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Abstract: The impetus behind this study is to understand the sedimentological dynamics of very
young fluvial systems in the Amazon River catchment and relate these to land use change and
modern analogue studies of tidal rhythmites in the geologic record. Initial quartz optically stimulated
luminescence (OSL) dating feasibility studies have concentrated on spit and bar deposits in the Rio
Tapajós. Many of these features have an appearance of freshly deposited pristine sand, and these
observations and information from anecdotal evidence and LandSat imagery suggest an apparent
decadal stability. The characteristics of OSL from small (~5 cm) sub-samples from ~65 cm by ~2 cm
diameter vertical cores are quite remarkable. Signals from medium-sized aliquots (5 mm diameter)
exhibit very high specific luminescence sensitivity, have excellent dose recovery and recycling,
essentially independent of preheat, and show minimal heat transfer even at the highest preheats.
These characteristics enable measurement of very small signals with reasonable precision and, using
modified single-aliquot regenerative-dose (SAR) approaches, equivalent doses as low as ~4 mGy
can be obtained. Significant recuperation is observed for samples from two of the study sites and,
in these instances, either the acceptance threshold was increased or growth curves were forced
through the origin; recuperation is considered most likely to be a measurement artefact given the
very small size of natural signals. Dose rates calculated from combined inductively coupled plasma
mass spectrometry/inductively coupled plasma optical emission spectrometry (ICP-MS/ICP-OES)
and high-resolution gamma spectrometry range from ~0.3 to 0.5 mGya−1, and OSL ages for features
so far investigated range from 13 to 34 years to several 100 years. Sampled sands are rich in quartz
and yields of 212–250 µm or 250–310 µm grains indicate high-resolution sampling at 1–2 cm intervals
is possible. Despite the use of medium-sized aliquots to ensure the recovery of very dim natural
OSL signals, these results demonstrate the potential of OSL for studying very young active fluvial
processes in these settings.

Keywords: Amazon; Rio Tapajós; quartz OSL dating; small samples; very high specific sensitivity;
very young fluvial deposits

1. Introduction

1.1. Background

An important facet of the development of a geochronological technique is the investigation of
potential age range. Much recent work in the luminescence field has focused on maximum achievable
ages using high-temperature post-infrared infrared (pIRIR) signals from feldspars [1,2]. In contrast
for quartz optically stimulated luminescence (OSL), the more efficient signal resetting coupled with
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environments where grain reworking is evident make it well suited to assessment of minimum
achievable age. Notable examples are studies of young fluvial deposits [3–6] and dunes [7–11].

Regarding the application of OSL dating to fluvial sediments in the Amazon region, a number
of studies have used the technique to try to constrain the origin and development of the drainage
system, documenting Mid–Late Pleistocene ages [12–14], and OSL analyses have also been carried out
to investigate the Late Pleistocene to Holocene development of fluvial bars [15].

The impetus behind this work was to investigate the feasibility of optically stimulated luminescence
(OSL) dating of very young fluvial and shoreline landforms in the Amazon River catchment.
The ultimate goal of the study is to use OSL to help understand the sedimentological dynamics
of fluvial systems in the Amazon. This has relevance to the important issue of the anthropogenic effect
of decades of land use and land cover change on the Amazon biome [16–18], that has impacted the
stock of carbon and biodiversity [19,20] and resulted in erosion in many areas of the basin including
along the rivers [21]. Furthermore, the Amazon is subject to significant marine tides, which propagate
inland 1000 km from the mouth region, and OSL data have the potential to contribute to depositional
models for modern analogues of ancient tidal rhythmites [22]. Initial OSL dating feasibility studies
have concentrated on fluvial/shoreline features in the Rio Tapajós.

1.2. Geologic Setting

The Rio Tapajós is a major river system draining the Amazon basin, running ~1930 km from the
Mato Grosso plateau (14◦25′ S) north to the confluence with the Rio Amazonas at Santarém (2◦25′ S)
(Figure 1a). In the last ~160 km the Tapajós widens to 6–14 km, deepens considerably, and forms a ria
(flooded river valley) (Figure 1b). To the south, deposits of pristine quartz-rich sand line the banks
of the ria. These sands are primarily sourced by Cretaceous sandstone bedrock [23,24] that forms
prominent bluffs as high as 90–120 m. Because of prevailing, equatorial tradewinds, out-of-phase
peak discharge between Amazon mainstem (May–July) and Tapajós (March–May) [25], and potential
tidal influence [24], the spits and bars exhibit an unusual pattern of upstream progradation. LandSat
imagery indicates depositional systems have undergone only minor morphological changes in four
decades (Figure 2). On the Amazonas mainstem at Santarém, a ~6 m seasonal oscillation of river
level is documented [22]. Examples of both subaerially exposed and subaqueous spits and bars were
identified in the Tapajós during fieldwork; the range in seasonal oscillation of the Tapajós is not as well
documented but has been reported to be a similar order to the mainstem at ~5 m [24].
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Figure 1. (a) Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) image [26]. Box
indicates study area in lower ~160 km stretch of the Rio Tapajós. (b) Detail of study area (USGS Global
30 Arc-Second Elevation data, GTOPO30, [27]) indicating sampling sites (black squares). The work
described here investigated samples from Cupari, Tapuama and Arapiuns.
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Figure 2. Historic LandSat imagery of bird’s foot delta, northern Tapajós, indicates only minor
morphological changes over the past four decades.

The drainage basin of the Tapajós is covered with dense rainforests on highly weathered, ancient
shields, resulting in a clearwater river. Conversely, the mainstem of the Amazon has very high
suspended sediment loads. Floodplain deposition along the Amazon has kept pace with Holocene
rise in base level. Along the Tapajós, however, lack of sediment has resulted in a ria that is partially
dammed along the Tapajós-Amazon confluence. The waters within these two disparate types of rivers
maintain individual identity downstream of this confluence. A zone of mixing, very similar to the
“meeting of the waters” at Manaus, occurs along the riverfront at Santarém.

2. Study Area and Sampling

Our study focused on shoreline features (spits, bars and dunes) that were accessed by boat and
speedboat. The study area and sampling localities are shown in Figure 1b. Sands were sampled with a
vertical push corer, with black spray-painted plastic sleeve inserts, allowing cores of ~65 cm in length
by ~2 cm in diameter to be collected. The painted sleeves were examined carefully for complete paint
coverage and tested to ensure bright white light was not visible through the painted exterior. Empirical
luminescence tests of the light-tightness of the sleeves were not considered necessary but, as an added
precaution, all core samples were promptly capped and immediately wrapped in thick black plastic
when removed from the corer.

The work described in this study investigated core samples from three southerly sampling localities
at Cupari, Tapuama and Arapiuns. At Cupari, duplicate samples (CUP-030808-01 and CUP-030808-02)
separated by ~2–3 m were collected from a densely vegetated sand bar ~150 m from the riverbank.
At the Tapuama locality, two samples were collected from a spit. The first (TAP-030808-03) from the
unvegetated southerly distal end and the second (TAP-030808-04) from sands a few meters within the
vegetated proximal end. At Arapiuns, a single sample (ARA-040808-05) was collected from the crest of
a shoreline Aeolian dune directly behind a sandy beach. Sampling was conducted in the month of
August, when fluvial discharge is roughly half-way between maximum (March–May) and minimum
(September–December) flow periods [24]. The sampled cores were collected above the observable river
water level, and probably above reach of capillary fringe influence (~0.2–0.3 m in sands [28]). Given
the seasonal oscillation of the Tapajós, even if ~5 m (Section 1.2, [24]) is an overestimate, we anticipate
the sampling sites oscillate between subaerial and subaqueous fluvial landforms. The altitude of all
sampling sites was recorded as ~10 m above sea level with a hand-held GPS.

3. Luminescence Studies

3.1. Sample Preparation

Preparation procedures to produce 212–250 µm or 250–310 µm quartz grains for OSL analyses
were carried out under low-intensity red safe lighting. Sediment at a core depth of ~63–65 cm was
removed from the end of each core to exclude the possibility of analyzing grains that had been exposed



Methods Protoc. 2019, 2, 90 4 of 12

to daylight during sample retrieval. The next ~5 cm from a core depth of ~58–63 cm was prepared for
luminescence analyses. Standard preparation steps [29] included dry sieving, 10% HCl and 30% H2O2

pre-treatments to remove carbonates and organic matter, respectively, separation of heavy minerals
(>2.70 gcm−3) with lithium metatungstate (LMT) heavy liquid, and treating with 48% HF for 40 min
to dissolve feldspar minerals and etch the surface of quartz grains to minimize luminescence due to
ionization from external alpha particles. Initial test measurements indicated the dimmest natural OSL
signals could only be recovered with use of medium-sized (5 mm diameter) aliquots. Potentially such
small signals could be observed if a large number (e.g., ~100) of small (e.g., 1 mm) multi-grain aliquots
were analyzed but given practical limitations of machine time we prepared medium-sized aliquots
for all samples analyzed. Monolayers (5 mm circles; ~280 grains of 250–310 µm, and ~420 grains of
212–250 µm) of quartz grains were dispensed onto ~9.7 mm diameter stainless steel discs using silicone
oil and a spray template.

The sediment at a core depth of ~63–65 cm was used for inductively coupled plasma
mass spectrometry / inductively coupled plasma optical emission spectrometry (ICP-MS/ICP-OES)
measurements and at a core depth of ~53–58 cm for high-resolution gamma spectrometry. After drying,
these samples were pulverized in a Shatterbox ring and puck mill before sending for analysis.

3.2. Measurements

OSL measurements were carried out using a Risø TL/OSL-DA-20 reader [30], with optical
stimulation of quartz provided by an array of blue light (470 nm, FWHM 20 nm) diodes, optical
stimulation of feldspar with infrared (870 nm, FWHM 40 nm) diodes, a calibrated 90Sr/90Y beta source
(~0.16 Gys−1) to administer laboratory radiation doses, and a heating stage for thermal stabilization.
All luminescence signals were detected in the ultraviolet (peak transmission ~340 nm) using 7.5 mm of
Hoya U-340 filter with an EMI 9235QB photomultiplier tube.

Determination of the equivalent dose (De) was carried out using a single-aliquot regenerative-dose
(SAR) protocol [31–33] with modifications. Continuous power or continuous wave OSL (CW-OSL) was
conducted in all measurements. We routinely utilize post-infrared optically stimulated luminescence
(post-IR OSL) measurement approaches [29,34–40], which in certain instances has been shown
to improve dose recovery results even if infrared signals are negligible or absent [29]. Post-IR
OSL was used to measure the luminescence from the quartz grains in this study. This procedure
removes charge sensitive to infrared stimulation, commonly associated with remnant feldspathic
minerals, before measuring OSL from the quartz grains. The post-IR OSL measurement comprised 40
s infrared-stimulated luminescence (IRSL) at ~117.9 mWcm−2 (22 Vishay TSFF5200 IR led’s at 90%
power) at a sample temperature of 50 ◦C, followed by 40 s OSL at 38.7 mWcm−2 (28 Nichia NSPB500S
blue led’s at 90% power) at a sample temperature of 125 ◦C. After measurement of the natural OSL in
the first SAR cycle, regenerative doses in subsequent cycles were approximately 0.8, 1.6, 2.4, 0, and
0.8 Gy. The test dose administered for sensitivity correction was typically ~1.6 Gy, exceeding typical
De values by a factor of ~10 to 400 (consistent with data from [7]). Test doses were heated to 160 ◦C
prior to measurement. A hot bleach measurement of 40 s OSL at 280 ◦C was incorporated at the end of
each SAR cycle [32].

All natural IRSL signals appeared negligible but natural OSL signals (Figure 3) were also very
dim. There was little observable scaling in size of IRSL at the regenerative dose level suggesting IR
contamination may not be a problem. However, for such small OSL signals, negligible IRSL may still
be a source of overestimation and requires careful assessment if a post-IR protocol is not used.
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Figure 3. Typical optically stimulated luminescence (OSL) signals for an aliquot from sample Tapuama
(TAP)-030808-03.

For all measurements we compared two approaches to define the net OSL signal: (1) late
background subtraction where the signal was defined as the initial 0.8 s integral with subtraction of the
final 8 s integral [31], and (2) early background subtraction with the same initial 0.8 s integral with
subtraction of the following 0.8 to 2.72 s integral. The latter method has been assessed to optimize the
contribution from the fast component [41]. The De value was estimated by interpolation of the natural
OSL with a best-fit linear or saturating exponential curve fitted to regenerative OSL data. Uncertainty
in De was estimated by combining error from counting statistics for the natural OSL, curve fitting, and
instrumental systematic uncertainty [42].

Dose-rate measurements were conducted using the core portions described in Section 3.1.
High-resolution gamma spectrometry was performed using a small-sample 2 g well geometry for
assessment of U and Th. With the use of such a small sample for gamma spectrometry, a homogenous
medium is assumed for accurate assessment of the radioactivity within a 30 cm radius sphere; the
fluvial sand samples studied here are of uniform composition with well-sorted grain sizes, and thus a
homogeneous medium is a good approximation. Li-metaborate fusion ICP-OES and ICP-MS were
performed for K and Rb, respectively. These data were converted to annual dose rate using conversion
factors [43]. Calculated beta dose was corrected using attenuation factors for grain size and HF
etching (described in detail in [44] and references therein). In the absence of detailed imagery or
documented evidence of the nature of subaerial-to-subaqueous cyclicity at the Tapuama and Cupari
sites, attenuation of dose rate via moisture conditions over the burial time of the samples was calculated
by using present day field moisture content with a maximum absolute error of 5% to allow for past
changes. The dose rate from the ionizing cosmic ray component was calculated following [45]. For the
purposes of this feasibility study, a constant overburden depth was assumed; we deliberately chose the
deepest part of the cores for our sample selection in an attempt to minimize shallow gamma and hard
cosmic corrections [46]. Finally, an estimate of an internal dose rate of 0.01 ± 0.002 mGya−1 [47] was
incorporated into total dose-rate assessment.

3.3. Luminescence Characteristics

3.3.1. Specific Sensitivity of OSL Signals

An important consideration with dating features on an annual to decadal timescale is whether the
luminescence is sufficiently sensitive to enable measurement of very small radiation doses. Quartz
from the Tapajós shows weak natural OSL signals but very high specific sensitivity in response to a
small regenerative dose (Figure 3). In Section 1.2 above, we suggest that the primary source of sand
in the Tapajós is from Cretaceous sandstone bedrock that forms prominent bluffs. Given the high
sensitivity of the quartz, the interplay of sources from Paleozoic [23] or even Paleoproterozoic [48]
igneous and metamorphic rocks from the Amazon Craton must also be considered.
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3.3.2. Effect of Preheating

The importance of investigating the influence of preheating for very young samples has been
emphasized in previous studies [7]. We carried out De plateau tests and thermal transfer tests on all
samples investigated; the latter tests were carried out using an optical bleach at ambient temperature
(40 s OSL, 4000 s pause, 40 s OSL; [7]). For the samples from Tapuama, these data indicate a low
temperature De plateau region below 210 ◦C (Figure 4), and minimal thermal transfer in a similar
temperature band (Figure 5). The samples from Cupari and Arapiuns showed similar characteristics.
A plateau in De data is a possible indication of complete resetting but, given the medium aliquots
utilized in this work, such an interpretation must be treated with some caution.
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Figure 4. Determination of the equivalent dose (De) plateau test results on samples from Tapuama.
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Figure 5. Thermal transfer test results on samples from Tapuama.

3.3.3. Dose Recovery Tests

Dose recovery tests with preheat variation [29] were carried out on all the samples investigated.
Test results that typify the behavior of all samples are shown in Figure 6 for TAP-030808-03 and
TAP-030808-04. The given dose was ~1.6 Gy (10 s beta exposure). This value was considerably larger
than the De values indicated in Figures 4 and 7, and Table 1, but was considered prudent because
the offset time [49] for our source had not been determined, and even doses administered for 1 s of
source exposure would exceed De by a factor of ~40 for youngest samples. An implication of using a
relatively large given dose is that evidence of the thermal transfer signal above ~220 ◦C is masked
(Figure 6). Despite this, measured-to-given ratios for all samples were close to unity and imply the first
sensitivity measurement is appropriate to the preceding natural OSL [32,33], and support choice of
preheat (see Table 1) from De plateau tests and thermal transfer tests.



Methods Protoc. 2019, 2, 90 7 of 12
Methods Protoc. 2019, 2, x FOR PEER REVIEW 7 of 13 

 

 
Figure 6. Dose recovery test data on samples from Tapuama. 

3.4. Towards OSL Dating of Multi-Grain Quartz Aliquots 

A summary of the OSL analysis is given in Table 1. De data, calculated using late background 
subtraction, were indistinguishable from those data analyzed using early background subtraction. 
An important observation is that recuperation measured during the De SAR cycle is significant for 
the quartz from Arapiuns (Figure 7a,b) and Tapuama. For the Arapiuns sample (ARA-040808-05), we 
calculate a similar De result when the growth curves are forced through the origin (Figure 7c; all 
aliquots accepted) compared to when the acceptance threshold for recuperation was set at 35% to 
achieve a satisfactory De dataset (Figure 7d; 18 of 22 aliquots accepted); for Tapuama (TAP-030808-
03 and TAP-030808-04), recuperation was much more significant and as a consequence all growth 
curves were forced through the origin to obtain De values. High recuperation is somewhat surprising 
given the minimal thermal transfer for preheats <~220 °C (Figure 5), and the likelihood of numerous 
bleaching events occurring in these shoreline environments which have been linked to substantially 
reduced recuperation effect [50]. Given that the values measured are unusually high (e.g., for 
Tapuama aliquots, recuperation exceeds Ln/Tn by a factor ranging from ~1 to ~60), we suspect that the 
majority of the recuperation signal recorded could be a measurement artefact due to the 
comparatively large regenerative doses (lowest beta dose was ~800 mGy) used compared to the 
measured De values (Table 1). Furthermore, if for example the De values were ~400 mGy, then the 
majority would be accepted below the 5% threshold level. Future work will investigate whether there 
is a systematic dose-dependent effect on the size of the recuperation signal. 

Preheat (°C)
160 180 200 220 240 260

M
ea

su
re

d/
G

iv
en

0.0

.5

1.0

1.5

2.0

R
ec

yc
lin

g

.9
1.0
1.1

Preheat (°C)
160 180 200 220 240 260

M
ea

su
re

d/
G

iv
en

0.0

.5

1.0

1.5

2.0

R
ec

yc
lin

g

.9
1.0
1.1

TAP-030808-03 TAP-030808-04

0

0

0

0

Figure 6. Dose recovery test data on samples from Tapuama.

Methods Protoc. 2019, 2, x FOR PEER REVIEW 8 of 13 

 

 
Figure 7. (a) and (b): Examples of growth curves of sensitivity-corrected OSL (Lx/Tx) with regenerative 
dose for two aliquots of Arapiuns (ARA)-040808-05. Only growth to first regenerative recycled point 
is shown, with linear fit corresponding to all regenerative dose points. Inset figures show details of 
interpolation with the natural OSL in the first 20 mGy of the growth curve. Blue line is fit to Lx/Tx 
value for zero regenerative dose, red line is fit forced through the origin, and green symbol and lines 
are interpolation of natural OSL to both growth curve fits. Corresponding De values for both fits are 
shown. Recuperation in (a) and (b) is 9.7 ± 5.4% and 19.5 ± 7.2%, respectively. (c) and (d): Distribution 
of De data when growth curves are forced through the origin (c), compared to growth curve fitting to 
zero regenerative dose (d). In (d), acceptance threshold for recuperation was set at 35%, with 18 of 22 
aliquots accepted. 

Over-dispersion (σb; [51]) values of 0% for the Arapiuns and Tapuama samples indicate the OSL 
signals were completely reset, although the true extent of resetting may not be revealed due to the 
medium-sized aliquots measured. For these samples the final De was calculated using the central age 
model (CAM) [52]. The second of the Cupari samples, CUP-030808-02, had a moderate over-
dispersion value of 13.3%, but was also well suited to a CAM analysis. CUP-030808-01 was the only 
sample with a lower quartz yield and, subsequent to De plateau, thermal transfer and dose recovery 
tests, only 10 aliquots were available for De analysis. Over-dispersion for this sample was higher at 
20.1% but, despite the low number of aliquots a minimum age model (MAM; [52]), analysis returned 
a result with a reasonable number of significant aliquots contributing to the MAM result (p-value = 
0.333). 
  

Dose (m Gy)

0 200 400 600 800 1000

L x/T
x

0.0

.2

.4

.6

.8

1.0

0 5 10 15 20
0.000

.005

.010

.015

.020

10.82±2.09
11.96±2.13

Dose (m Gy)

0 200 400 600 800 1000

L x/T
x

0.0

.2

.4

.6

.8

1.0

0 5 10 15 20
0.000

.005

.010

.015

.020

9.13 ±2.30

11.31±2.41

De (m Gy)
-40 -20 0 20 40 60

Pr
ob

ab
ili

ty
 d

en
si

ty

0.0

.2

.4

.6

.8

1.0

1.2

De (m Gy)
-40 -20 0 20 40 60

Pr
ob

ab
ili

ty
 d

en
si

ty

0.0

.2

.4

.6

.8

1.0

1.2CAM = 11.88 ± 0.89 mGy CAM = 10.07 ± 0.86 mGy

a b

c d

Figure 7. (a) and (b): Examples of growth curves of sensitivity-corrected OSL (Lx/Tx) with regenerative
dose for two aliquots of Arapiuns (ARA)-040808-05. Only growth to first regenerative recycled point
is shown, with linear fit corresponding to all regenerative dose points. Inset figures show details of
interpolation with the natural OSL in the first 20 mGy of the growth curve. Blue line is fit to Lx/Tx

value for zero regenerative dose, red line is fit forced through the origin, and green symbol and lines
are interpolation of natural OSL to both growth curve fits. Corresponding De values for both fits are
shown. Recuperation in (a) and (b) is 9.7 ± 5.4% and 19.5 ± 7.2%, respectively. (c) and (d): Distribution
of De data when growth curves are forced through the origin (c), compared to growth curve fitting to
zero regenerative dose (d). In (d), acceptance threshold for recuperation was set at 35%, with 18 of 22
aliquots accepted.
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Table 1. Summary of OSL data.

Sample a Lat., Long.
(◦S, ◦W) n b Preheat c

(◦C)
Recuperation
threshold d

σb, De
e

(%) De
f (mGy) Dose Rate

(mGya−1)
Age g (a)

ARA-040808-05
3◦6′3” 18 (22) 220 35% 0 10.1 ± 0.86 c 0.42 ± 0.04 24 ± 355◦13′39”

TAP-030808-03
3◦29′33” 12 (12) 200 Origin fit 0 4.10 ± 1.56 c 0.31 ± 0.02 13 ± 555◦15′41”

TAP-030808-04
3◦29′31” 12 (12) 200 Origin fit 0 12.2 ± 2.83 c 0.36 ± 0.03 34 ± 855◦15′39”

CUP-030808-01
3◦42′44” 10 (10) 200 5% 20.1 147 ± 9.80 m 0.46 ± 0.03 324 ± 2955◦23′45”

CUP-030808-02
3◦42′44” 23 (23) 220 5% 13.3 261 ± 7.48 c 0.47 ± 0.03 557 ± 3555◦23′45”

a Samples are arranged from northerly-to-southerly sampling localities; further details in Section 2. b Number of
aliquots accepted for De analysis (figures in parentheses are total number measured). Sample Cupari CUP-080308-01
had a lower quartz yield and only ten aliquots were measured for De analysis. c Ten-second preheat for De
measurement chosen from a combination of preheat plateau, thermal transfer and dose recovery test data; cutheat
was 160 ◦C for all measurements. d Individual De values were accepted if recuperation was below the specified
threshold; for the Tapuama samples the growth curves were forced through the origin. e Over-dispersion in De data.
f Superscript ‘c’ indicates central age model (CAM) result; superscript ‘m’ indicates minimum age model (MAM)
result. g OSL ages quoted are in years (a) from 2009 with 1-sigma uncertainty.

3.4. Towards OSL Dating of Multi-Grain Quartz Aliquots

A summary of the OSL analysis is given in Table 1. De data, calculated using late background
subtraction, were indistinguishable from those data analyzed using early background subtraction.
An important observation is that recuperation measured during the De SAR cycle is significant for
the quartz from Arapiuns (Figure 7a,b) and Tapuama. For the Arapiuns sample (ARA-040808-05),
we calculate a similar De result when the growth curves are forced through the origin (Figure 7c;
all aliquots accepted) compared to when the acceptance threshold for recuperation was set at 35% to
achieve a satisfactory De dataset (Figure 7d; 18 of 22 aliquots accepted); for Tapuama (TAP-030808-03
and TAP-030808-04), recuperation was much more significant and as a consequence all growth curves
were forced through the origin to obtain De values. High recuperation is somewhat surprising given the
minimal thermal transfer for preheats <~220 ◦C (Figure 5), and the likelihood of numerous bleaching
events occurring in these shoreline environments which have been linked to substantially reduced
recuperation effect [50]. Given that the values measured are unusually high (e.g., for Tapuama aliquots,
recuperation exceeds Ln/Tn by a factor ranging from ~1 to ~60), we suspect that the majority of
the recuperation signal recorded could be a measurement artefact due to the comparatively large
regenerative doses (lowest beta dose was ~800 mGy) used compared to the measured De values
(Table 1). Furthermore, if for example the De values were ~400 mGy, then the majority would be
accepted below the 5% threshold level. Future work will investigate whether there is a systematic
dose-dependent effect on the size of the recuperation signal.

Over-dispersion (σb; [51]) values of 0% for the Arapiuns and Tapuama samples indicate the OSL
signals were completely reset, although the true extent of resetting may not be revealed due to the
medium-sized aliquots measured. For these samples the final De was calculated using the central age
model (CAM) [52]. The second of the Cupari samples, CUP-030808-02, had a moderate over-dispersion
value of 13.3%, but was also well suited to a CAM analysis. CUP-030808-01 was the only sample with
a lower quartz yield and, subsequent to De plateau, thermal transfer and dose recovery tests, only
10 aliquots were available for De analysis. Over-dispersion for this sample was higher at 20.1% but,
despite the low number of aliquots a minimum age model (MAM; [52]), analysis returned a result with
a reasonable number of significant aliquots contributing to the MAM result (p-value = 0.333).

The OSL age for sample ARA-040808-05, from the shoreline dune feature at Arapiuns, is 24 ± 3
a from 2009. For Tapuama, the sample from the unvegetated distal end of the spit, TAP-030808-03,
is 13 ± 5 a, and from the sands within the vegetated proximal end of the spit, TAP-030808-04, is 34 ±
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8 a. Although we lack direct independent dating evidence, these are plausible ages for the Tapuama
samples, with the sands from the unvegetated distal end of the spit of younger depositional age than
the sands in the vegetated proximal end of the spit. Vegetation adds stability to sediments via root
networks increasing cohesive strength, and by grasses, shrubs, and trees increasing surface roughness
and dissipating some energy of wind or water; together, these lower the effectiveness of erosion by wind
or water. The result for TAP-030808-04 is supportive of apparent decadal stability of other vegetated
landforms (cf. Figure 2), whereas TAP-030808-03 suggests continual reworking and redeposition occurs
in more active zones of the spit. The duplicated samples from the densely vegetated bar at Cupari
have significantly older OSL ages of 324 ± 29 a and 557 ± 35 a; these ages in the 100s-of-years range
are more consistent with youngest ages from other OSL studies of Tapajós sand bars [15]. Although
the Cupari bar seems likely to be an older feature, we suspect that the discordance in the two ages
may in part be related to poor resetting that is not apparent because of the large aliquots measured.
For these samples the natural OSL is sufficiently large that smaller aliquots, or potentially single grains,
could be measured to investigate this age discordance. 210Pb data from a series of channel bottom
cores from the Tapajós indicate sedimentation rates of 0.2–0.7 cmyr−1 in the upper stretch of the ria
(consistent with the sampling localities in the work described here), and 0.2–1.9 cmyr−1 sampled across
the entire ria [25]. If we make the assumption that these values represent sedimentation rates not only
for clays, silts, and sands in the channel bottom but also for sands in shoreline features, we derive an
age range of ~30–300 years (for 60 cm depth assuming uniform linear deposition) similar to the age
range indicated from this OSL study.

This study demonstrates the potential of OSL to determine depositional age of very young
fluvial landforms in the Rio Tapajós. Importantly it has revealed how future experimental approaches
should be modified in the following ways: (1) use of ultra-low-dose beta source (and assessment of
possible dose-dependency of recuperation); (2) optimization of aliquot size or single grain analyzes
(including assessment of F-statistic [53] and un-logged age model approaches [6]); and (3) considering
the seasonal river-level oscillation and extremely low external dose rates, careful assessment of water
content fluctuation, accurate measurement of internal dose rates, and modelling of gamma and cosmic
dose rates [46]. Given the nature of this study as one of feasibility of OSL approaches on a small
selection of samples, it follows that geomorphological interpretation is somewhat speculative and
should be limited. We propose future work with detailed stratigraphic and lateral sampling strategies
which, in combination with differential remotely sensed imagery and hydrological data, will provide
a sensitive monitor of how fluvial landforms change in response to land cover and land use change
(including planned dam projects) and modern analogue data for depositional models of ancient
tidal rhythmites.

The landforms investigated in this study were all quartz rich, but quartz yield was dependent
on grain size distribution. For the ~5 cm core samples from Cupari, the majority of the sample was
>310 µm, and quartz yields for sieve fractions <310 µm were correspondingly low. Conversely, ~5 cm
core samples from Arapiuns and Tapuama had high quartz yields in the 250–310 µm and 212–250 µm
sieve fractions, respectively. This indicates that in certain localities, a 1–2 cm sampling resolution may
be possible.

4. Conclusions

In this study, we have investigated the feasibility of OSL dating of small samples of very young
quartz collected from bar, spit and dune shoreline features along the Rio Tapajós, Brazilian Amazon.
Five samples were collected from three study sites in ~65 cm by ~2 cm diameter vertical cores. Small
subsamples from ~58–63 cm core depth were analyzed. The measured OSL signals exhibit very high
specific luminescence sensitivity, have excellent dose recovery and recycling, essentially independent
of preheat, show minimal thermal transfer below ~220 ◦C, and have a low temperature De plateau in a
similar temperature band. Significant recuperation is observed for samples from two of the study sites
but, given the minimal thermal transfer and likely numerous bleaching–burial cycles, we propose that
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the recuperation is possibly a measurement artifact due to the relatively high regenerative and test
doses compared to the natural dose. Preliminary ages of features so far investigated range from 13 to
34 to several 100 years. Sampled sands are rich in quartz, and yields of 212–250 µm and 250–310 µm
grains indicate high-resolution sampling is possible. These results demonstrate the potential of OSL
for studying very young active fluvial processes in these settings.
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