. It demonstrated that M/PAP
catalysts feature an unusual operating mode, allowing us to dismantle the preconceived
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idea that metal-catalyzed reactions necessarily involve the formation of a metal alcoholate
and then a β-H elimination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29214999/s1. References [61,62] are cited in the Sup-
plementary Materials.
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