
Academic Editors: M. Gilles Mailhot

and Leucio Rossi

Received: 3 March 2025

Revised: 27 March 2025

Accepted: 28 March 2025

Published: 7 April 2025

Citation: Gao, Z.; Liu, F.; Peng, Q.;

Wang, W. Enhancing Photostability of

Prochloraz via Designing Natural

Acid-Derived Prochloraz-Based Ionic

Liquids. Molecules 2025, 30, 1641.

https://doi.org/10.3390/

molecules30071641

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Enhancing Photostability of Prochloraz via Designing Natural
Acid-Derived Prochloraz-Based Ionic Liquids
Zhiqiang Gao 1, Fengmao Liu 1,* , Qingrong Peng 1 and Wenzhuo Wang 2

1 Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China
Agricultural University, Beijing 100193, China; qrpeng@cau.edu.cn (Q.P.)

2 Institute for the Control of the Agrichemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
* Correspondence: lfm2000@cau.edu.cn

Abstract: Converting pesticides into ionic liquids by designing counterions can modu-
late their physicochemical properties, thus improving their efficacy and environmental
safety. In this study, eight prochloraz-based ionic liquids (PILs) were synthesized using
natural organic acids, and their physicochemical properties, toxicity, antifungal activity,
and efficacy in postharvest mango preservation were evaluated. The results showed that
the physicochemical properties of propiconazole, including water solubility, logKow, sur-
face activity, and light stability, could be adjusted by selecting counterions with varying
structures. These properties were correlated with toxicity to zebrafish embryos and anti-
fungal activity against Colletotrichum gloeosporioides. Notably, except for the benzoate PIL,
the photostability of the other seven PILs was enhanced under UV irradiation, with the
cinnamate PIL exhibiting a half-life 2.28 times longer than prochloraz. Spectral analysis
indicated that the anions influenced photostability by shielding or interacting with the
cations. Furthermore, the three selected PILs improved pesticide deposition on the mango
surface during preservation, and the salicylate PIL enhanced pesticide penetration into
the fruit, potentially contributing to its therapeutic activity. In conclusion, the ionic liquid
strategy offers an effective method to modify pesticide properties, improve photostability,
reduce losses, and optimize pesticide formulation.

Keywords: prochloraz; ionic liquids (ILs); physicochemical properties; photostability;
fungicide

1. Introduction
Fungicides protect plants from fungal diseases, ensure healthy crop growth, and main-

tain food safety [1,2]. However, the efficacy of some photo-unstable pesticides is hindered
by their physicochemical properties and suboptimal formulations, resulting in significant
pesticide losses and low utilization [3–5]. Researchers have conducted numerous studies
on pesticide modification and formulation optimization to improve pesticide photostability
and efficacy [6–8].

Ionic liquids (ILs) are roughly defined as salts that melt below 100 ◦C. By choosing
appropriate ion candidates to meet particular functionality needs, ILs’ physicochemical and
biological properties can be readily adjusted, offering an easy and potentially promising
way to modify compound properties [9–11]. Transforming active pharmaceutical ingre-
dients (APIs) into ionic liquids (API-ILs) has demonstrated significant promise for drug
delivery by addressing polymorphism, customizing solubility, enhancing thermal stability,
augmenting dissolution, regulating drug release, adjusting surfactant characteristics, boost-
ing API permeability, and modifying the biological activity of active compounds [12–14].
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Numerous API-ILs have been documented based on agricultural chemicals such as MCPA,
dicamba, chlormequat chloride, glyphosate, picloram, nicosulfuron, triflumizole, imazalil,
tebuconazole, and pyrimethanil. Such studies have shown that transforming agrochemicals
into ionic liquid can improve key properties, including biological activity, rain leaching
resistance, photostability, and reduced volatilization and leaching from soils, compared to
the original compounds [15–20]. Moreover, environmental studies suggest that herbicidal
ionic liquids persist in the environment as mixtures of common ions without contributing
additional environmental burdens as a new type of contaminant [21–24]. These findings
underscore the promising potential of pesticide ionic liquids to optimize formulations and
improve the efficacy of pesticides.

Prochloraz (N-propyl-N-(2,4,6-trichlorophenoxy)ethyl-imidazole-1-carboxamide) is
a broad-spectrum imidazole fungicide commonly applied as a foliar spray or fruit dip. It
effectively controls a wide range of diseases caused by ascomycetes and hemipterans in
various crops, including oilseeds, ornamentals, fruits, and vegetables. However, prochloraz
is photo-unstable, with a photolysis half-life of 1.5 days in water, which may lead to
substantial losses of the active ingredient during applications. Additionally, it exhibits
moderate toxicity to aquatic organisms, with embryonic mortality and developmental
effects observed at concentrations of 2.4 and 4.8 mg/L [25]. Therefore, developing new
efficient and environmentally friendly pesticide products of prochloraz is important to
promote efficient utilization and reduce the negative environmental impacts on fish.

Prochloraz is a weak base with a pKa value of 3.8 containing a free nitrogen atom and
possesses the ability to accept protons, which could be converted to new prochloraz-based
ionic liquids (PILs) by pairing with appropriate acids via acid–base reaction. This work
investigates the physicochemical and biological properties of PILs with various anions
derived from natural substances, including acetic, lactic, pyruvic, nonanoic, oleic, benzoic,
salicylic, and cinnamic acids [26–32]. The PILs were prepared through a one-step reaction
involving acids and prochloraz, followed by characterization using differential scanning
calorimetry and 1H NMR. The hydrophilic–hydrophobic nature of the anions may influ-
ence the physicochemical properties of the PILs, potentially affecting their distribution,
toxicity to non-target organisms, and bioactivity against pathogenic bacteria. As part of
the investigation, the study discusses how different anions impact the photostability of
the active ingredients. It also explores the solubility, surface activity, octanol-water parti-
tion coefficient, acute toxicity to fish embryos, and antifungal activity of the synthesized
PILs. Furthermore, the research delves into the relationships between anion type, physico-
chemical properties, and application effects, providing valuable insights for designing and
developing imidazole-based pesticide ionic liquids.

2. Results and Discussion
2.1. Preparation and Characterization of PILs

Prochloraz-based ILs with different naturally occurring organic acids were synthe-
sized by an acid–base reaction in methanol. Scheme 1 depicted the structures of the anions
and the synthesis pathways of the PILs. The counterions were derived from a series of
naturally occurring organic acids exhibiting diverse structural features, including hydro-
carbons of varying chain lengths, hydrophilic groups, and aromatic rings. Specifically,
these included acetic acid (AceA), lactic acid (LacA), pyruvic acid (PyrA), nonanoic acid
(NonA), oleic acid (OleA), benzoic acid (BenA), salicylic acid (SalA), and cinnamic acid
(CinA). As naturally sourced compounds, these acids typically degrade rapidly in the
environment. Consequently, it will not cause additional environmental impacts when used
to modify fungicides. According to the product characterization results in Figure 1, all PILs
obtained were liquid at room temperature. The purities of the obtained PILs confirmed by
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HPLC-UV are above 95% (Table S1). The Differential scanning calorimetry (DSC) spectra
(Figure 1B) showed that the products did not show any heat absorption peaks near 55 ◦C,
thus demonstrating the creation of a new microsystem. In addition, 1H NMR spectroscopy
was used to characterize the prepared PILs; the chemical shift of hydrogen on the imidazole
ring to the lower field proved the interaction between prochloraz and the anions. The
detailed 1H NMR data are presented in Table S2 and the Supporting Information.
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2.2. Physicochemical Properties
2.2.1. Solubility

The solubility of the prepared PILs investigated in six solvents varying from high
to low polarity is shown in Table 1. The synthesized PILs exhibited different solubility
compared to prochloraz in ethyl acetate, toluene, and hexane. Additionally, the PILs
demonstrated good solubility in methanol and acetone, but their solubility in water was
relatively low, with no significant difference observed.

Table 1. The solubilities of PILs in different solvents.

Substances

Solvents

Water
9.0 a

Methanol
6.6 a

Acetone
5.1 a

Ethyl acetate
4.4 a

Toluene
2.3 a

Hexane
0.0 a

Prochloraz − + + + + −
[Pro][AceA] − + + + ± −
[Pro][LacA] − + + ± − −
[Pro][PyrA] − + + ± − −
[Pro][NonA] − + + + + −
[Pro][OleA] − + + + + +
[Pro][BenA] − + + + + −
[Pro][SalA] − + + + + −
[Pro][CinA] − + + + + −

a Snyder polarity index. +: Good solubility. ±: limited solubility. −: poor solubility (<0.33 g/mL).

In water solubility experiments, no dissociation or solid precipitation was observed
(neutral prochloraz as solid precipitates) when the ionic liquids were shaken with water
for 48 h. This demonstrates that the ionic liquids remain stable when in contact with
water. The results of the aqueous solubility measurements of the PILs are shown in
Figure 2A. It can be seen that the introduction of different paired ions has an increasing
or decreasing effect on the solubility of the active ingredient, which is strongly correlated
with the aqueous affinity of the paired ions. The solubility of [Pro][AceA], [Pro][LacA],
and [Pro][PyrA] increased with the increase in hydrophilic functional groups, and the
solubility of [Pro][NonA] and [Pro][OleA] slightly decreased with the rise in the carbon
chain length, and the hydrophobicity increased. These results, consistent with previous
studies, demonstrated the effectiveness of converting compounds to ionic liquids in altering
their solubility [33,34]. However, this variation in water solubility is insufficient to dissolve
compounds directly into water for spray application. Therefore, the use of PILs requires
further formulation development studies.
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2.2.2. Octanol-Water Partition Coefficient

In this study, prochloraz was transformed into eight imidazolium-based ionic liquids
by matching different anions, with logKow from 3.52 to 2.75–4.23 (Figure 2B). This variation
is closely linked to the hydrophilicity of the anions, demonstrating the potential of IL
design to mitigate environmental risks while improving the efficacy of prochloraz. Previous
studies have similarly shown that ionic liquids with appropriate octanol-water partition
coefficients can be synthesized by selecting suitable paired ions, which, in turn, help reduce
the environmental risks associated with pesticides [35].

The octanol-water partition coefficient reflects the distribution of pesticides between
organic and aqueous phases, providing important guidance on pesticide biological activity,
non-target toxicity, deposition and migration, and environmental behavior [36,37]. A fur-
ther comprehensive study of the relation between logKow of PILs and fungicidal efficiency,
non-target biotoxicity, and ecological effects is of great significance for the purposeful
design of PILs for effective and improved pesticide applications.

2.2.3. Surface Activity

As indicated in Figure 2C, it can be concluded that the surface activity of different
acid-derived PILs does not vary significantly, except for the anion with surface properties.
[Pro][NonA] (41.24) and [Pro][OleA] (42.53) showed a significant reduction in surface
tension compared to prochloraz (51.75). This reduction is likely due to the long alkyl chain
in the anion, which positively affects surface properties. The findings were similar to those
from previous studies [38,39].

It is common for a spray solution to have low surface tension to increase the retention
time and absorption of active ingredients in the plant [17]. Modifications of the surface
activity of compounds may also influence the use of surfactants in the formulation, dis-
persion, and retention of active ingredients on the leaf or fruit surface and even enhance
biological activity.

2.3. Photostability and Its Mechanism Analysis

Table 2 and Figure 3A showed the stability of prochloraz and the obtained PIL under
UV irradiation at 25 ◦C. The results showed that the photolysis half-lives of most PILs
were more prolonged than that of prochloraz (1.08 h), ranging from 1.26 to 2.27 h, except
for [Pro][SalA] (0.90 h), which had a slightly shorter half-life than prochloraz. Generally,
longer half-lives contribute to reduced ineffective degradation of the active ingredient
on the plant surface, thereby increasing pesticide effectiveness. Notably, [Pro][CinA] had
a photodegradation half-life 2.28 times longer than prochloraz, surpassing results from
some previous studies on microencapsulation dosage form design, and merits further
attention [40,41]. This strategy may facilitate the development of new photostabilized
prochloraz formulations, potentially increasing the effective application rate of the pesticide.

In this paper, the photostability mechanism was explored by UV and fluorescence
spectroscopic studies. On the one hand, the counterions in the PILs can reduce the absorp-
tion of photon energy by the compound or reduce the absorption of energy that leads to the
cleavage of the compound’s covalent bonds. The excitation spectra (Figure 3C) showed that
except for [Pro][OleA], [Pro][SalA], and [Pro][CinA], the remaining PILs have fluorescence
emission and excitation behaviors similar to those of prochloraz. The excitation spectral
signal intensities are slightly weaker than those of prochloraz in the same concentration.
This represented the absorption of less photon energy in favor of the photostability of
the compounds. Although the excitation peak signals of [Pro][OleA] and [Pro][SalA] are
more potent than that of prochloraz, the emission spectra (Figure 3D) of both of them have
correspondingly stronger signal peaks, which represents that they can release the energy
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of the excited state by increasing the release of fluorescence, avoiding the accumulation
of molecular energy in the excited state that leads to the breakage of covalent bonds and
degradation.

Table 2. The photolysis kinetics of prochloraz and PILs under UV radiation.

Chemicals Regression Equation r2 K (h−1) t1/2 (h)

Prochloraz Ct = 10.2e−0.641t 0.997 0.641 1.08
[Pro][AceA] Ct = 11.4e−0.400t 0.998 0.400 1.73
[Pro][LacA] Ct = 12.5e−0.391t 0.997 0.391 1.77
[Pro][PyrA] Ct = 13.4e−0.383t 0.993 0.383 1.81
[Pro][NonA] Ct = 10.6e−0.438t 0.994 0.438 1.58
[Pro][OleA] Ct = 9.54e−0.552t 0.996 0.552 1.26
[Pro][BenA] Ct = 9.35e−0.774t 0.999 0.774 0.90
[Pro][SalA] Ct = 9.59e−0.401t 0.994 0.401 1.73
[Pro][CinA] Ct = 11.2e−0.305t 0.991 0.305 2.27
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On the other hand, the introduction of anions can provide some light-shielding effects
at the same time. Figure 3B illustrates the UV absorption spectra of different ionic liquids
where the introduction of benzoate, salicylate, and cinnamate anions with aromatic ring
structures increases the absorbance and may lead to some UV shielding. Such UV shielding
effect may be one of the reasons for the increase in the photostability of [Pro][SalA] and
[Pro][CinA] [7,41]. In addition, the excitation spectrum of [Pro][CinA] almost disappeared
the signal at 299 nm, and instead, a new peak with similar intensity to that of prochloraz
appears near 312 nm. At the same time, [Pro][CinA] did not observe a significant signal
in the emission spectrum. This may indicate that the cinnamate anion, acting as a photo-
masking agent, absorbed photon energy before absorbing prochloraz cation and degraded
during exposure of the [Pro][CinA] solution to light. A comparative photostability study
indicated that [Pro][CinA] exerts a more substantial stabilizing effect for prochloraz than



Molecules 2025, 30, 1641 7 of 16

the mixture of prochloraz and sodium cinnamate (1.89 h, shown in Table S3) at the corre-
sponding concentration, likely due to specific interactions and a more favorable chemical
environment that protects against photodegradation. This also demonstrated that both the
ionic effect of prochloraz and the photomasking effect of the anion are responsible for the
improved photostability of PILs.

2.4. Acute Toxicity to Zebrafish Embryo

The 96 h LC50 values and 95% confidence intervals (CIs) exposed to prochloraz and the
PILs with various anions are presented in Figure 4 and Table S4. Lower LC50 values indicate
that the compounds were more toxic to zebrafish embryos. Consistent with previous
studies, the 96 h LC50 of prochloraz for zebrafish embryos was 7.09 mg/L, indicating
moderate toxicity [42]. The toxicity of PILs to zebrafish embryos varied, with the order of
toxicity as follows: [Pro][PyrA] > [Pro][LacA] > [Pro][SalA] > [Pro][AceA] > [Pro][BenA] >
[Pro][NonA] > Prochloraz > [Pro][CinA] > [Pro][OleA]. The correlation of LC50-96h with
water solubility, logKow, and γcmc was evaluated by Spearman rank correlation evaluation,
and the results are shown in Figure 4. For PILs, the LC50-96 h to zebrafish embryos showed
a significant correlation with water solubility (|ρ| > 0.81) and a strong correlation with
logKow (0.61 < |ρ| < 0.80). It can be concluded that the design and preparation of PILs
with low solubility may help to reduce the toxicity of prochloraz to aquatic organisms.
Similarly, previous studies have shown that preparing triflumizole ionic liquids with
natural anions reduced the toxicity to adult zebrafish. Therefore, designing and preparing
active ingredient ionic liquids can help modify the toxic effects of compounds, potentially
reducing the threat of prochloraz to the aquatic environment.
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The latest research on the toxicity of pesticide ionic liquids to environmental organisms
has provided new insights, suggesting that ionic liquids exist in the environment in their
typical ionic form rather than a new type of contaminant [23,24]. This implies that ionic
liquids in the environment may exist in forms other than the subject state in this paper.
Since the counterions considered in this paper are natural compounds commonly used in
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agricultural applications, applying the PILs proposed here will unlikely result in additional
environmental impacts.

2.5. Fungicidal Activity Against Colletotrichum Gloeosporioides

The toxicity regression equations and inhibitory concentration (IC50) of prochloraz
and PILs against Colletotrichum gloeosporioides are shown in Figure 5 and Table S5. The
IC50 values and their 95% confidence intervals indicate variations in the bioactivity of
different PILs. The bioactivity of [Pro][AceA], [Pro][LacA], [Pro][PyrA], and [Pro][NonA]
did not significantly differ from that of prochloraz. Moreover, [Pro][OleA], [Pro][BenA],
[Pro][SalA], and [Pro][CinA] exhibited slightly reduced bioactivity compared to prochloraz.
The IC50 showed a strong correlation with logKow (0.61 < |ρ| < 0.80), which may be
related to the fact that lipophilic anions help the cationic components to enter the fungal
biofilm. Similarly, introducing anions has been shown to affect the activity of compounds
against a wide range of fungal diseases [39,43]. When an anion is introduced into an
antimicrobial compound, it forms an organic salt that retains its antibacterial activity
while exhibiting enhanced biological activity or a broader spectrum of activity due to the
synergistic interaction between the anion and the cation.
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vs. prochloraz, red) and Spearman correlation of IC50 with physicochemical properties. Significance
levels: n.s. p > 0.05, * p < 0.05, ** p < 0.01.

Furthermore, a comparative fungicidal activity of eight acids and their sodium salts
(Table S6) indicated that the anion and the acid did not demonstrate a comparable fungi-
cidal impact in PILs. These results showed that the cations (ionized fungicides) played a
significant role in inhibiting the fungal growthand that the type of anion had little signifi-
cant effect.

In conclusion, modification by conversion to ionic liquids did not significantly alter
the fungicidal activity against Colletotrichum gloeosporioides, providing some assurance for
the practical application of PILs.
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2.6. Pesticide Distribution of Postharvest Mangoes

Postharvest preservation technology is a technique to prevent and control postharvest
diseases through postharvest fruit dipping and storage, which is widely used in fruit and
vegetable agricultural products. In this study, we used prochloraz and three kinds of PILs
to configure the medicinal solution for the postharvest fruit dipping treatment of mango to
observe the distribution of pesticides after dipping and even during the storage process.

Prochloraz on mango, as shown in Figure 6A, after PILs dipping, the content of the
active ingredient on the fruit was significantly greater than that of the prochloraz treatment
group. Three ionic liquids were conducive to increased deposition of the active ingredient
on fruit, which was more conducive to full use of the active ingredient [44]. Figure 6B shows
the difference in the permeability of the mango interior on the third day and the seventh
day. Overall, the penetration of both prochloraz and PILs into the interior of the mango
epidermis was poor, with the penetration rates of the different treatments being less than
0.5% on the seventh day. Comparatively, the penetration rates of the [Pro][SalA] treatment
group were slightly higher than those of the prochloraz treatment group on the third and
seventh days, with some significance. This might be caused by the fact that salicylic acid, as
a plant resistance elicitor, stimulated the uptake and metabolism of exogenous compounds
in the mango organism [45]. These findings demonstrate the potential application of PILs
in fruit preservation.
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of mango by prochloraz, [Pro][PyrA], [Pro][SalA], and [Pro][OleA]. Significance levels: n.s. p > 0.05,
* p < 0.05, *** p < 0.001.

3. Materials and Methods
3.1. Materials

Prochloraz (99%) was purchased from Hubei Jiahui Xingcheng Biotechnology Co.,
Ltd. (Wuhan, China). Methanol, acetone, toluene, hexane, 1-octanol, acetic acid, lactic
acid, pyruvic acid, nonanoic acid, oleic acid, benzoic acid, salicylic acid, and cinnamic acid
were analytical grade reagents and purchased from Sinopharm Chemical Reagent Co., Ltd.
(Beijing, China). Acetonitrile was high-performance liquid chromatography (HPLC) grade
and supplied from MREDA Chemical and Biological Regent Co., Ltd. (Beijing, China).
Colletotrichum gloeosporioides (ACCC 36431) was collected and provided by the Chinese
Agricultural Microbial Strain Collection and Management Centre (ACCC).

3.2. Preparation and Characterization of PILs

PILs were prepared using the procedure outlined in the literature, which involved
adding 30 mL of methanol to a round-bottom flask along with prochloraz (0.001 mol)
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and the same stoichiometric amount of organic acid [39,46]. The mixture was stirred at
50 ◦C for 3 h, followed by the evaporation of methanol through decompression distillation
at 45 ◦C for 0.5 h, yielding the target product. 1H NMR spectra were acquired at 25 ◦C
using a Bruker Avance DPX 500 MHz NMR spectrometer (Bruker, Berlin, Germany). The
differential scanning calorimetry analysis of prochloraz and eight prepared PILs was con-
ducted using a Hitachi DSC200, calibrated across a temperature range of −80 ◦C to 100 ◦C.
Each sample was subjected to a heating rate of 10 ◦C/min and analyzed under a nitrogen
atmosphere to minimize oxidative reactions and ensure inert conditions throughout the
measurement process.

3.3. Determination of Physicochemical Properties
3.3.1. Solubility

Following a widely used solubility procedure, the solubilities of prochloraz and all
PILs in six solvents were determined [33]. These typical solvents were selected—water,
methanol, acetone, toluene, ethyl acetate, and hexane. A 0.1 g sample of every chemical
was weighed and added to a certain amount of solvent. Four types of behavior were
characterized based on the dosage of the solvent used: high solubility, medium solubility,
low solubility, and insoluble, which apply to chemicals that dissolved in 1, 2, and 3 mL of
the solvent, respectively, and did not dissolve in 3 mL of the solvent. Every treatment was
administered at 25 ◦C. The solubility in water was further determined using the following
procedure: approximately 10 mg of prochloraz or PILs were weighed and added to 10 mL
of distilled water. The mixture was shaken for 24 h, centrifuged, and filtered through
a 0.22 µm membrane to obtain the saturated solution. All procedures were conducted
in triplicate. The solubility in water was then measured using HPLC-UV. Instrument
specifications are detailed in the Supporting Information.

3.3.2. Octanol-Water Partition Coefficient

The partition coefficients (n-octanol/water) of prochloraz and the prepared PILs were
estimated by the shake-flask method according to OECD guidelines (Test No. 117) [47]. The
equilibrium partitioning of prochloraz or PILs between water and n-octanol was established,
pre-saturated with each other. Initially, a n-octanol solution containing 2000 mg/L of the
compound was mixed with water in centrifuge tubes at 1:2, 1:1, and 2:1 volume ratios,
with two parallel samples for each ratio. All tubes were shaken at a constant temperature
of 25 ◦C for 3 h. Subsequently, the samples were centrifuged at 4000 rpm for 10 min.
The octanol and aqueous phases were then carefully collected and diluted tenfold with
methanol, and their concentrations were measured using HPLC-UV and HPLC-MS/MS,
respectively. Instrument specifications are detailed in the Supporting Information.

3.3.3. Surface Activity

Through the Wilhelmy plate method, the interfacial surface tension of prochloraz and
the produced PILs was measured at 25 ◦C using a JK 99B analyzer (Powereach, China) with
a resolution of less than 0.05 mN/m [48]. The test solution (saturated aqueous solution) was
prepared by dissolving approximately 0.05 g of prochloraz or PILs in 100 mL purified water
under continuous agitation for 48 h at room temperature. Pure water’s surface tension
was used to calibrate the device. After cleaning and drying, the sensing platinum plate
was slowly oriented perpendicular to the solution interface. The plate will stop when the
liquid surface tension and other relevant forces reach a balance. The interfacial surface
tension values of the test chemicals were noted. Each compound was determined with
three parallel samples.
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3.4. Photostability and Mechanism Analysis

Photostability evaluation. Photostability studies of prochloraz and PILs were con-
ducted at room temperature under UV exposure. Aqueous solutions containing each
compound (at a concentration of 26.6 µmol/L) were prepared and hermetically sealed in
quartz bottles. The bottles were then exposed to a 15 W UV lamp (Emax = 254 nm) at
a distance of 15 cm, with three parallel samples for each compound. At different time
intervals (0, 0.5, 1, 1.5, 2, 3, 4, and 6 h), 100 µL of the solutions was accurately removed
from the vials, diluted tenfold with methanol, and analyzed by HPLC-MS/MS. Instrument
specifications are detailed in the Supporting Information.

As dark controls, aluminum foil-wrapped quartz tubes were used to prevent the
impact of outside variables. A first-order kinetic dissipation model was applied to the light
stability data of prochloraz and PILs:

Ct = C0 × e−Kt, (1)

where Ct and C0 (mg/L) are the concentrations at t hour and zero hours, respectively, and
K (h−1) is the first-order dissipation rate constant. The coefficient of determination r2 was
used to describe the goodness of fit of the curves. The half-lives t1/2 of the chemicals were
calculated by the following formula:

t1/2 =
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UV–Vis Absorption Spectroscopy. The UV–Vis absorption spectra were acquired
using a UV-1800PC spectrophotometer (Mapada, Shanghai, China). Before measurement,
a sample solution was prepared by dissolving the compound of interest in methanol to
a 2 mg/L concentration. A wavelength range of 190 nm to 400 nm was selected to cover
the expected absorption spectrum of the sample. A blank solution, consisting of the same
solvent used for the sample preparation, was placed in a quartz cuvette and utilized for
baseline correction.

Fluorescence Spectroscopy. The fluorescence emission and excitation spectra were
recorded using an RF-6000 fluorescence spectrometer (SHIMADZU, Kyoto, Japan). The
sample was prepared by dissolving it in ethanol to achieve a 1 mmol/L concentration. For
emission spectra, the samples were excited at 299 nm with both excitation and emission
slit widths set to 1 nm, and the emission was scanned from 350 to 500 nm. For excitation
spectra, the emission wavelength was fixed at 400 nm, and the excitation was scanned from
250 to 350 nm under the same slit width conditions. A blank measurement was performed
using the solvent alone to correct for any background fluorescence. The sample solution
was then placed into a clean quartz cuvette and introduced into the spectrometer.

3.5. Acute Toxicity to Zebrafish Embryo

The acute toxicity of prochloraz and PILs to fish embryos was evaluated according
to OECD TG 236 [49]. Gradient solutions of the test substances were prepared at 1.3-fold
concentration intervals using laboratory-oxygenated water. Appropriate Tween-80 was
used to promote the dispersion of insoluble test substances in water. Thirty milliliters of
each test solution were added to a 50 mL beaker, and ten well-developed embryos were
transferred to each beaker. Three replicates were set up for each concentration. Dilution
water controls and solvent controls were included to account for other potential influences.

During the exposure period, the embryos were maintained in an incubator at 26 ± 1 ◦C
with a 14:10 h light/dark ratio. The test solutions were changed every 24 h, and the number
of dead embryos was recorded at 24, 48, 72, and 96 h. Zebrafish embryo mortality was
assessed based on egg coagulation, heart rate, and blood flow.
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3.6. Fungicidal Activity Against Colletotrichum Gloeosporioides

The fungicidal activity of prochloraz and PILs was evaluated by conducting a growth
inhibition assay on potato dextrose agar (PDA) plates [43]. Suspensions of the com-
pounds at graded concentrations were added to molten PDA medium at approximately
50 ◦C to prepare media with different chemical concentrations (0.66, 1.33, 2.65, 5.31,
10.6, and 21.2 µmol/L). Pure water was used as a negative control. Mycelial plugs
with a diameter of 5 mm were positioned in the middle of PDA plates that held vari-
ous sample concentrations. Every treatment was carried out three times. Following a
96 h dark incubation period at 26 ◦C, each colony’s diameter was measured twice at
right angles. The formula used to compute the suppression of mycelial growth was
inhibition (%) = (Dc − Dt)/(Dc − 5) × 100%, where Dc and Dt are the diameters in mil-
limeters of the treatment colony and the control colony, respectively. Based on the acute
toxicity and fungicidal activity data in the manuscript, approximate statistical tests were
performed using known LC50/IC50 and their 95% confidence intervals. The tests, in turn,
constructed t-statistics and determined the signifi-cance of differences between groups.

3.7. Pesticide Distribution of Postharvest Mangoes

The postharvest mango dipping procedure was modeled after the prochloraz EC
formulation. Solutions with the same concentration of active ingredients were prepared by
dispersing prochloraz and PIL separately in water containing an appropriate amount of
Tween-80. Mangoes of uniform size were immersed in the solutions for 1 min, taken out,
dried, and stored at 15 ◦C with 70% humidity, protected from light. At 0, 3, and 7 days,
three to five mangoes were selected, peeled, pitted, and homogenized to obtain peel and
pulp samples. Pesticides on the samples were detected by HPLC-MS/MS. Instrument
specifications are detailed in the Supporting Information.

4. Conclusions
This study synthesized eight novel prochloraz-based ionic liquids (PILs) by utilizing

several natural organic acids with different structures to modify the properties of prochloraz.
Physicochemical and biological properties such as solubility, surface activity, octanol-water
partitioning, photostability, acute toxicity to zebrafish embryos, fungicidal activity against
Colletotrichum gloeosporioides, and pesticide distribution during postharvest preservation–
storage on mango were studied.

The results showed that hydrophilic groups, such as hydroxyl and carbonyl, enhance
the hydrophilicity of PILs, whereas anions with hydrophobic structures, such as long
alkyl chains or benzene rings, contribute to liposolubility. Long alkyl chains also increase
the surface activity of the compounds. The photostability of the active ingredients is
increased, except for [Pro][BenA], by the shielding effect of the anions or by interactions
between anions and cations. Notably, [Pro][CinA] increased photostability up to 2.28-fold.
These findings demonstrate the potential of designing and improving the physicochemical
properties of pesticides through the transformation into ionic liquids. Moreover, this also
exhibited a potential application of IL-based improvement strategies for increasing the
photostability of prochloraz and optimizing the formulation.

Spearman’s correlation analysis revealed a significant correlation between water solu-
bility, logKow, and toxicity towards zebrafish embryos and between logKow and fungicidal
activity. It could be concluded that designing PILs with lower water solubility and higher
logKow may reduce zebrafish embryos’ toxicity. However, further research is needed to
ascertain the cause of the slight decline in inhibitory activity observed in PILs with higher
logKow. Additionally, the transition to PILs resulted in a higher deposition of the active
ingredient on the fruit, while [Pro][SalA] improved its penetration into the fruit’s interior.
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This may improve the therapeutic bactericidal effect of prochloraz in postharvest preserva-
tion treatments of mangoes. Based on these findings, it appears that the transformation into
ionic liquids can modify biological effects, environmental behavior, and the distribution of
active ingredients in pesticides.

In summary, the IL-based improvement strategies proposed in this paper provide
a practical method to modify the physicochemical properties of compounds. It offers
promising applications in enhancing the photostability of prochloraz, mitigating toxicity to
aquatic organisms, improving pesticide efficiency, and reducing negative environmental
impacts. This work contributes valuable insights into pesticide formulation and efficacy
optimization.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules30071641/s1, Experimental section for pre-treatment of mango
samples to determine prochloraz; HPLC-UV specifications; HPLC-MS/MS specifications; Table S1:
Experimental parameters (MRM Mode) of HPLC-MS/MS; Table S2: 1H NMR data of PILs; Table S3:
The photolysis kinetics of prochloraz in the mixture with sodium cinnamate; Table S4: Acute toxicity
of prochloraz and PILs to zebrafish embryo; Table S5: Fungicidal activity against Colletotrichum
gloeosporioides; Table S6: Fungicidal activity of 8 acids and their sodium salts at a concentration of
26.5 µmol/L.
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