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Abstract: The purity of a steel is an important factor influencing the quality of the final
products. Therefore, it is important to optimize the existing and develop new steelmaking
technologies that affect the resulting purity. Electro slag remelting is a technology of
tertiary metallurgy, which can advantageously be used to fabricate high quality steels. The
study presents selected theoretical aspects of oxide systems and their specific influences
on effectiveness of the electro slag remelting technology. The aim of this work was to
experimentally analyze the purity of a tool steel fabricated by electro slag remelting using
two different oxide systems (fused slags). The core of the study is the determination of
the overall presence of elements in the steels, a thorough investigation of the presence
of (not only) oxide-based inclusions within the investigated tool steel, and a detailed
analysis of their chemical composition, including the size of these non-metallic inclusions,
using energy dispersive X-ray (EDX) on the scanning electron microscope (SEM). Last but
not least, the determination of the modification of the occurring non-metallic inclusions
and verification of the experimentally acquired results as well as the calculation of the
liquid and solid temperature and the calculation of the viscosity of the slags using the
FactSage calculation software was performed. The results showed that the used slag
influenced especially the occurrence of Mg and Al-based oxide inclusions. The CaS-type
inclusions were present within all of the examined samples. The slag type influenced
not only the typical morphology and size of the inclusions (especially of the CaS type),
but also the tendency of the steel to exhibit localized corrosion when exposed to the
ambient environment. This research can contribute to a better understanding of the effect of
oxidation systems on the resulting purity and properties of ESR steels, thereby advancing
the production of tool steels with higher quality and performance requirements.

Keywords: electro slag remelting; slag; non-metallic inclusion; chemical composition;
thermodynamics

1. Introduction
The ever increasing demands on the lifetime and performance of metallic materials go

hand in hand with the research and development of innovative and improved production
technologies [1–3]. Even in the contemporary world, steels are highly demanded and used
not only for (massive) constructions [4,5], but also for various applications and components
in the transportation [6,7], power engineering [8–10], or medicine [11,12]. Steels are typi-
cally cast and then processed into products featuring final shapes by methods of plastic
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deformation (conventional, e.g., [13,14], as well as unconventional, e.g., [15–17], or their
combinations [18,19]). Nevertheless, the modern fabrication methods include also powder
metallurgy [20–22] and additive manufacturing (although such methods are suitable for
relatively smaller components and still require post-processing to eliminate defects) [23,24].
The ways to increase the performance of steels include not only performing controlled
thermomechanical forming treatments, e.g., with optimized heating used to control the mi-
crostructures [25–27], but also improving the purity of steels during casting [28–30], which
improves their performance from the very beginning of processing. Among the methods
of increasing the purity of steels during casting is, for example, electro slag remelting
(ESR) [31–33].

The principle of ESR is to melt a steel electrode through a layer of slag in a water-
cooled copper mold, where the steel gradually solidifies to form an ingot [34–36]. The
directed solidification of the ingot also creates favorable conditions for the excluding
of inclusions and the release of gases [37–39]. ESR processing has a positive effect on
improving the purity and mechanical and technological properties of steels. It is used
for the technically and economically justified production of selected grades and brands
of special alloy steels [40–42]. ESR significantly improves both the macrostructure and
microstructure of the steel. Directed crystallization results in a uniform structure without
internal defects [43–45]. The high micro-purity of the remelted steel has the influence
of reducing the anisotropy of mechanical and physical properties [46], while increasing
its formability. The steel can thus further be processed even by challenging methods
(e.g., Severe Plastic Deformation, SPD [47–49]). The efficiency of ESR is depends on the
chemical composition and physical properties of the slags used, their electrical conductivity,
and appropriate viscosity [50–52]. During ESR, it is usually also desirable to achieve the
highest possible degree of desulphurization [53] or dephosphorization. To obtain an ESR
steel with a minimum possible content of non-metallic inclusions, it is necessary to select a
slag capable of absorbing and dissolving these inclusions [54–56].

Schneider et al. [57] investigated the effects of different Al2O3 contents ranging from
0 to 33 wt. % using slags with chemical composition of Al2O3, SiO2, and MgO during
steel remelting, focusing on changes in the chemical composition related to changes in
type, content, distribution, size, and composition of non-metallic inclusions. The Al2O3

content in the slag has a significant effect on the Al, O, and S contents in the steel after
remelting, and the amount of non-metallic inclusions occurring after remelting is strongly
dependent on the concentration of Al2O3 in the slag. Lower Al2O3 contents resulted in
lower elements concentrations in the ingots. Shi et al. [58] characterized the effects of the
reoxidation of liquid steel during remelting and different SiO2 contents in the slag on the
chemical compositions of oxide inclusions and the contents of alloying elements (Si and
Al) in the steel. The composition of the slags used for the experiments was CaF2, CaO,
Al2O3, MgO, and SiO2. The concentration of Al in the liquid steel pool was significantly
reduced and accompanied by a decrease in Si losses with increasing SiO2 content in the slag.
The O content in the steel increased significantly due to the reoxidation of the liquid steel
pool during remelting. Schneider et al. [59] further studied the influence of different slag
compositions, CaF2 content ranging from 0 to 60 wt. %, and corresponding to a wide range
of electrical conductivity on slag movement, surface temperature, and thickness, as well as
their influence on the occurring chemical reactions and removal of non-metallic inclusions.
The used slags containing CaF2, CaO, Al2O3, SiO2, and MgO tended to reduce the content
of larger non-metallic inclusions, especially sulfides, and increase the number of fine oxides
during remelting. Wang et al. [60] studied the evolution of inclusions in remelted electrodes
with different Ca contents refined by the ESR process. The chemical composition of the
ESR slag was 60 wt. % of CaF2, 20 wt. % of CaO, and 20 wt. % of Al2O3. They analyzed
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the formation and development of sulfide and oxide inclusions. The inclusions in the steel
after remelting were of Al2O3, CaO-Al2O3, and CaO-MgO-Al2O3 types. In contrast, MnS
and CrS inclusions were completely removed from the steel. The different Ca contents in
the electrodes had no effect on the size distribution of the inclusions in the remelted ingots.
Wang et al. [61] investigated the evolution of non-metallic inclusions in austenitic refractory
steel with different Ce contents during remelting. The pre-melted slag containing of CaF2,
CaO, MgO, Al2O3, SiO2, and FeO. All the inclusions in the initial Ce-free remelted electrode
were MgO-Al2O3-based, and some of these inclusions were removed from the steel during
remelting by absorption of the molten slag. The Ce-added inclusions were present in the
Ce2O3, CeAlO3, and Ce2O2S-based steels when the initial Ce content of the electrode was
in the range of 0.016–0.300 wt. %. Shi et al. [62] studied the mechanism of formation of
non-metallic inclusions and modification of the MgO·Al2O3 spinel by addition of Ca or
Al during remelting of the H13 die steel. The spinel-type inclusions in the electrode were
mainly modified to CaO-MgO-Al2O3, and some to the CaO-Al2O3-type inclusions. In
the case of modification by Al, all the oxide inclusions present in the steel after remelting
were of the MgO·Al2O3-spinel type. It was used in the pre-melted slag (60 wt. % of CaF2,
20 wt. % of CaO and 20 wt. % of Al2O3), which was roasted at 773 K (500 ◦C). Last but not
least, Wang et al. [63] used numerical simulations to analyze the movement of non-metallic
inclusions as a function of the electrical energy applied during the remelting of the steel to
ESR. For the simulations, a slag composition of 75 wt. % of CaF2 and 25 wt. % of Al2O3

was used. The slag cap thickness remained constant at 60 mm. The simulations showed
that the removal of non-metallic inclusions featuring diameters of 1–10 µm increased with
the increasing electric current. Inclusions with diameters of 3–5 µm were removed in the
range of currents of 1000–1600 A, but the removal of such inclusions was reduced up to the
current of 1800 A. In addition to the size of the non-metallic inclusions, the density of the
inclusions also influences their removal during ESR of a steel.

The results of the above studies show that the design and optimization of the slag
regime during production, as well as study of the microstructure and chemical compo-
sition of the remelted steels, are of a high importance to produce steels with enhanced
performances. Therefore, the primary objective of this study was to analyze the chemical
compositions and microstructures of the investigated steel in detail, and the focus was es-
pecially on the occurrence of non-metallic inclusions in relation with the used oxide system
(i.e., used ESR slag). The originality of the herein presented research is primarily in the fact
that the used steel and slags have the exact chemical compositions as real commercially
available products fabricated by European companies, such ISOMAG GmbH, Austria (slag
producer), and ŽĎAS a.s., Czech Republic (steel producer), and thus the acquired results
are directly applicable industrially. The study was supplemented with an analysis of the
thermophysical properties of these oxide systems.

2. Results and Discussion
2.1. Energy Dispersive X-Ray Analysis of the Chemical Compositions

Figure 1a shows an SEM-SE image of the investigated 2 × 2 mm2 area from the
601 sample, while Figure 1b depicts the EDX chart from the respective area. Figure 2a
then shows an SEM-SE image of the 2 × 2 mm2 area from the 602 sample, and Figure 2b
depicts the EDX chart from the respective area. Figure 3a shows an SEM-SE image of the
investigated area from the 276 sample, while Figure 3b depicts the EDX chart from the
respective area. Lastly, Figure 4a shows an SEM-SE image of the investigated area from the
277 sample, and Figure 4b depicts the EDX chart from the respective area.
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The charts depict that the samples contained the majority of Fe plus other elements,
especially Si, Mg, Al, Ca, and also C, S, and O. The majority of the Mg, Al, Ca, and S were
bound within more or less coarse inclusions, which will further be characterized for each
examined steel batch.

Figure 5a shows an SEM-SE image depicting examples of the coarsest inclusions
present within the 601 sample. The inclusions were of two types, a more or less spherical
Al2O3-MgO type (depicted in greater detail in Figure 5b), and a sharp-edged CaS type
(depicted in greater detail in Figure 5c). Typical chemical compositions of the inclusions
are depicted in Table 1 (spherical inclusions) and Table 2 (sharp-edged inclusions), as
well as in the EDX graphs in Figure 5d (spherical inclusions) and Figure 5e (sharp-edged
inclusions); note that the presence of Fe was detected from the surroundings. Table 3 then
shows the size distribution of the spherical inclusions, whereas Table 4 depicts the size
distribution of the sharp-edged inclusions. As documented by the tables, the majority of
the Al2O3-MgO-type inclusions had the diameters around 20 µm, and the average size of
such a spherical inclusion was 20.7 µm. On the other hand, the majority of the sharp-edged
CaS-type inclusions had diameters between 20 and 50 µm, and the average size of such an
inclusion was 41.9 µm.

Table 1. Chemical composition of a typical spherical inclusion within the 601 sample (at. %).

Element Al Mg O

Content in at. % 49.3 38.8 11.9

Table 2. Chemical composition of a typical sharp-edged inclusion within the 601 sample (at. %).

Element Fe Ca S

Content in at. % 56.1 33.5 10.4

Table 3. Sizes of Al2O3-MgO precipitates within the 601 sample.

Precipitate No. 1 2 3 4 5 6 7 8 9 10 AVG.

Largest dimension (µm) 18 20 19 24 23 16 19 20 24 24 20.7
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Figure 5. Sample 601: (a) SEM-SE images: general overview; (b) Al2O3-MgO-type inclusions;
(c) CaS type-inclusion. EDX chart of chemical composition of (d) Al2O3-MgO-type inclusion; and
(e) CaS-type inclusion.

Table 4. Sizes of CaS precipitates within the 601 sample.

Precipitate No. 1 2 3 4 5 6 7 8 9 10 AVG.

Largest dimension (µm) 58 22 20 42 68 26 33 62 49 39 41.9

Figure 6a,b show SEM-SE images of the coarsest inclusions present within the
602 sample. Similarly to the 601 sample, the inclusions within the 602 one, were of the
Al2O3-MgO and CaS types. Figure 6c,d show detailed SEM-SE images of the Al2O3-MgO-
and CaS-type inclusions, respectively. As can be seen from the figures, the Al2O3-MgO-type
inclusions were of more or less spherical shapes, while the CaS inclusions were sharp-edged,
similar to the 601 sample. Table 5 shows the size distribution of the spherical inclusions,
while Table 6 depicts the size distribution of the sharp-edged inclusions. The data in the
tables reveals that the average size of the precipitates within the 602 sample was slightly
smaller than within the 601 one, especially with regards to the CaS-type inclusions. The
average size of the spherical inclusions was 19.2 µm, which is comparable to the average
size of such inclusions within the 601 sample. On the other hand, the average size of
the sharp-edged inclusions was 32.3 µm, which is almost by 25% smaller than for the
601 sample.
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Figure 6. Sample 602: (a,b) SEM-SE images; (c) Al2O3-MgO-type inclusions; and (d) CaS-type inclusion.

Table 5. Sizes of Al2O3-MgO precipitates within the 602 sample.

Precipitate No. 1 2 3 4 5 6 7 8 9 10 AVG.

Largest dimension (µm) 13 11 23 28 22 16 19 18 19 23 19.2

Table 6. Sizes of CaS precipitates within the 602 sample.

Precipitate No. 1 2 3 4 5 6 7 8 9 10 AVG.

Largest dimension (µm) 22 16 29 39 44 42 38 22 38 33 32.3

Among the two typical types of inclusions, the 602 sample also featured crust-like
inclusions. Figure 7 shows a detailed map of chemical composition of a crust-like inclusion
present within the 602 sample. As can be seen, such an inclusion primarily consisted of Ca,
other elements (Mg, Al) were present, but with negligible contrasts. These were CaS and
CaS-CaO inclusions.

The 276 sample also featured the presence of coarse sharp-edged inclusions, see
Figure 8a,b. However, this sample did not exhibit any notable presence of the spherical
Al2O3-MgO-type inclusions. The coarse inclusions were of the CaS type, see the EDX
graph in Figure 8c showing a typical chemical composition of such an inclusion within the
276 sample. Among the sharp-edged inclusions, the 276 sample also exhibited crust-like
ones, which points to a certain similarity with the 602 sample. However, the inclusion
within the 276 sample were of a slightly different nature, see Figure 8d,e (and compare to
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Figure 7). Table 7 then depicts the size distribution of the sharp-edged CaS-type inclusions.
The size distribution evidently featured greater variations than that observed for the 601 and
602 samples, although the average inclusion size was comparable to that acquired for the
601 sample). The 276 sample featured a mixture of finer and very coarse inclusions, with
the average size of 42.6 µm.
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Table 7. Sizes of CaS precipitates within the 276 sample.

Precipitate No. 1 2 3 4 5 6 7 8 9 10 AVG.

Largest dimension (µm) 60 26 24 82 26 32 36 34 78 28 42.6

Figure 9 depicts detailed maps depicting the chemical composition of a crust-like
inclusion present within the 276 sample (see Figure 8e). As can be seen, such an inclusion
consisted of a mixture of Ca, Mg, and Al (complex non-metallic inclusions of Al2O3-MgO-
CaO) oxides; the crust-like precipitates also typically featured the presence of Al and Mg
oxides (complex non-metallic inclusions of Al2O3-MgO), as clearly seen in the maps in
Figure 9. The crust featured an increase in the presence of S, too.

Last but not least, the analysis performed for the 277 sample revealed that this sample
exhibited the presence of coarse sharp-edged CaS inclusions, similar to the other examined
samples (see Figure 10a,b). However, compared to the other samples, the presence of such
inclusions was scarce; the majority of the inclusions present within the 277 sample were
the crust-like ones, as seen in Figure 10c,d. Table 8 depicts the size distribution of the
(scarcely present) sharp-edged inclusions. As can be seen, the size variation featured a
lower range when compared to the 276 sample. Also, the average size of an inclusion was
smaller within the 277 sample than within the 276 one. Nevertheless, the average size was
comparable to that calculated for the 602 sample. An intriguing fact is that the average size
of a CaS-type inclusion was comparable for samples 601 and 276, and 602 and 276.
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Table 8. Sizes of CaS precipitates within the 277 sample.

Precipitate No. 1 2 3 4 5 6 7 8 9 10 AVG.

Largest dimension (µm) 22 16 39 42 19 26 27 44 49 19 30.3

Detailed depiction of the presence of non-formable oxidic inclusions, occurring typ-
ically as a part of the crust-like inclusions, is shown in Figure 11a, depicting a detailed
SEM-SE image of the oxide inclusion with marked location of analysis of chemical compo-
sition, the results of which are then shown in Figure 11b. Figure 12 then shows detailed
maps of chemical composition of an oxidic inclusion present within the 277 sample. As can
be seen, similar to the 276 sample, the chemical composition of such an inclusion was a
mixture of oxides of Ca, Mg, and Al (complex non-metallic inclusions of Al2O3-MgO-CaO),
the crust featured an increased presence of S, as well as the presence of Al and Mg oxides
(complex non-metallic inclusions of Al2O3-MgO), as clearly seen in the maps in Figure 12.
Finally, Table 9 depicts a typical chemical composition of such an oxidic inclusion.
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Table 9. Chemical composition of a typical Al2O3-MgO inclusion within the 277 sample (as depicted
in Figure 11a) (at. %).

Element Al Mg O

Content in at. % 54.9 34.2 10.9

Overall, all the examined samples exhibited the presence of Al2O3-MgO-type spherical
inclusions and CaS-type sharp-edged inclusions. The average size of the sharp-edged CaS-
type inclusions was larger for the 601 sample than for the 602 one, and for the 276 sample
than for the 277 one. Nevertheless, the average size of the CaS inclusions within the
601 sample was comparable to that acquired for the 276 sample, and the average size
acquired for the 602 sample was comparable to that acquired for the 277 one. Moreover,
among the CaS-type inclusions, the 601 and 602 samples featured a frequent presence of
spherical Al2O3-MgO-type inclusions, contrary to the 276 and 277 samples, which featured
crust-like inclusions with a local presence of coarse Al2O3-MgO inclusions. The occurrence
of the Al2O3-MgO-type inclusions was thus more frequent within the 601 and 602 samples.
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Another intriguing fact is that the 276 and 277 samples are also highly prone to
atmospheric corrosion. After two months of exposure of the polished samples to the
atmosphere, the 276 and 277 samples started to exhibit traces of localized corrosion (contrary
to the 601 and 602 samples, which did not exhibit any corrosion during that time period).
Figure 13a,b show SEM-SE images depicting the corrosion products on the surface of the
276 sample, while Figure 13c,d show SEM-SE images of the corrosion products on the
surface of the 277 sample. The corrosion evidently started to nucleate around the inclusions
and was more developed on the 276 sample than on the 277 one.

2.2. Verification of EDX Analysis Using Factsage

As regards the chemical composition of non-metallic inclusions in the tool steel,
the amount of MgO-based non-metallic inclusions increased significantly after the ESR
technology. The Equilib module of the FactSage software was used to verify the results
acquired experimentally via the EDX analysis, i.e., to confirm/refute the hypothesis whether
these inclusions occurred as a result of the concentration of MgO in the slag. The chemical
composition of the tool steel and the chemical composition of the ESR slags were used
to calculate changes in the chemical compositions of the non-metallic inclusions. As
an example, the calculation of the modification of the non-metallic inclusions using the
AKF 235 slag, which was characterized by a relatively high MgO content (3 wt. %), is
further presented.

Figure 14 shows the resulting graphical representation of the solid non-metallic phases
formed in the tool steel during solidification. The formation of the Ca12Al14F2O32(s) solid
phase started at 1370 ◦C. The wt. % of the Ca12Al14F2O32(s) solid phase then decreased
from 37 wt. % to 2.5 wt. % at the solidification temperature of 786 ◦C, and then remained
constant when further cooled down to 20 ◦C. The formation of the Ca5Si2F2O8(s) solid phase
started at 1036 ◦C and was constant throughout the entire range of examined temperatures,
down to 20 ◦C, with the maximum solid phase fraction of 2 wt. %. The formation of
the Ca3MgA4O10(s) solid phase occurred at 786 ◦C. At this temperature, its concentration
increased dramatically, to 36 wt. %. The results of changing of the chemical compositions of
non-metallic inclusions calculated using the FactSage software confirmed that when MgO
is present in the slag, the majority of the non-metallic inclusions in the tool steel consists of
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complex MgO-based inclusions. Calculations performed using the FactSage software also
indicated the presence of Ca-based phases, which is also consistent with the EDX analyses
of the examined samples. Especially in the cases of the 276 and 277 samples (remelted
with the AKF 235 slag), the chemical compositions of the complex non-metallic inclusions
showed mixtures of Ca, Mg, and Al oxides.
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In addition to the characterization of non-metallic inclusions, other important pa-
rameters of the investigated slags (oxide systems) [64,65], which influence the removal
of non-metallic inclusions and thus the purity of the remelted steel, were also calculated
using FactSage. The ESR melting intervals of the slags were determined in the same Equilib
module. Important parameters in the ESR process were the temperature of the liquid slag
and the temperature interval between the solid and liquid phases. The slag melting interval
calculations were performed in the temperature range of 1000 ◦C to 1450 ◦C, with a step of
100 ◦C, and the equilibrium was set as normal + transitions. For the AKF 226 slag, the calcu-
lated solid and liquid temperatures were 1049 ◦C and 1510 ◦C, while for the AKF 235 slag,
the calculated solid and liquid temperatures were 1033 ◦C and 1261 ◦C, respectively. As
can be seen, there was a significant difference between the solid and liquid temperatures of
the AKF 226 slag, i.e., 461 ◦C, which was more than double the value acquired for the AKF
235 slag (228 ◦C). The results of the calculations performed using the FactSage software to
determine the liquid phase fraction of the studied slags are in Figure 15.
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Last but not least, the dynamic viscosities of the slags as a function of temperature
were calculated in the viscosity module of the FactSage software for all the components
present in each slag. The calculations were performed in the working conditions range of
the ESR slags, i.e., in the interval of 1750–1800 ◦C. Table 10 shows the calculated dynamic
viscosity values. From the calculated values, it can be seen that the value of the dynamic
viscosity decreased with increasing temperature for both the studied slags. At the same
time, the dynamic viscosity of the AKF 226 slag decreased compared to the AKF 235 slag,
mainly due to the higher CaF2 content in the slag. In addition to the effect of CaF2 on the
viscosity of the slag, CaF2 has also a suitable fusibility and relatively high evaporation
temperature, which allow the process to initiate relatively quickly and easily. It also features
favorable desulphurization efficiency, and, overall, contributes to the stability of the ESR
process. The effect of the temperature and viscosity of the slag is very important from the
viewpoint of formation of the structure of an ingot, especially as regards its head. The
release of gases from the last fraction of liquid steel crystallizing in the head of the ingot is
facilitated by the use of easily fusible slags. The appearance of axial integrity in the head of
the ingot is associated with the use of hardly fusible slags.
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Table 10. Results of calculations of dynamic viscosity of ESR AKF 226 and AKF 235 slags.

Slag AKF 226 AKF 235

Temperature (◦C) 1750 1800 1750 1800
Viscosity (Pa·s) 0.017 0.015 0.013 0.011

3. Materials and Methods
The study focused on a detailed analysis of tool steels remelted using ESR equipment.

The typical average chemical composition of such a remelted tool steel is shown in Table 11.
As slags are an important component in the processing of a steel using ESR, the effect of
these oxide systems on the purity of the steel fabricated was investigated. Two slags with
CaF2, Al2O3, CaO, and MgO as their main constituents were used for the study. These slags
are commercially available, e.g., from ISOMAG GmbH, Kraubath an der Mur, Austria, and
their chemical compositions are shown in Table 12.

Table 11. Chemical composition of used tool steel (wt. %).

C Mn Si P S Cr Ni Mo V Al Nb Fe

0.39 0.40 0.97 0.025 0.003 5.08 0.40 1.20 0.43 0.02 0.03 Bal.

Table 12. Chemical compositions of commercially available ESR slags used for remelting (wt. %).

AKF 226

CaF2 Al2O3 CaO MgO SiO2 TiO2 Fe2O3 C P S H2O Pb
59 20 19 1.5 1 0.3 0.5 0.1 0.05 0.05 0.05 0.005

AKF 235

CaF2 Al2O3 CaO MgO SiO2 TiO2 Fe2O3 C P S H2O Pb
48.5 19.5 26.5 3 1 0.3 0.5 0.1 0.05 0.05 0.05 0.005

A total of four forgings of tool steels remelted by the ESR technology were analyzed,
with several samples taken and analyzed from each forging. Samples marked 601 and
602 (remelting 1 and 2) are from forgings remelted with the AKF 226 slag, while samples
marked 276 and 277 (remelting 3 and 4) are from forgings remelted with the AKF 235 slag.

The chemical compositions of the examined steels, including the compositions and
morphologies of the occurring inclusions, were examined using the Energy Dispersive
X-ray Spectroscopy (EDX) of the Focused Ion Beam/scanning electron microscope TESCAN
LYRA3 microscope (Tescan Brno, s.r.o., Brno, Czech Republic) at the CEITEC Nano Research
Infrastructure, Brno. In order to reliably examine the presence of light elements of interest,
such as Mg, Al, or Ca, the analyses were performed at a low accelerating voltage of 5 keV. To
assess the overall presence of the elements within the microstructures of the prepared steels,
an EDX analysis from a relatively large area of 2 × 2 mm2 was performed for each sample
at first. Detailed EDX analyses were then performed to examine the individual inclusions,
including their chemical compositions. Last but not least, the sizes of the inclusions were
also measured; the size of an inclusion was measured as the largest distance between
two points (locations) within the inclusion.

In order to verify the experimental evaluation, i.e., confirm the analysis of samples
of tool steel forgings processed by the ESR technology (as shown in Table 11), thermo-
dynamic calculations for determination of the modification of the occurring non-metallic
inclusions and their verification were performed using FactSage software (version 8.2 by
GTT-Technologies, Herzogenrath, Germany). The FactSage software is one of the largest
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fully integrated database computer systems in chemical thermodynamics. It is also suitable
for determination of important metallurgical parameters based on chemical composition
and temperature [66–70]. To calculate the modification of non-metallic inclusions in the
tool steel, the chemical composition of the steel (see Table 11) was imported together
with the calculated Fe content in the steel (sum of elements 100%). The average chemical
composition of the slag (AKF 226 and AKF 235) was imported together with the chemical
composition of the steel. Calculations of the modification of the non-metallic inclusions
were performed in the temperature range from 300 ◦C to 1400 ◦C, with steps of 100 ◦C, and
the equilibrium was set as normal + transitions.

4. Conclusions
The focus of the presented study was especially on the detailed analysis of the occur-

rence and chemical compositions of oxide-based inclusions within the investigated tool
steel, in relation with the type of slag used during the electro slag remelting production
process. The determination of the thermophysical properties of the studied oxide systems
and verification of the experimentally acquired results were performed using FactSage
calculation software. The main acquired results are as follows:

• Both the studied oxide systems affected formation of non-metallic inclusions of Al2O3-
MgO and CaS type in all the analyzed tool steels.

• The Al2O3-MgO-based inclusions occurred mainly as a result of MgO content in the
slag, while the amount of MgO in the slag was not found to be essential for the amount
and size of these inclusions in the studied steel after ESR.

• In all cases, there were no significant size differences between the complex Al2O3-
MgO-based non-metallic inclusions due to their modification.

• The size range of spherical Al2O3-MgO-type non-metallic inclusions was much smaller
than that of the sharp-edged CaS-type non-metallic inclusions.

• Calculations using the FactSage software confirmed the presence of complex non-
metallic inclusions in the tool steel, and the significant increase in the Ca-Mg-Al-O-
based solid phase confirmed the presence of these types of inclusions in the steel
after ESR.
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15. Kunčická, L.; Kocich, R.; Drápala, J.; Andreyachshenko, V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP
Influence on Ti6Al4V Alloy’s Deformation Behaviour. In Proceedings of the Metal 2013: 22nd International Conference on
Metallurgy and Materials, Brno, Czech Republic, 15–17th May 2013; pp. 391–396.
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23. Kunčická, L.; Kocich, R.; Németh, G.; Dvořák, K.; Pagáč, M. Effect of Post Process Shear Straining on Structure and Mechanical
Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022, 59, 103128. [CrossRef]
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Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ
Ht-LSCM, DSC and dilatometry. J. Mater. Res. Technol. 2023, 24, 3534–3547. [CrossRef]

28. Zhang, L.; Wang, Y. Modeling the Entrapment of Nonmetallic Inclusions in Steel Continuous-Casting Billets. JOM 2012, 64,
1063–1074. [CrossRef]
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