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Abstract: Natural deep eutectic solvents (NADESs) are a sustainable, green option for
extraction and reaction media in biorefineries and various chemical and biotechnological
applications. Particularly, enzymatic reactions profit from NADES applications, as these sol-
vents help to maintain high substrate solubility while improving both enzyme stability and
efficiency. Recent studies confirmed that NADESs can perform multiple functions simulta-
neously, as reaction media for biocatalytic conversions, but also as substrates and catalysts
for reactions, fulfilling the role of a reactive solvent. This study reports the beneficial
effect of designed reactive natural deep eutectic solvents (R-NADESs) on the esterification
activity and thermal stability of free and immobilized lipases in the synthesis of polyol-
and carbohydrate-based biosurfactants. We manufactured and characterized 16 binary and
ternary R-NADES systems with choline chloride (ChCl) as the hydrogen bond acceptor
(HBA) and carbohydrate polyols; mono-, di-, and oligosaccharides; urea (U); N-methyl
urea (MU); and water as the hydrogen bond donors (HBDs), in different combinations and
molar ratios, most of which are reported for the first time in this paper. We determined their
physicochemical, thermal, and molecular properties, including among others viscosity,
polarizability, and the number of hydrogen bonds, and we showed that these properties
are controlled by composition, molar ratio, molecular properties, temperature, and water
content. Many lipases, both native and immobilized, showed high stability and remarkable
catalytic performance in R-NADESs during esterification reactions.

Keywords: reactive NADES; lipase; immobilized lipase; catalytic activity; lipase stability;
choline chloride; carbohydrates; molecular properties

1. Introduction
Natural deep eutectic solvents (NADESs) represent the third generation of deep eu-

tectic solvents (DESs), according to the classification introduced by Abbott [1]. They are
composed entirely of natural and biobased materials, with choline chloride (ChCl) and
betaine as the hydrogen bond acceptor (HBA), and a large variety of polyols, carbohydrates,
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carboxylic acids, terpenes, amines, and amides as hydrogen bond donors (HBDs), inter-
connected with each other through hydrogen bonding in an extended network. A strong
hydrogen bond network is the basis for NADESs’ unique physical, thermal, and mechanical
properties [1,2]. A priori, scientists labelled NADESs as “green”, based on the intrinsic
properties of their secondary metabolites’ constituents. Indeed, rigorous studies showed
that NADESs are biodegradable and nontoxic for humans and living organisms, as well as
biocompatible and environmentally benign [3,4]. Because of their green character and bio-
logical acceptance, NADESs are a valid alternative to the volatile organic solvents and ionic
liquids used in biocatalytic conversions [5,6]. It is not surprising that the number of studies
reporting on the properties, functionality, and the potential application of NADESs in vari-
ous fields, including materials, the pharmaceutical industry [7,8], the cosmetic industry [9],
and synthetic biocatalysis [10] increased significantly in the past years. It is relevant for the
successful implementation of biocatalytic processes in NADESs as nonconventional media
that many enzymes, for instance lipases, laccases, peroxidases, lyases, proteases, alcohol
dehydrogenases, and oxidases, among others, are catalytically active and maintain stability,
enantioselectivity and regioselectivity in a choline chloride-based NADES with ethylene
glycol, glycerol, and urea, in an aqueous solution containing various amounts of water,
ranging from 5 to 45% [11]. Therefore, recent research addressed the interaction between
enzymes and NADESs, to better understand the relationship between the properties and
components of the NADESs and the active structure and performance of enzymes [12,13].

Lipases are biocatalysts with the most applications in industries, both for (a) hydrolytic
processes, in the food and laundry industries, and for (b) the synthesis of a large variety
of esters via esterification, transesterification, interesterification, and (poly)condensation
reactions in the fragrance and flavor, cosmetic, and pharmaceutical industries, as well as
for the synthesis of biobased detergents, polymers, and biodiesel, among others [14–16].
Synthetic reactions usually proceed in organic solvents or solvent-free systems [17,18].
Already in 1984, A.M. Klibanov and his team showed that lipases function optimally in
organic solvents as non-conventional media [19]. In the past two decades, lipases were
proven to perform as well in ionic liquids and in both hydrophilic and hydrophobic DES
and NADES systems [20–23]. The esterification of lactic acid with ethanol catalyzed by
Novozyme 435 was explored in several DESs, the highest yield of 28.7% being obtained
in choline chloride–glycerol (1:2) and 10% water content in a DES, at 50 ◦C [24]. Lipase-
catalyzed esterification in DESs can be an effective route for the separation of racemic
mixtures as well. Craveiro et al. obtained 44% conversion and an enantiomeric excess
of 62% for the esterification of rac-menthol with lauric acid catalyzed by Candida rugosa
lipase [25]. Fatty acid esters were produced from waste oil and ethanol in a DES (choline
chloride–glycerol, 1:2) and the ultrasound-assisted DES systems, with immobilized lipase
from Candida antarctica B (Novozyme 435) as a catalyst. The conversions reached 94%
in ultrasonic conditions [26]. Lipoamino acids are difficult compounds to synthesize
in classical reaction systems, but Nian et al. succeeded to obtain lauroyl glycine in an
amidation reaction catalyzed by Candida antarctica B lipase in NADESs (with the best result
obtained with a choline chloride–glycerin ratio of 1:2); this also showed that adding metal
chlorides for three-constituent NADESs can increase their yield up to 86% [27]. Sugar
esters represent another difficult synthetic task which was successfully approached by
lipase-catalyzed processes in DESs. Noro et al. obtained high conversions of glucose
laurate and glucose acetate by combining the appropriate DESs (choline chloride–urea;
choline chloride–glycerol; or tetrabutylammonium bromide–imidazole) with lipases from
Aspergillus oryzae, Candida rugosa, or a porcine pancreas [28].

Obviously, the chemical composition of a DES or NADES has a strong influence on
the activity and catalytic efficiency of a lipase. Cao et al. [29] showed that the secondary
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structure of the Candida antarctica B lipase (CalB) strongly depends on the nature of the
HBD component, as it is being preserved in alcohol-based NADESs, and denatured in
carboxylic acid-based NADESs, consequently with similar effects on catalytic activity and
thermal stability. The length of the carbon chain of the HBD component, the number
of carboxyl groups in hydrophobic NADESs and the number of hydroxyl groups in hy-
drophilic NADESs had a positive impact on the catalytic efficiency and thermal stability
of CALB, as demonstrated in the model reaction of benzyl alcohol acetylation [30]. ChCl-
based NADESs with polyols as HBDs (i.e., glycerol, xylitol, D-arabitol, and D-sorbitol)
maintain the active structure of the enzyme by substituting the hydration layer of the
enzyme surface, thus protecting the enzyme at a higher temperature, and enhancing the
reaction yield [30,31]. The higher catalytic efficiency of the CALB lipase in hydrophobic
DESs compared to hydrophilic ones was confirmed by Hollenbach et al. in the synthesis of
glucose monodecanoate [32], as the yields obtained in a hydrophobic DES consisting of
(-)-menthol and decanoic acid were higher than previously reported for the hydrophilic
DESs ChCl–urea and ChCl–glucose [33].

Reactive natural deep eutectic solvents (R-NADESs) detached themselves over the
past years from the bigger and thoroughly studied group of NADESs due to their partic-
ular ability to play multiple functions when mixed with the proper catalyst, particularly
enzymes. It is now well documented that, in addition to their role as a solvent for the
reaction, R-NADESs can be (a) the source of a substrate, when one or both components of
the R-NADES participate in the reaction, (b) a source of a catalyst, or (c) the initiator of a
cascade reaction [34].

Despite the many scientific reports on the utilization and the effects of NADESs
on the activity and thermal stability of a lipase when a NADES is used as the reaction
medium, information on the effect of R-NADESs and their properties on lipase esterification
activity when the solvent is also the source of the substrate of the reaction is scarce. Also,
most studies reported in the literature were based on the hydrolytic activity of a lipase,
using PNP hydrolysis as the model reaction, when the R-NADES was a co-solvent for
aqueous systems [35] or for aqueous–organic solvent mixtures, such as DMSO and tert-
butanol [36]. It is common knowledge that esterification activity and hydrolytic activities
are quite different and could be divergent, since other factors are contributing, including
the composition of the reaction medium and its physical and thermal properties, as well
as the type, and the structure of the substrates and their interaction with the solvent
and the enzyme [37]. This is particularly important for enzymes in R-NADES reaction
systems, when the substrate of the reaction is a part of an extended hydrogen bond network
surrounding the enzyme catalyst [33]. Moreover, the possibility of secondary reactions (the
formation of choline chloride fatty esters) must be considered in the case of the esterification
of fatty acids carried out in NADESs using choline chloride as the hydrogen bond acceptor
and a sugar and water as the hydrogen bond donors, if free choline chloride, not involved
in the H-bond network of the NADES, is present in the reaction system [38].

In this context, this study examined the effect of designed hydrophilic R-NADES
mixtures on the esterification activity and thermal stability of free and immobilized lipases
for the synthesis of polyol- and carbohydrate-based biosurfactants. The application of
reactive NADES mixtures as the reaction medium and substrate source for lipase-catalyzed
carbohydrate ester synthesis is of high importance to prevent a low substrate concentration
caused by the limited solubility of carbohydrates in organic solvents and solvent-induced
enzyme inactivation. We manufactured and characterized 16 binary and ternary R-NADES
mixtures with ChCl as the HBA and carbohydrate polyols; mono-, di-, and oligosaccharides;
urea (U); and N-methyl urea (MU) as the HBDs, in different combinations and molar ratios.
Lipase enzymes were selected for application in an R-NADES based on their experimentally
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determined reference esterification activity for (a) the solventless synthesis of n-propanol
laurate and (b) the synthesis of glucose-6-monolaurate, in DMSO/t-butanol 90/10 (vol%).
The selected enzymes were immobilized by entrapment in a silica sol–gel matrix. All the
native enzymes, the immobilized enzymes prepared, and the commercial CalB immobilized
on acrylic resins (N435) were utilized as biocatalysts for the synthesis of the lauryl esters
of the polyols and carbohydrates in the designed R-NADESs and the operational stability,
esterification activity, and LA conversion were determined and evaluated in relation to the
properties and composition of the used reactive NADES mixtures.

2. Results and Discussion
2.1. Preparation and Propeties of R-NADESs

The R-NADESs were prepared by a direct mixing of the HBA component with the
HBD components listed in Figure 1, at different molar ratios, as given in Table 1.

Table 1. Reactive NADES: composition and properties.

R-NADES TGA DSC Viscosity
at 70 ◦C

(cP)

HBA/HBD # H-
Bonds
(HBs)Entry Composition Water Loss

(w%)
Tonset
(◦C)

Tm
(◦C)

Tg
(◦C) (mol/mol)

1 ChCl:Glc (2:1) 3.5 196 76.8 −52.3 1354 2 3

2 ChCl:Glc:H2O
(1:1:1) 5.5 190 * n.o. −44.5 767.5 0.5 4

3 ChCl:Glc:H2O
(2:1:1) 6.08 195 8.7, 73.7 −22 382 1 3

4 ChCl:Arabose
(2:1) 1.46 195 79.3 −20 1183 2 2

5 ChCl:MMH:H2O
(4:1:4) 5.46 212 60.5 * n.o. 370 0.8 9

6 U:Glc (2:1) 0.86 142 89.4 −0.3 845 2 5

7 MU:Glc (2:1) 0.72 141 62.4 −0.4 1730 2 7

8 ChCl:Glc:U
(1:1:1) 0.58 150 * n.o. −27.5 1370 0.5 3

9 ChCl:Glc:U
(1:1:2) 0.40 145 * n.o. −28.5 495 0.33 9

10 ChCl:MMH:U
(1:0.5:2) 1.28 153 * n.o. −51.5 627.5 0.4 16

11 ChCl:In:U
(1:0.5:2) 1.73 153 * n.o. −51.5 350 0.4 ˆ n.d.

12 ChCl:MaltDex:U
(1:0.5:2) 1.80 150 * n.o. −51.5 487.5 0.4 ˆ n.d.

13 ChCl:D-Ara (1:1) 1.46 276.6 50.2 −62.1 300 1 1

14 ChCl:Xyl (1:1) 1.61 277.5 29.4 −58.6 235 1 2

15 ChCl:D-Sorb
(1:1) 1.56 278 44.2 −55.7 655 1 1

16 ChCl:LMH (2:1) 1.14 245 61, 77.8, 145 * n.o. 2300 2 1

* n.o. = not observed; HBA/HBD # is the molar ratio between choline chloride and the sum of urea and
carbohydrate or polyol as HBDs; ˆ not determined.
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Figure 1. Structure of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) used in 
this study for the preparation of reactive natural deep eutectic solvents (R-NADESs). 

Choline chloride, with an HBA count of two, and urea and N-methyl urea, both with 
an HBA count of one, all can serve as an HBA, while U and MU, with an HBD count of 
two, can also function as HBD components. We prepared two sets of R-NADESs, namely 
(i) one set of binary mixtures containing only a carbohydrate or a polyol as the HBD with 
either ChCl (entries 1, 4, and 13–16 in Table 1) or U and MU as the HBDs (entries 6 and 7 
in Table 1), and (ii) another set of ternary mixtures, with additional water (entries 2, 3, and 
5 in Table 1) or with urea (entries 8–12 in Table 1) next to ChCl and the carbohydrate 
HBDs. The addition of water to the ChCl–carbohydrate ternary mixtures, (i.e., 5.5 wt.% to 

Figure 1. Structure of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) used in
this study for the preparation of reactive natural deep eutectic solvents (R-NADESs).

Choline chloride, with an HBA count of two, and urea and N-methyl urea, both with
an HBA count of one, all can serve as an HBA, while U and MU, with an HBD count of
two, can also function as HBD components. We prepared two sets of R-NADESs, namely
(i) one set of binary mixtures containing only a carbohydrate or a polyol as the HBD with
either ChCl (entries 1, 4, and 13–16 in Table 1) or U and MU as the HBDs (entries 6 and
7 in Table 1), and (ii) another set of ternary mixtures, with additional water (entries 2, 3,
and 5 in Table 1) or with urea (entries 8–12 in Table 1) next to ChCl and the carbohydrate
HBDs. The addition of water to the ChCl–carbohydrate ternary mixtures, (i.e., 5.5 wt.%
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to R-NADES 2, 3.8 wt.% to R-NADES 3, and 9 wt.% to R-NADES 5) was essential for the
formation of deep eutectic solvents. During heating, the transparent liquid develops for
all the mixtures (examples are in Figure S1 in the Supplementary Information file, SI). All
prepared R-NADESs are clear, transparent liquids in the temperature interval between
40 and 80 ◦C, which is the optimum temperature range for lipase catalytic activity.

Computational chemistry and modeling gave us information on the interaction be-
tween the chemical components of the mixtures and the hydrogen bond network forma-
tion. A graphical representation of the structures of all 16 R-NADES mixtures is given in
Figure S2, in the Supplementary Information file (SI). The H-bonds obtained, and their
length are given in Table S1 in the SI, for all the R-NADES.

The optimized structures of NADES 2 (ChCl:Glc:H2O 1:1:1) and NADES 9 (ChCl:Glc:U
1:1:2) and the hydrogen bonds formed are illustrated in Figure 2. The visualization of the
hydrogen bond network demonstrates without any doubt that all the constituents of R-
NADES mixtures have multiple functions, each compound acting both as an HBD and as
an HBA. In binary and ternary R-NADESs with carbohydrates and polyols, the interactions
between the hydroxyl group of choline and the OH of carbohydrates and polyols, and the
binding of water to the OH groups of carbohydrates are observed. In ternary R-NADES
with ChCl, urea, and carbohydrates, there are multiple interactions between the NH2

groups of urea, as an HBD, and the -OH groups of the carbohydrate and choline chloride,
but also between the carbonyl group of urea and the protons of the OH groups and of the
amino groups, resulting in supramolecular structures. We can conclude that the number
of hydrogen bonds increases with the number of components (NADES 10) and with the
number of urea and methyl urea structures, which can easily establish intermolecular forces
(NADESs 6, 7, and 9). The number of H-bonds created is determined by the composition of
the mixtures and the stereochemistry of the molecules. This is clearly seen for the binary
R-NADES mixtures composed of choline chloride and polyols. Xylitol-based R-NADESs,
composed of meso-xylitol, i.e., (2R,3r,4S)-pentane-1,2,3,4,5-pentol, contain two H-bonds
(Figure S2-14), while R-NADESs based on (a) D-arabitol, i.e.,(2R,4R)-pentane-1,2,3,4,5-
pentanol (Figure S2-13), and (b) D-sorbitol, i.e., (2R,3R,4R,5S)-hexane-1,2,3,4,5,6-hexanol,
(Figure S2-15), have only one H-bond.
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2.1.1. Thermal and Physical Properties of R-NADES Mixtures

The composition of the mixtures, the molar ratios, and the thermal properties, i.e., the
onset temperature of decomposition (Tonset), water loss, the melting temperature (Tm), the
glass transition temperature (Tg), viscosity (η), are listed in Table 1. The thermograms of
selected samples are in Figure S3, in the Supplementary file.

A thermogravimetric analysis (TGA) gave information on thermal stability, decom-
position temperatures, and the free and bound water, providing detailed insight into the
water interactions within the DES structures, and showing clear differences between the
thermal properties. All binary and ternary ChCl-based R-NADES mixtures with polyol
and carbohydrate HBDs (entries 1–5 and 13–16, Table 1) are highly thermostable, with
Tonset ranging from 190 ◦C to 278 ◦C. They show minor weight loss up to 200 ◦C, which is
mainly water. Only a small part of the crystallization water and the additional water in the
ternary chloride–carbohydrate R-NADES mixtures (entries 1–5 in Table 1) are released at
temperatures below 200 ◦C, which suggests that most of the water is tightly bound to other
components in the extended hydrogen bond network. A major mass loss of about 80% was
recorded between 200 and 300 ◦C. The R-NADES mixtures containing urea and MU (entries
6–12, Table 1) started decomposing at temperatures between 140 ◦C and 173 ◦C, which was
caused by the thermal decomposition of urea and N-methyl urea, with a high mass loss
of 20–45% at temperatures up to 200 ◦C. The low amounts of water in these mixtures are
released at temperatures below 120 ◦C. The mixtures containing di- and oligosaccharides
have increased thermal stability, irrespective of the other components and molar ratio.

A DSC analysis allowed us to follow the phase transition as a function of the temper-
ature. The binary and ternary mixtures with urea and N-methyl urea (i.e., entries 6–12,
Table 1) and the equimolar mixtures of ChCl:Glc:H2O, (1:1:1) (entry 5) are clear liquids
when cooled and have a low glass transition temperature, ranging from –0.3 ◦C to −51.5 ◦C.
They showed clean thermograms without thermal transitions in the positive temperature
range. The DSC curves of ChCl:Xyl (1:1), ChCl:Ara (1:1), and ChCl:Sorb (1:1) (entries 13–16,
Table 1) each present a distinct broad endothermic peak at 29.4 ◦C, 50.2 ◦C, and 44.2 ◦C,
respectively, with the onset at around 2 ◦C for ChCl:Xyl (1:1) and 20 ◦C for the arabitol- and
sorbitol-based mixtures. In the thermograms of the mixtures ChCl:Glc (2:1), ChCl:Glc:H2O
(2:1:1), and ChCl:LMH (2:1) with an molar excess of ChCl, (entries 1, 3, and 16 in Table 1),
the endothermic peaks observed at 76.9 ◦C, 73.7 ◦C, and 77.8 ◦C, respectively, could eventually
be attributed to the excess ChCl not involved in the extended hydrogen bond network of
the mixture. Aroso et al. [39] were the first to observe similar effects in the thermograms of
mixtures of ChCl:Xyl at ratios of 4:1 and 3:1 and determined that the sharp endothermic
peak at 78 ◦C for choline chloride, when it results from a crystallographic arrangement
phase transition, is shifted to a lower temperature, around 75 ◦C, irrespective of the molar
ratio. The DSC curve of the lactitol-based NADES (entry 16, Table 1) also shows a peak at
145 ◦C, which is due to the melting of excess lactitol, which is most probably dissolved
in the NADES fluid but not bound in the hydrogen bond network. Ternary R-NADES
mixtures also containing urea (i.e., entries 8–12, Table 1) and the equimolar mixtures of
ChCl:Glc:H2O, (1:1:1) (entry 5 in Table 1) are clear liquids when cooled and have a low glass
transition temperature, ranging from –0.3 ◦C to −51.5 ◦C. They show clean thermograms
without thermal transitions in the positive temperature range, except for MU:Glc (2:1)
(entry 7, Table 1), which shows transitions at 89.8 ◦C, which might be due to thermal
degradation, as the discoloration also suggests. Examples of DSC thermograms are given
in Figure S3.

Rheological measurements allowed for the determination of the viscosity of all the
R-NADESs (Figure 3). The results show the structure of the constituents of the R-NADES
mixture, the molar ratio in which they are included, the water content, and the temperature,
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all of which have a strong effect on the fluid properties, and on viscosity. The extension
of the hydrogen bond network, induced by the addition of water, decreases the mobil-
ity of the species in a solution, and the electrostatic and the van der Waals interactions
contribute to the increase in viscosity. This is clearly seen from the 3-fold reduction in
the viscosity of the almost dry ChCl:Glc (2:1) R-NADESs (entry 1 in Table 1) and by the
addition of water ChCl:Glc:H2O (2:1:1) (entry 3 in Table 1). The nearly dry polyol-based
R-NADESs (entries 13–15 in Figure 1) have the lowest values of viscosity compared to
the carbohydrate-based and the urea-based mixtures, which have a higher number of and
stronger intermolecular hydrogen bond interactions. However, the lactitol-based binary
R-NADES (DES 16) is very viscous even at an elevated temperature, due to the high fraction
of dispersed unbound choline chloride and lactitol. Based on experimental viscosity data,
we observed the following increasing trend of viscosity as a function of the structure of the
carbohydrate component:

ChCl/polyol < ChCl/monosaccharide < ChCl/disaccharide.
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In all cases, the addition of water decreases viscosity. In the absence of water, deep
eutectic mixtures cannot be obtained for disaccharides, like maltose. Nevertheless, R-
NADESs with constitutive water embedded in the network during the preparation process
are fundamentally different than the solutions obtained by adding an R-NADES as a
co-solvent to water or a buffer, which is commonly used currently to reduce viscosity.

A Pearson correlation analysis showed only a weak relationship between the thermal
properties that do not strongly predict viscosity (Figure S4, SI), suggesting that factors
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beyond these temperature-related properties influence viscosity at 70 ◦C. Overall, the lack
of strong linear correlations between most of the properties suggests complex interactions,
with each mixture showing unique behavior depending on its specific chemical composi-
tion (e.g., ChCl), highlighting the importance of considering chemical composition when
interpreting the data.

Therefore, more insight into the relationship between the viscosity of R-NADESs
and their composition and molecular properties was obtained by a principal component
analysis (PCA). The parameters used for the PCA evaluation were the water content
(% water), the viscosity, the molar ratio between the hydrogen bond acceptor (ChCl) and
the corresponding hydrogen bond donors (HBA/HBDs), and the number of hydrogen
bonds (HBs) in the NADES network determined by computational methods. R-NADES
polydisperse mixtures containing maltodextrin (entry 12, Table 1) and inulin (entry 11,
Table 1) were not included in this analysis, since their HB numbers could not be determined.

The results clearly show the strong interdependency of the molecular properties of
the R-NADES mixtures and their experimentally measured viscosity (Figure 4). There is
a strong positive correlation between viscosity and the HBA/HBD ratio, and a negative
correlation of viscosity with the water content and the H-bond numbers, respectively.
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We identified four groups of R-NADESs that share comparable properties. Group 1 is
composed of mixtures with a high viscosity, i.e., DES 1, DES 4, DES 6–8, and DES 16, all
binary ChCl-based mixtures with a molar ratio, HBA/HBD, of two and with low water
content. Group 2, containing ternary R-NADES carbohydrates and additional water, i.e.,
DES 2, DES 3, and DES 5, is characterized by mixtures with low viscosities and HBA/HBD
ratios lower than one. Group 3 (DES 13, DES 14, and DES 15) and Group 4 (DES 9 and DES
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10), although containing different compositions, are both characterized by mixtures with a
low viscosity, despite the extremely low water content of these mixtures. The low viscosity
of the R-NADES mixtures of Group 3, which are binary mixtures with ChCl as the HBA and
with xylitol, arabitol, and sorbitol as the HBDs, can be associated with the equimolar ratio
of HBA/HBD and the small number of hydrogen bonds. The ternary ChCl:U–carbohydrate
mixtures of DES 9 and DES 10 in Group 4, are compact mixtures with high HB numbers
and low HBA/HBD molar ratios.

To our best knowledge, this is the first time that the macroscopic fluid properties of
R-NADESs, and of deep eutectic solvents in general, are correlated with the molecular
properties of the mixtures. We think that this study could open the way for a more rational
design of novel multifunctional R-NADES mixtures and will avoid the trial-and-error
laborious experimental approach.

2.1.2. Computational Characterization of R-NADES

Computational studies addressed the optimization of the HBA and HBD constituents
of R-NADESs, and the determination of important parameters, like the total energies
of both NADESs and their components, the energies of the frontier molecular orbitals
HOMO and LUMO, polarizabilities, dipole moments, as well as steric parameters like
the Connolly accessible Area (CAA) and Connolly Solvent-Excluded Volume (CSEV).
The important parameters that reflect and explain the reactivity of an R-NADES mixture
are listed in Table 2. Snapshots of the graphical distribution of the HOMO and LUMO
orbitals for all the NADES mixtures are shown in Figure S5. The HOMO orbitals are
localized at the chlorine atom of choline chloride, except for DES 6 and DES 7, which
do not contain choline, where they are localized on the urea and methyl urea structure
units. The LUMO orbitals are localized on the choline skeleton and, for DES 7 and DES
8, on the sugar moieties. Figure 5 below shows the graphical distribution of the HOMO
and LUMO orbitals for R-NADES 6 (U:Glc 2:1) and R-NADES 2 (ChCl:Glc:H2O 1:1:1).
The energies of the HOMO and LUMO molecular orbitals play a key role in stability and
reactivity. Lower HOMO-LUMO gaps indicate the tendency for such a compound to
be less stable and therefore more reactive. According to the calculated HOMO-LUMO
gaps, the most stable (and less reactive) R-NADESs are proven to be R-NADES 6 (U:Glc
2:1) and R-NADES 7 (MU:Glc 2:1), the ones that do not contain choline chloride. The
presence of a supplementary urea in the composition of a tertiary R-NADES mixture does
not have a major influence on the global descriptors of the mixture, as suggested by the
results obtained for R-NADES 8 and R-NADES 9, respectively. A major difference was
observed for R-NADES 1 (ChCl:Glc 2:1), R-NADES 4 (ChCl:Arabose 2:1), and R-NADES
5 (ChCl:MMH:H2O, 4:1:4). According to the results, they are the least stable mixtures,
characterized by similar values of the frontier molecular orbitals, thus leading to the
lowest chemical potential and the highest electrophilic character which suggest increased
reactivity. The largest values of polarizability and dipole moments have been obtained for
the R-NADESs that have a higher ChCl molar content. Instead, lower values were obtained,
as expected, for the binary urea-based NADESs 6 and 7, but also for the NADESs 13, 14,
and 15, which contain equimolar amounts of ChCl and five- or six-carbon chain polyols.
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Table 2. HOMO and LUMO energies, steric parameters, polarizability, and dipole moment.

R-NADES
E HOMO

(H)
E LUMO

(H)
HL Gap

(eV)

Steric Parameters
Polarizability

(a.u.)
Dipole

Moment (D)Nr. Composition CAA
(Å2)

CSEV
(Å3)

1 ChCl:Glc (2:1) −0.0825 −0.0798 0.073 703.831 489.463 627.690 28.903

2 ChCl:Glc:H2O
(1:1:1) −0.1109 −0.0858 0.682 578.348 316.263 192.431 27.248

3 ChCl:Glc:H2O
(2:1:1) −0.1064 −0.0911 0.416 689.734 488.310 389.509 33.830

4 ChCl:Arabose
(2:1) −0.0954 −0.0946 0.021 663.381 452.222 420.004 36.802

5 ChCl:MMH:H2O
(4:1:4) −0.0855 −0.0852 0.008 1160.43 1100.00 * 34.357

6 U:Glc (2:1) −0.2141 −0.0320 4.953 484.641 246.967 168.796 3.204

7 MU:Glc (2:1) −0.1938 −0.0275 4.523 532.677 288.432 181.260 2.254

8 ChCl:Glc:U
(1:1:1) −0.1003 −0.0774 0.622 640.500 358.293 256.863 21.018

9 ChCl:Glc:U
(1:1:2) −0.1121 −0.0834 0.781 600.765 419.292 269.003 22.417

10 ChCl:MMH:U
(1:0.5:2) −0.1314 −0.0857 1.243 957.111 869.306 * 31.588

13 ChCl:D-Ara
(1:1) −0.1311 −0.0804 1.379 521.383 288.194 195.500 18.497

14 ChCl:Xyl (1:1) −0.1352 −0.0730 1.692 465.509 180.247 164.222 19.817

15 ChCl:D-Sorb
(1:1) −0.1168 −0.0888 0.762 455.295 214.224 185.314 23.195

16 ChCl:LMH
(2:1) −0.1128 −0.0817 0.846 657.739 458.275 288.993 22.689

* Polarizability computation for R-NADES 5 and R-NADES 10 failed, due to the large number of atoms.
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Figure 5. Distribution of HOMO and LUMO orbitals for NADES 2, ChCL:Glc:H2O (1:1:1) in the first
line, and NADES 6, U:Glc (2:1), in the second line. Labels (A) refer to HOMO orbitals, and Labels (B)
refer to LUMO orbitals.
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2.2. Evidence for the Performant Use of the R-NADES as a Solvent and Substrate Source for
Lipase-Catalyzed Esterification Reactions

The new concept for the enzymatic synthesis of the fatty acid esters of carbohydrates
and carbohydrate polyols using a reactive NADES as the multifunctional reaction medium
requires we obtain answers to several questions: (i) a selection of the enzymes with the
highest esterification activity, (ii) an evaluation of the effects of a NADES’s composition
and properties on esterification activity and the operational stability of free and immobi-
lized enzymes, and (iii) an estimation of the synthetic capacity of the selected enzymes
for the synthesis of the fatty acid esters of carbohydrates and carbohydrate polyols in a
reactive NADES.

Thirteen commercial native lipases from different microbial sources were screened to
select those with the highest esterification activity for (i) the synthesis of propyl laurate
in a solventless system, and (ii) the synthesis of glucose laurate in a conventional solvent
system. The progress of the reaction was followed by the quantification of the consumption
of lauric acid during that time. All the tested enzymes were efficient in the solvent-free
synthesis of propyl laurate (Figure 6). However, only a few enzymes, i.e., the lipases from
Candida antarctica B (CalB), Candida antarctica A (CalA), Pseudomonas stutzeri (Ps. stutzeri),
and Aspergillus oryzae (A. oryzae), also showed significant catalytic activity for glucose
esterification (Figure 7). The formation of the glucose esters was confirmed by the TLC,
HPLC, and MALDI-TOF-MS analyses.
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The above-mentioned four enzymes showed significant esterification activity in all
16 binary and ternary reactive NADESs investigated, although they were lower than
their reference esterification activity in a solventless reaction system (Figure 8). The R-
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NADES mixtures had a higher viscosity than the mixture of propanol with lauric acid
used in the reference reaction, which can decrease the diffusion and the collision of the
molecules, thus reducing the reaction rate. We observed that esterification activity was
also influenced by the composition of the mixtures and the type of enzyme. CalB and Ps.
stutzeri showed relatively high activity in all the ternary NADES mixtures. The CalB, Ps.
Stutzeri, and CalA enzymes showed the highest catalytic activity in the ternary equimolar
ChCl:Glc:U (1:1:2) NADES.
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The results presented in Figure 8 demonstrate without any doubt the strong intrinsic
relationship between the catalytic activity of the native lipase and the polarity of the R-
NADES mixtures, represented by the dipole moment of the mixtures. All of the four
enzymes tested showed the highest esterification activity in the R-NADES mixtures with
the lowest dipole moments, i.e., the binary mixtures, R-NADES 6 (U:Glc 2:1) and R-NADES
7 (MU:Glc 2:1), without choline chloride. Overall, the lipases from Candida antarctica (CalB
GF) and from Pseudomonas stutzeri (Ps. stutzeri) had the highest catalytic activity in all the
tested R-NADES mixtures.

Moreover, the selected enzymes showed a relatively high thermal stability in the
NADESs at 70 ◦C. The highest stability was observed in the first 24 h for the native A. oryzae
and CalA lipases. However, considerable inactivation occurred after 72 h at 70 ◦C. CalA
was the most stable, with 50% residual activity, followed by A. oryzae, Ps. stutzeri, and CalB
GF with 30%, 20%, and 15% residual activity, respectively.

Since the thermal stability of enzymes can be considerably increased by immobilization
on solid support, the native CalB-GF and Ps. stutzeri enzymes, which are known for
responding well to immobilization, were immobilized by entrapment in silica sol–gel
systems with or without combined adsorption on Celite. These at situ immobilized enzymes
and the commercial CalB immobilized on acrylic resins, referred as N435, were evaluated
to determine their catalytic activity and thermal stability in the NADESs. All immobilized
enzymes showed remarkable esterification activity (Figure 9). The commercial CalB lipase
immobilized on acrylic resins, N435, showed the highest esterification activity by far, with
minor variations between the different R-NADESs used.
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Among the enzymes immobilized by entrapment in silica sol–gel matrices, the lipase
B from Candida antarctica-GF (labelled as CB-SGC in Figure 9) was the most active. The Ps
stutzeri lipase immobilized with OcTMOS:TMOS (1:1) as silane precursors showed higher
activity than the biocatalyst obtained with 3-GoPrTMOS:TMOS (1:1), probably due to the
better permeability of the sol–gel matrix for the substrates when octyl pendant groups were
present in its structure. The sol–gel immobilized enzymes showed a comparable pattern
of activity, with minimal variation from R-NADES 4 to R-NADES 10 and R-NADES 12 to
R-NADES 15, and lower levels of activity in R-NADES 3 and R-NADES 11.

All the immobilized enzymes were thermostable (Figure 10). The most stable was
the commercial immobilized CalB, i.e., N435, with less than 10% activity loss after 72 h
of mixing in a glucose–ChCl-based NADES at 70 ◦C. An insignificant loss of activity was
observed after multiple cycles of mixing under similar conditions. The CalB-GF was
immobilized on a silica sol–gel matrix, referred to as CalB-SGC, was less stable, losing
approximately 22% of its activity under the same conditions. Both of the immobilized Ps.
stutzeri lipases lost about 13.5% of activity.
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Ultimately, we explored the potential of the selected NADES mixtures with polyols
and carbohydrates to fulfil a double function as the reaction medium and substrate in
esterification reactions catalyzed by immobilized CalB (N435). The R-NADES mixtures
showing the highest levels of enzyme’s thermostability and esterification activity were
selected. The enzymatic synthesis of the lauryl esters of mono- and disaccharides and
sugar polyols in the selected reactive NADESs was carried without any further addition
of a carbohydrate or polyol as a substrate. Only lauric acid (LA) and an enzyme catalyst
were added to each R-NADES, and the reaction mixtures were incubated for 72 h at 70 ◦C,
with mixing. We tested three R-NADESs with glucose, R-NADES 1 ChCl:Glc (2:1), R-
NADES 3, ChCl:Glc:H2O (2:1:1), and R-NADES 9, ChCl: Glc:U (1:1:2); one NADES with
a disaccharide, R-NADES 5, ChCl:MMH:H2O (4:1:4); and three NADESs with polyols, R-
NADES 13, ChCl:Ara (1:1), R-NADES 14, ChCl:Xyl (1:1), and R-NADES 15, ChCl–sorbitol
(1:1). The progress of the reaction was monitored by HPLC, measuring the decrease in the
concentration of lauric acid over time. The formation of mono-lauryl and di-lauryl esters of
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the carbohydrates and polyols in the corresponding ChCl/sugar or ChCl/polyol reactive
NADESs was demonstrated by HPLC, MALDI-TOF-MS, and NMR. The type and properties
of the R-NADES mixtures have a strong influence on the progress of a reaction, as shown
for glucose esterification when the highest LA conversion (16%) was obtained for the low
viscosity ChCl:Glc:U (1:1:2) R-NADES (Figure 11). The highest overall conversion (23%)
was obtained for the arabitol lauryl ester, while the lowest conversion yields were obtained
for the choline chloride-rich binary and ternary glucose-based R-NADES 1 ChCl:Glc (2:1)
and R-NADES 3 ChCl:Glc:H2O (2:1:1). These results confirm that the tested R-NADES
mixtures do play a double role as a reaction medium and substrate source and are genuine
reactive NADES systems.
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immobilized CalB lipase (N435), in reactive NADESs, at 70 ◦C.

The Pearson correlation analyses show the intrinsic relationship between the physical
and molecular properties of R-NADES mixtures and the efficiency of the lipase-catalyzed
esterification of the carbohydrate and polyol components of the bifunctional R-NADESs
studied, expressed as the molar conversion of the lauric acid substrate, referred to as the
“LA Conversion” (Figure 12). LA conversions were the highest in the R-NADES mixtures
with a low viscosity, i.e., lower than 650 cP, and decreased with an increase in viscosity.
Similarly, the highest LA conversions were obtained in the R-NADES mixtures with a
water content below 2 w% and decreased with an increase in the water content, reaching an
equilibrium above 4 w%, most likely due to the reverse hydrolysis of the esters produced by
the enzyme. This suggests that in such conditions an equilibrium between esterification and
ester hydrolysis is preferred, despite the significant decrease in viscosity of the R-NADES
mixtures due to dilution. The computed molecular properties of R-NADES mixtures define
the efficiency of the reaction as well. There is a logarithmic relationship between the LA
conversion and the number of H-bonds and the Connoly accessible area (CAA), which are
strongly correlated with each other. Higher LA conversions were obtained in the reactions
conducted in the R-NADESs with a lower H-Bond number (HB < 4) and a CAA < 800,
which were less compact, and decreased with increases in both the CAA and the number



Molecules 2025, 30, 778 17 of 23

of H-bonds. The observed increase in the LA conversion for the reactions in R-NADES 5
and R-NADES 9, each with higher CAA and H-Bond values, might be due to their low
viscosity and the high water content of R-NADES 5, which might decrease the rigidity and
compactness of the mixtures. As expected, the LA conversion decreased with an increase
in the polarizability of the R-NADES mixtures and increased with the HL energy gap, due
to the increase in reactivity.
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3. Materials and Methods
3.1. Materials

Choline chloride (≥98%) and all polyols and carbohydrates, (i.e., D-arabitol (≥99%),
D-sorbitol (≥98%), lactitol (≥99%), D-glucose (99.5%), D-arabinose (98%), D-maltose mono-
hydrate (≥98%, 5–5.5% water), sucrose (99.5%), fructooligosaccharides (>90%, DP 2–9),
maltodextrin (DE 15–20), urea (≥99%), methyl urea (≥99%), lipase B from Candida antarc-
tica, immobilized on acrylic resin (N435), Porcine pancreas lipase (PPL), Amano lipase PS,
from Burkholderia cepacia, Candida rugosa lipase AYS (Amano), TL lipolase AL from Ther-
momyces lanuginosus, octyltrimethoxysilane (OcTMOS), tetramethoxysilane (TMOS), and
3-glycidoxypropyltrimethoxysilane(3-GoPrTMOS), were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Aspergillus niger lipase and phenolphthalein were from Fluka (Seelze, Ger-
many). Other enzymes used were lipase B from Candida antarctica purchased from C-Lecta,
Leipzig, Germany (CalB C-Lecta); CalB-GF and Thermomyces lanuginosus lipase (TL-100 GF),
which were a kind gift from GenoFocus (Daegeon, Republic of Korea), lipase A from Can-
dida antarctica (CaLA) purchased from Chiralvision (Den Hoorn, Netherlands); Pseudomonas
stutzeri lipase, a generous gift of Meito Sangyo, Nagoya, Japan (Ps. stutzeri); and Aspergillus
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oryzae lipase (Amano Enzyme, Nagoya, Japan). Dimethyl sulfoxide (DMSO), methanol,
potassium hydroxide (KOH), hexane, and tetrahydrofuran (THF) were purchased from
Merck (Darmstadt, Germany). Xylitol, 99%, lauric acid (LA), 98% were purchased from
Thermo Scientific (Ward Hill, MA, USA). 1-Propanol and ethanol were from purchased
Chimreactiv SRL (Bucharest, Romania). All chemicals were of analytical grade and were
used as purchased, without further purification.

3.2. Methods
3.2.1. Preparation and Characterization of R-NADESs

The preparation and characterization of binary and ternary R-NADES systems was
conducted with the methods developed earlier by our group [31]. Eight binary and
ten ternary reactive NADESs were prepared in a parallel reactor (STEM Omni Reaction
Stations—Electrothermal, Thermo Scientific, Ward Hill, MA, USA) by mixing an HBA com-
ponent, (i.e., ChCl, urea, or N-methyl urea) and each of the carbohydrate polyols, xylitol,
D-arabitol, and D-sorbitol, as well as lactitol and carbohydrates, i.e., D-glucose, D-maltose
monohydrate, sucrose, and inulin fructooligosaccharide, as HBDs, at different molar ratios,
with or without stoichiometric addition of water, at 100 ◦C and 800 rpm, until homogenous
fluid mixtures were obtained. After cooling at room temperature, the R-NADESs were
analyzed to determine thermal and rheological properties. R-NADES mixtures were stored
in sealed flasks in a dry environment, at room temperature.

Thermal data were collected using an TG-209-F1 Libra TG analyzer Netzsch
(NETZSCH-Geraetebau GmbH, Selb, Germany), Netzsch Proteus-Thermal Analyzes ver-
sion 6.1.0. (NETZSCH-Geraetebau GmbH, Selb, Germany). The conditions were as fol-
lows: nitrogen atmosphere, temperature range between 30 and 700 ◦C, and 10 K/min
heating rate.

The R-NADES mixtures were characterized by DSC (DSC 204 F1 Phoenix differential
scanning calorimeter, (NETZSCH-Geraetebau GmbH, Selb, Germany)) under a nitrogen
atmosphere, in the temperature range of −80 ◦C to 150 ◦C, and a heating rate of 10 K/min.

Dynamic viscosities (η) were determined on a Brookfield rotational viscometer
(DV2TRV, Ametek Brookfield (AMETEK, Inc., Berwyn, PA, USA), using the stainless-
steel spindle type SC4-21, for temperatures ranging from 40 ◦C to 80 ◦C. Viscosities are
given in cP, (cP = 1 mPa.s).

3.2.2. Computational Details

The constituents of NADESs, the hydrogen bond acceptors and donors, were opti-
mized at the BLYP/TZP [40] level of theory implemented in ADF2014 software [41]. The
investigated NADESs were built using the previously obtained minima structures (the
molar ratio is given in Table 1) and re-optimized through molecular mechanics. For the
newly obtained NADES structures, single-point computations at the BLYP/TZP level of
theory were performed. Parameters like the total energies of both the NADESs and their
components, the energies of the frontier molecular orbitals HOMO and LUMO, polarizabil-
ities [42], dipole moments, and the distribution of the frontier orbitals were calculated by
means of the ADF2014 software. The steric parameters like the Connolly accessible Area,
the Connolly Solvent-Excluded Volume, ovality, and the visualization of the hydrogen
bonds established among the NADES components were determined with Chem 3DPro
software, implemented in ChemBioDraw Ultra 14 [43].

The global reactivity descriptors, chemical potential (µ), chemical hardness (η), and
electrophilicity index (ω), were calculated using Equations (1)–(3):

µ =
EHOMO + ELUMO

2
(1)
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η =
ELUMO − EHOMO

2
(2)

ω =
µ2

2η
(3)

3.2.3. Determination of the Esterification Activity of Free and Immobilized Enzymes

The esterification activity of native and immobilized lipases was determined for the
synthesis of propyl laurate in (a) a solvent-free system, which served as reference activity,
and (b) in the R-NADESs prepared, based on initial rate methodology [30]. Lipase activity
was expressed in activity units, Us, where 1 unit of an enzyme is the amount of propyl
laurate (µmol) produced per minute by 1 g of the enzyme (µmol · min−1 · genzyme

−1). In
the solvent-free reaction system, equimolar amounts of n-propanol (0.4 g, 2 mmol) and
lauric acid (LA; 150 µL, 2 mmol) were incubated with 10 mg of native enzyme, at 55 ◦C in
2 mL capped vials, stirred at 350 rpm in a thermomixer (Thermomixer Comfort, Eppendorf,
Hamburg, Germany). The determination of lipase activity in R-NADESs followed the same
approach, incubating LA (0.4 mmol) and 0.4 mmol of n-propanol with 0.8 g of NADES and
an amount of enzyme corresponding to 50 reference activity units, at 70 ◦C and 1000 rpm.
Esterification was monitored by the titration of the residual LA with an ethanolic KOH
0.1 M solution, with phenolphthalein as an endpoint indicator. All measurements were
conducted in triplicate, and the mean value of the activity and the standard deviation
are given.

3.2.4. Lipase Immobilization

Immobilized lipases were obtained by entrapment in the sol–gel matrix, using stan-
dardized methods developed by our group [44], as follows:

Method SG1: To a 390 µL lipase solution (100 mg/mL) in a TRIS buffer with pH 8,
100 µL of PEG, 50 µL of NaF, and 100 µL of isopropanol were added. After homogenization,
a mixture of the 3-GoPrTMOS and TMOS silane precursors was added at a 1:1 molar ratio
and mixed until gelation. Ps. stutzeri lipase was immobilized using two mixtures of silanes:
OcTMOS:TMOS 1:1 (Ps. SG1) and 3-GoPrTMOS:TMOS 1:1 (Ps. SG2).

Method SG2: This procedure was like method SG1, with the difference being that
250 mg of Celite was added after gelation. CalB-GF lipase was immobilized using a mixture
of OcTMOS:TMOS 1:1, with the addition of Celite.

3.2.5. Determination of the Thermal Stability of Native and Immobilized Lipases

Both native and immobilized lipases were incubated in each R-NADES for 0, 24, 48,
and 72 h. Each time, the catalytic esterification activity of the enzyme was determined for
the synthesis of n-propyl laurate, using the standard assay described at Section 3.2.2.

3.2.6. Synthesis of Lauryl Esters of Polyols and Glucose with Immobilized Lipase
in R-NADESs

Lauric acid, 1.6 mmol, and an amount of R-NADES equivalent to 1.6 mmol of a polyol
or carbohydrate substrate were mixed in 5 mL of Eppendorf, and the reaction was initiated
by the addition of 300 U/carbohydrate of immobilized CalB (N435). The reaction mixture
was incubated for 67 h at 70 ◦C and 600 rpm in a thermomixer. The reaction was stopped
by the addition of 5 mL of dimethyl sulfoxide, and after the separation of the catalyst, the
mixture was analyzed by HPLC to determine the LA conversion and product formations.

3.2.7. Characterization of the Esterification Products

The HPLC analysis used an Agilent System HPLC 1260 INFINITY II chromatograph
(Agilent Technology, Waldbronn, Germany). The conditions were as follows: Kinetex 5 µm
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Polar C18 100 Å, 250 × 4.6 mm column; an eluent methanol/water ratio of 90:10; a flow
rate of 0.2 mL/min; 50 ◦C; and a duration of 50 min. OpenLab CDS Workstation Software
(version 2.8, Agilent Technology, Waldbronn, Germany) was used for visualization of
chromatograms. The LA conversion (mol%) was calculated based on the calibration curve
of LA.

High-resolution 1H and 13C NMR spectra were recorded on a Bruker Avance III spec-
trometer (Bruker Daltonics GmbH, Bremen, Germany) operating at 500 MHz, interfaced
with a workstation running a Windows operating system and equipped with the TopSpin
3.5 software package. CDCl3 was used as a solvent. Chemical shifts (1H) are given in parts
per million (ppm) and referenced to the solvent signals and to TMS.5.

4. Conclusions
In conclusion, in this study a large spectrum of reactive NADES mixtures with the phys-

ical and fluid properties suited for biocatalysis were successfully obtained and evaluated as
reaction media for the synthesis of the lauric esters of monosaccharides, disaccharides and
carbohydrate polyols. The native and immobilized lipase enzymes showed significant es-
terification activity and high thermal stability in the R-NADESs and were able to efficiently
convert carbohydrates and polyols into their lauryl esters. The results are very promising
and open the way to further exploring the potential of R-NADESs as a reaction medium for
the enzymatic synthesis of the long alkyl chain esters of oligosaccharides.

By integrating molecular modeling, computational chemistry, and a thermophysical
analysis with enzymology, we showed the strong relationship between the molecular and
physical properties of R-NADESs and the esterification efficiency of free and immobilized
lipases. Several studies discuss the influence of molecular properties on the physical
properties of deep eutectic solvents [45,46], or on the solubility of carbohydrates in natural
deep eutectic solvents [47], focusing on the application of DESs and NADESs as reaction
mixtures. In this paper, we went one step forward, investigating the more complex reactive
NADES systems and their interactions with enzymes.

The work reported here is an exploratory study, aiming to achieve a better understand-
ing of the essential relationships between the structure and properties of R-NADESs and the
catalytic activity, stability, and efficiency of enzyme catalysts. We achieved medium/low
yields, due to the lower enzyme load used in these screenings, and the reactions were
not optimized. Nevertheless, the reaction yields can be increased to industrially relevant
levels through the optimization of the reaction conditions, with an emphasis on enzyme
load, temperature, and reaction time; we demonstrated this through the lipase-catalyzed
synthesis of carbohydrate polyol esters carried out in the choline chloride/polyol mixtures
when we achieved product yields above 90 mol% [31].

The results demonstrate that R-NADESs are a promising category of natural reactive
solvents that can be the basis of the development of greener synthetic biocatalysis for the
synthesis of biobased chemicals, ingredients for food, and for pharmaceutical, biomedical,
and technical applications. However, such a development requires a good understanding
of (a) the properties and functionality of an R-NADES mixture, (b) the specific proper-
ties and requirements of enzymes to function in R-NADESs, and (c) the tools to achieve
these targets.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules30040778/s1: Figure S1: Images of selected R-NADES
solvents at different temperatures; Figure S2: Hydrogen bonds analysis of the optimized structures;
Table S1: Donors, acceptors, and hydrogen bond length within the investigated R-NADES; Table S2:
Global reactivity descriptors of R-NADES; Figure S3: Thermograms, TG, and DSC of selected R-
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NADESs; Figure S4: Thermogravimetric properties of R-NADES mixtures and their relationships; and
Figure S5: Graphic representation of the frontier molecular orbitals HOMO and LUMO distribution.
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