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Abstract: The use of technology for social connectivity and achieving engagement goals is increasingly
essential to the overall well-being of our rapidly ageing population. While much of the extant literature
has focused on home automation and indoor remote health monitoring; there is a growing literature
that finds personal health and overall well-being improves when physical activities are conducted
outdoors. This study presents a review of possible innovative and assistive eHealth technologies
suitable for smart therapeutic and rehabilitation outdoor spaces for older persons. The article also
presents key performance metrics required of eHealth technologies to ensure robust, timely and
reliable biometric data transfer between patients in a therapeutic landscape environment and
respective medical centres. A literature review of relevant publications with a primary focus of
integrating sensors and eHealth technologies in outdoor spaces to collect and transfer data from the
elderly demographic who engage such built landscapes to appropriate stakeholders was conducted.
A content analysis was carried out to synthesize outcomes of the literature review. The study finds
that research in assistive eHealth technologies and interfaces for outdoor therapeutic spaces is in its
nascent stages and has limited generalisability. The level of technology uptake and readiness for
smart outdoor spaces is still developing and is currently being outpaced by the growth of elderly
fitness zones in public spaces. Further research is needed to explore those eHealth technologies with
interactive feedback mechanisms that are suitable for outdoor therapeutic environments.

Keywords: eHealth technologies; elderly people; remote health monitoring; mobile health; therapeutic
landscape; eHealth architecture

1. Introduction

The ageing global population of people aged 65 years or more is expected to grow to 1.5 billion
people by 2050 [1]. As the accompanying increased propensity for impairment is expected to outpace
healthcare services, a new paradigm shift in health product services and processes is required.
Advances in medical science coupled with healthier ageing have meant that people are living longer
and for the first time, one kind of illness is replaced by another [2]. Impairments are increasingly
associated with molecular and cellular damage over time as physical and mental capacity dwindles
with a growing risk of health issues such as dementia, hearing loss, poor vision and other cognitive
disorders. This demographic change presents a critical challenge in terms of cost of health care services
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and consultation burden on the medical personnel [3] and the need to move from reactive to preventive
health care delivery has become inevitable [4].

The mismatch between the supply and demand for care and health professionals highlights the
need for health care services to transit into a system where data and technology can be accessed to make
this shift a reality. Well-organised, reliable, timely and valid biometric data collected remotely and linked
with a health information system can provide tremendous help for evidence-based decision making,
monitoring, evaluation and proper health management of the elderly [2,5]. The development of a smart
platform for integrating biometric data with health services through eHealth and eCare technologies is
now essential to managing clinical reporting and auditing. Information and communication technology
(ICT) now has a major role to play in determining who provides care, where, what, how and when
services are provided [6].

The use of ICT in health and health-related fields aims to enhance the quality, efficiency and
effectiveness of health-service management. Scholz [7] highlights four applications of eHealth solutions,
they include:

1. Personalized homecare services, telemedicine and mobile health (mHealth): this include
smart watches for daily activities monitoring, remote wearable patient monitoring devices,
teleconsultations and eReferrals.

2. Integrated health information systems: such as ePrescription, electronic health records (EHR)
and eDispensing.

3. Non-clinical systems: such as online support groups, online health information services and
patient flow management systems.

4. Clinical systems: these are mainly used by health professionals within or outside health
care institutions such as computer-assisted diagnostics, medication management systems and
pharmacy information systems.

Merilampi and Sirkka [6] presented seven partially overlapping groupings of eHealth technologies,
they are:

i. Assistive technologies: these are tools, equipment and devices used to help an individual in
overall management of daily life and to compensate sensory, cognitive and physical impairments.
Advanced equipment now includes environmental management devices, sensors, embedded
systems and videophone network.

ii. Safety and social technologies: safety technologies are various security units networked
with other assistance and surveillance services such as smart floors, bed occupancy sensors,
safety bracelets and other integrated sensors interconnected to a remote center for processing.
A typical example of a social technology is the health TV which provides speech and visual
links through a broadband connection. Big data handling, false alarms and privacy issues are
concerns in adopting safety and social technologies.

iii. Health technologies: these are self-monitoring and self-care systems such as blood pressure
monitors, eHealth portals and other internet-based services with remote connection with
health professionals.

iv. Self-activation and personal development technologies: these can be referred to as sport
technologies designed to support, analyze and monitor individuals’ development and
performance. Examples are pedometers, accelerometers, smart sport watches and activity
bracelets. Another recent development under this application is gamification, where motivation
is provided for repetitive rehabilitation or exercise.

v. Design-for-all and ambient assisted living (AAL) technologies: the design-for-all concept
provides equal opportunities for everyone irrespective of age, gender, ability to function and
cultural orientation. A typical example is the sliding door which shows all the design-for-all
criteria such as sustainability and affordability. However, this type of eHealth technology
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application might not always be suitable for all and cost-effective; for example, prosthesis
usage requires customization. AAL technologies provides elder care to promote well-being
and independence. Examples include robots, medication optimization equipment and
wearable technologies.

vi. Gerontechnology: This is a general term and includes technology from all the previously
mentioned categories. Its overall aim is to develop age-friendly technologies in order to promote
independence, well-being and prevent age-related health problems.

vii. Hospital technology and EHR systems: these are patient systems used to integrate data from
wearables, smart home-type technologies, electronic patients and health records for monitoring
health progress of patients. They provide useful health information such as physical assessment,
referral and daily charting used in health and social care.

This era is currently witnessing a strong collaboration across disciplines and research fields such
as therapeutic landscape design, medicine, engineering and information technology for health care
applications and market opportunities. This ongoing collaboration has triggered a lot of research
interest due to its potential socio-economic impacts [8]. The eHealth outlook extends over various
perspectives such as the technological, political, economic, international cooperation, research and
stakeholders [7]. Furthermore, eHealth technologies are not just limited to digital systems but include
other technologies such as robots and other automated systems for performing predictive processes
and advanced analytics for supplying new insights into intricate health issues [5].

It is well-known that personal well-being and health status improve when older people participate
in physical activity especially in outdoor spaces [9]. The World Health Organization encourages the
creation and use of outdoor spaces in a way that makes the elderly demographic physically engage
with their environment [2]. The development of age-specific therapeutic outdoor spaces continues
to rise in most parts of the world in an attempt to reduce age-related loss of function, impairment
and disability among older persons [10]. Consequently, studies are currently required to review the
application of assistive technologies in a therapeutic outdoor environment [11]. There is a need to
develop a smart platform for collecting and integrating biometric data with EHR services via eHealth
technologies suitable for such landscapes.

Apart from the general benefits of physical well-being, outdoor interactive exercises in recreation
parks and public places by elderly people have other advantages such as the psychological benefits
of belonging and social engagement [12,13]. Active ageing exercises help to train motor and balance
skills necessary for the confidence and independence needed in performing daily activities [12].
Interaction with outdoor spaces provide both sensory and non-sensory benefits which have been found
to reduce the effects of dementia and depression. While the sensory benefits of being outdoors have
been well studied, there is an increased interest in the non-sensory benefits through the ingestion or
inhalation of phytoncides, negative ions in the air and microbes [9].

In response to demands for health care interventions for the elderly in public spaces, there is a
growing proliferation of “elderly fitness zones” in parks and reserves around the world [14]. However,
ongoing use by the elderly population is uncommon and much of the equipment is not fit for
purpose [15]. Research is required to improve both the integration and uptake of outdoor equipment
and furniture use with public spaces. Effective and efficient measurement technologies and medical
data are needed to allow the user to obtain feedback and monitor their progress through the acquisition
and utilization of biometric data from these outdoor spaces.

This paper explores the potential of technologies suitable for outdoor environments to assist
individuals affected by age related loss of function, impairment and disability and includes the
evaluation of a platform for integrating biometric data with health services through eHealth technologies.
It presents a detail review of eHealth technology and interface requirements to ensure a robust, timely,
reliable and valid biometric data exchange between health professionals or centres and patients in
outdoor interactive spaces. It examines the current smart interactive technologies and the necessary
elements of outdoor spaces and performance elements to provide support for pre-frail older persons
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and their corresponding medical personnel in detection, diagnosis and rehabilitation support in
a therapeutic landscape environment. Interactive feedback technologies within outdoor spaces
to ensure close monitoring and evidence-based decision making are highlighted with their key
performance metrics.

2. Materials and Methods

2.1. Data Sources, Search Strategy and Study Selection

An electronic search of Scopus, Google Scholar, Institute of Electrical and Electronic Engineers
(IEEE) Xplore and Association Computing Machinery (ACM) Digital Library databases was conducted
with data range from January 2005 to April 2018 using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement [16]. In order to identify the relevant literature,
alternate terms such as “eHealth”, “outdoor spaces”, “assistive technologies”, “therapeutic landscape”,
“elderly”, “old people”, “smart spaces”, “smart outdoor”, “mHealth”, “eHealth technologies”, “outdoor
environment”, “ambient assistive living”, “aged”, “rehabilitation”, were used with Boolean operators
(e.g., AND, OR) to determine the solution space. Data sources generated a total of 2975 results from all
the databases and passed through multi-level screening as shown in Figure 1.
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2.2. Inclusion and Exclusion Criteria

After removing duplicates (52), the remaining articles were screened using the inclusion and
exclusion criteria as shown in Table 1. These conditions were developed and applied to appropriately
scope this review article in line with predetermined objectives.

Table 1. Study inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Peer reviewed articles (2005–2018)
Empirical research

English language literature
Outdoor built environment

eHealth/assistive technologies in outdoor space
Aged 60 years or older with complex needs

Non-peer reviewed articles
Smart homes and home-health monitoring

Conference proceedings
Narrative reviews, lecture notes and studies published in theses

Non-health related studies and technology applications

The outdoor built environment encompasses places and spaces created or modified by people
including buildings, parks, and transportation systems. In recent years, public health research has
expanded the definition of built environment to include healthy food access, community gardens,
walkability and bikeability [17]. For the purposes of this paper, eHealth has been defined as an
emerging field which brings together medical informatics, public health and business, and primarily
refers to health services and information delivered or enhanced through the Internet and related
technologies. The term characterizes not only technical development, but also a state-of-mind, a way
of thinking, an attitude, and a commitment to networked, global thinking, to improve health care
locally, regionally, and worldwide by using information and eHealth technology [18].

2.3. Study Selection

After the initial application of the inclusion and exclusion criteria with “Title/Abstract” screening,
2857 articles were excluded and 66 included. Articles were considered relevant if their abstracts showed
that the study provided an insight into the application of technologies for remote monitoring of the
elderly demographic within an outdoor environment. When the relevance of a paper was difficult to
ascertain after reading the abstract, then the full text was read to decide whether to include it or not.
In the final analysis, after full text screening only 16 articles remained, which have been summarized
and are presented in this review. In addition, to reduce publication bias a variety of databases were
included which helps to ensure a more thorough search and achieve greater levels of sensitivity.

3. Results

3.1. Assistive eHealth Technologies and Interfaces for Outdoor Interactive Spaces

For health management, evidence-based decision-making, monitoring and assessment of health
status of the elderly demographic, reliable and robust eHealth technologies are important in providing
timely health status information of patients [2]. A smart and interactive platform is required to
integrate valid biometric data collected in outdoor spaces with health services via reliable eHealth
technologies. The availability of outdoor space and the increasing demand for health information
now make such platforms useful in providing interactive feedback to help older persons affected
by morbidity, impairment and age-related loss of function. Effective measurement and eHealth
technologies with medical data capture requirements are pivotal in ensuring collection, protection and
utilization of biometric data.

Ambient intelligence and computational techniques (algorithms) are basic requirements for
building a smart open space to support older persons in an outdoor environment. Doukas et al. [11]
identified three key areas in building such a landscape, which are:
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1. The use of onsite or remote monitoring tools for rapid detection of environmental changes,
changing needs and events. Examples of tools are mobile and static sensors, and software tools
for collection, fusion and analysis of data.

2. Risk detection and alerts to trigger activation of assistive devices for an emergency response.
3. Localization of affected older persons with easy to use communication interfaces.

Network sensors, radio frequency badges, Global Positioning System (GPS) and terrestrial
infrastructures (cell ID of a subscribed mobile terminal) are examples of location-based assistive
health technologies [11]. Biometric data from smart devices such as smartphones, smart glasses and
smartwatches with GPS-processing using compatible applications, such as MyVigi and iWander [19,20].
Foxlin [21] developed a system known as NavShoe for position-tracking based on inertial sensing.
The system used a shoe-mounted miniature magnetometer coupled wirelessly with a radio frequency
(RF) module to a personal digital assistant (PDA) to track patients. Abdel-Aziz et al. [22] identified
four information and communication technology (ICT) elements that could play major roles in public
spaces. They include Wi-Fi networks, digital interactive media facades, and interactive public displays
and smartphones applications. These factors determine the planning and design of outdoor spaces to
satisfy users’ needs and provide support for remote monitoring.

Lin et al. [23] presented a system which integrates technologies of radio frequency identification,
Global Positioning System (GPS), a Global System for Mobile Communications (GSM) network and
geographic information system (GIS), as shown in Figure 2, to construct a stray prevention network for
older people with dementia without interfering with their daily lives.
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Figure 2. Service health management care system architecture. (Adapted from Lin et al. [23]).

The system comprises a web service server (for portal service), a database server (for data
storage and management), a message controller server, and a health-GIS server (for intervention).
Caregivers or medical centres locate the real-time positions of the affected patient via mobile phone,
PDA, Notebook PC, and various mobile devices through the service platform. In 2008, Lin et al. [24]
integrated radio frequency identification (RFID) technology to the development of an indoor and
outdoor active safety monitoring system for dementia patients. The system is capable of sending
messages automatically to caregivers whenever an elderly person approaches a risky zone or strays
too far away. Also, the mechanism uses different size tags and tame transformation signatures (TTS)
algorithm to encrypt tag IDs for privacy. Similarly, Rainham et al. [25] developed and tested a
lightweight, wearable GPS receiver to measure the temporal and spatial features of daily activities,
with the capability of logging location information for up to 70 h before recharging.
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In 2010, Oswald et al. [26] presented the use of tracking technologies utilising a wrist-watch with
body contact sensors, RF and GPS units over a GSM network for the analysis of outdoor mobility of
dementia patients. However, the accuracy of data collected varied depending on the local terrain and
weather conditions. Also in 2010, Zheng et al. [27] developed a personalised self-management system
to provide support for self-management of chronic conditions with a decision support system (DSS)
to identify abnormal activity and differentiate life-style patterns. The proposed system used a smart
phone with integrated accelerometer and GPS modules to monitor outdoor activity, providing both
location and activity-based information.

In a European Union (EU)-funded project for older persons with multiple medical conditions,
Boulos et al. [28] presented the use of a smartphone app coupled with the GPS location sensor to
initiate a bidirectional communication between the patient’s personal area network (PAN) and a
remote server that is accessible by medical personnel over the internet. Similarly, in addressing a
cardiac rehabilitation condition, Worringham et al. [29] presented an eHealth network consisting of a
smartphone, electrocardiograph (ECG) and GPS-based system for remotely monitoring the exercise
of patients. The system provided a more flexible way to remotely carry out unsupervised cardiac
rehabilitation via a programmed smartphone to a secure server for real-time monitoring by qualified
medical personnel. During exercise sessions, the smartphone streamed general packet radio service
(GPRS) data to a secure server (Figure 3) enabling the ECG trace, heart rate, walking speed, elapsed
distance and patient location to be viewed in real-time. Other studies related to the use of GPS-based
systems report that such technology associated with smart devices not only enables the location of
patients during an emergency more efficiently but also reduces the time in monitoring and evaluation
a patient [30,31]. GPS-based tracking systems can enhance location and mobility awareness, which in
turn, assists healthcare providers in detecting adverse health conditions and to quickly act upon them.
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Heikkilä et al. [32] modelled an intelligent furniture network which could be used in an outdoor
space for tracking residents’ posture and detection of abnormal living patterns using a very low-cost
low-intrusive capacitive proximity sensors based on Institute of Electrical and Electronics Engineers
(IEEE) 802.15.4 Medium Access Control (MAC) and IEEE 802.15.4a hardware layer. In the proposed
architecture, the sensors were integrated into the furniture which include a chair, a sofa and a
bed, and then connected to a microcontroller based wireless sensor network (WSN) master node
and a gateway as depicted in Figure 4. A universal asynchronous receiver/transmitter (Universal
Asynchronous Receiver-Transmitter, COM/UART) serial line was used to connect the master node and
gateway, linked to the database and user services with fixed or wireless Internet Protocol (IP) network
with or without 802.15.4/IP conversion.
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Sensors such as accelerometers and gyroscopes integrated with wearable devices are used
for data acquisition and then passed though different algorithms to detect the fall. The proposed
framework is also extended for wandering risk and mHealth solutions. Interested readers are referred
to Schwickert et al. [33] for a comprehensive review on sensors for fall detection.

Yared et al. [34] proposed a schema for detecting falls in an outdoor environment using wearables
such as smartphones and sensors as shown in Figure 5. They propose the use of eHealth technologies
capable of delivering ubiquitous assistance services and integrated platforms that support safety,
independence and overall well-being of older persons in outdoor spaces. Islam et al. [35] applied Internet
of Things (IoT) technology to health care delivery and services. IoT is defined as a technological concept
of showing a connected set of anything, anyone, anyplace any service and any network. Although IoT
is in its infancy in medical applications, it is projected to revolutionise and redesign modern health
care with promising techno-economic and social aspects. Islam et al. [35] surveyed the advances in
IoT-based health care technologies, state-of-the-art network architectures and industrial trends.

A smart outdoor eHealth monitoring device to detect fall and ECG signals for older persons with a
proposed multi-thread method in order to improve both the response time and detection accuracy was
proposed by Wang et al. [36]. The proposed intelligent system consists of a multi-function healthcare
box to be carried around by the elderly patient, monitoring the GPS location and ECG data of the
patient as shown in Figure 6. This research also found that the accuracy of detection was dependent on
movement, location variation and interference.

In 2016, Hossain and Muhammad [37] presented an IoT-enabled eHealth monitoring framework,
where integrated devices such as mobile devices and sensors collected ECG and other healthcare
data to be securely sent to the Cloud for seamless access by medical personnel. These data were
watermarked for security reasons and then sent via communication media such as Bluetooth, Wi-Fi,
internet and cellular technologies. Another IoT-aware architecture for performing behavioural analysis
and risk detection of elderly patients over cellular technology used a different type of sensor to
capture mobility, outdoor localization and ambient parameters [38]. The proposed smart city-oriented
system captured and processed heterogeneous data in an assistive environment at multiple levels.
The data model allowed participating cities to choose the level of abstraction that could be used for
system integration [38]. Similarly, Hu et al. [39] used IoT medical sensors through Cloud computing
to monitor chronic health conditions of elderly patients over cellular technology. The proposed
Cloud computing architecture can safely and securely monitor the health of older persons for chronic
conditions, anywhere including outdoor locations.
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(magnetometer) with 

Radio frequency (RF) 
module 
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Figure 6. An outdoor intelligent architecture of the proposed healthcare system. (Adapted from
Wang et al. [36]).

Garcia et al. [40] proposed the “Safe Neighbourhood” approach which combined data from multiple
sources with collective intelligence over merged technologies such as mobile, ambient, and artificial
intelligence technologies. Data obtained from the elderly via sensors integrated with a mobile phone
were sent through the internet to the eHealth monitor. Trusted, private and neighbourhood-based
social networks such as “Nextdoor” and “GoNeighbour” were adopted for data privacy and security.

Finally, Chan et al. [41] implemented an indoor/outdoor smart system with multisensory
and wearable units to monitor older person’s movement trajectories. Functions such as mobility,
posture assessment, fall detection and prevention, were monitored using a combination of technologies
which included:
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• eWatch for activity recognition and integrating activity data with location information.
• GPS positioning system to locate the individual in outdoor scenario.
• RFID-based location-finding and tracking with guidance system.
• GSM for patient’s alert message and communication.

Table 2 provides a summary of the reviewed articles with highlights on the medical conditions
being addressed, main outcomes, and acquisition and data eHealth technologies.

Table 2. Medical conditions, acquisition technologies, data communication technologies and
main outcomes.

Study

Medical
Condition and

Disability
Addressed

Acquisition of
Technology

Data
Communication

Technology
Main Outcomes

Foxlin [20]

Patients’ daily
activities

monitoring and
on-foot location

tracking

wireless inertial
sensor

(magnetometer)
with Global

Positioning System
(GPS)

Radio frequency
(RF) module

The system used a
shoe-mounted

miniature
magnetometer

coupled wirelessly
to a personal

digital assistant
(PDA) to track

patients.

Lin et al. [23] Dementia Motion sensor with
GPS

Global System for
Mobile

Communications
(GSM)

Emergency
messages and

commands from
remote server were

sent via a GSM
link.

Lin et al. [24]

Disease assessment
and outdoor safety

monitoring of
dementia patients

RFID tag
RF and Bluetooth

modules with
Mobile phone

The system used
different size tags

and tame
transformation
signatures (TTS)

algorithm to ensure
privacy.

Rainham et al. [25] Monitoring
location GPS Satellites

A lightweight,
wearable GPS

receiver to measure
the temporal and
spatial features of

daily activities was
developed.

Zheng et al. [27]

Chronic conditions
(diabetes mellitus

and cardiovascular
disease)

Accelerometer and
GPS Cellular technology

A smart phone
having an

accelerometer and
a GPS was used to
monitor patients’
outdoor activity

and location.

Oswald et al. [26]

Analysis of
outdoor mobility in

the face of
dementia

Wrist-watch with
body contact

sensor and RF
capability, and GPS

GSM

The accuracy of
data collected

varied depending
on the local terrain

and weather
conditions.
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Table 2. Cont.

Study

Medical
Condition and

Disability
Addressed

Acquisition of
Technology

Data
Communication

Technology
Main Outcomes

Boulos et al. [28]

Chronic
conditions

(diabetes mellitus
and

cardiovascular
disease)

smart garment
with wireless
health sensors

and GPS

Cellular
technology and

Bluetooth

A smartphone app
coupled with the GPS

location sensor to
initiate a bidirectional

communication
between the patient’s

PAN and a remote
server accessible over

the internet was
developed.

Worringham et al. [29] Cardiac
rehabilitation

Electrocardiogram
(ECG), heart rate
and GPS modules

Cellular
technology and

Bluetooth

The system provided a
more flexible way to

remotely monitor
supervised cardiac
rehabilitation via a

programmed
smartphone to asecure

server for real-time
monitoring by

qualified medical
personnel.

Heikkilä et al. [32]
Posture and

activity
monitoring

Capacitive
sensors in a

wireless sensor
network (WSN)

Fixed or
wireless
Internet

Protocol (IP)
network and
Institute of

Electrical and
Electronics
Engineers

(IEEE) 802.15.4

Intelligent furniture
was developed to

detect variations in
activities and postures

using a proprietary
WSN and internet.

Yared et al. [34]

Monitoring and
detecting falls,

wandering and
other related

risks

Accelerometer,
gyroscope,

Radio-frequency
identification

(RFID) tags and
GPS

Cellular
technology

The use of eHealth
technologies capable of
delivering ubiquitous
assistance services and
integrated platforms
that support safety,
independence and

overall well-being of
older persons in

outdoor spaces was
proposed.

Wang et al. [36]

ECG monitoring,
patient outdoor

position and
location

ECG module and
GPS ZigBee

The proposed
intelligent system

consists of
multi-function

healthcare box placed
outdoors which

monitors the GPS and
ECG data of the patient.
Accuracy of detection
depends on movement,
location variation and

interference.



Multimodal Technol. Interact. 2020, 4, 76 12 of 22

Table 2. Cont.

Study

Medical
Condition and

Disability
Addressed

Acquisition of
Technology

Data
Communication

Technology
Main Outcomes

Hossain and
Muhammad [37] ECG monitoring ECG module

Internet and
Smartphone with
Bluetooth/Wi-Fi

A Cloud integrated
Internet of Things (IoT)

enabled ECG signal
monitoring with

watermarked data has
been proposed.

Garcia et al. [40]
Temperature,

wandering and
fall detection

GPS, Accelerometer,
Light and

Temperature sensors
Internet

Elderly data obtained
from sensors

integrated with a
mobile phone were

sent via the internet to
the eHealth monitor.
Trusted, private and
neighborhood-based

social network such as
“Nextdoor” and

“GoNeighbour” were
adopted for data

privacy and security.

Almeida et al. [38]
Behavioral

analysis and risk
detection

Personal data
capturing systems

consisting of
different types of
sensors to capture
mobility, outdoor
localization and

ambient parameters.

Cellular
technology

The proposed smart
city-oriented system

captures and processes
heterogeneous data in

an assistive
environment at
multiple levels.

The data model allows
participating cities to

choose the level of
abstraction that can be

used for system
integration.

Chan et al. [41]
Mobility, posture
assessment and

fall detection

eWatch, GPS and
RFID tag

RF, ZigBee and
GSM

A flexible smart system
capable of operating

both indoor and
outdoor with

multisensory unit to
monitor the trajectory
of an older person was

implemented.

Hu et al. [39] Chronic
conditions IoT medical sensor Cellular

technology

An IoT sensor-based
Cloud computing
architecture was

proposed to safely and
securely monitor the

health of older persons
for chronic conditions

anywhere.

3.2. Mobile Health (mHealth)

The emergence and revolution of smartphone technology is a key milestone of the last decade with
myriads of applications and unprecedented opportunities in almost every sphere of society. The rapid
uptake of the mobile technology now offers a new platform to provide actionable mobile medical
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devices [42]. This is evidenced by the proliferation of a large number of medical and health-related
apps, numbering about 40,000 in 2017 [42].

As mobile technology becomes increasingly pervasive, another component of eHealth, referred to
as mobile health (mHealth), has emerged. The main benefits of mHealth are penetration into population
groups and subgroups, availability of a wide variety of apps, anytime and anywhere connectivity,
and personalised data capture for individual users [43]. Approximately 3.4 billion people are estimated
to own a smartphone by 2018, which implies that mobile technology with integrated well-being
applications is pivotal to healthcare transformation [7]. The use of global positioning systems (GPS)
and location-enabled smartphones continues to grow and provide a platform for a wide range of
applications such as remote health monitoring for assisted and independent living [28,44]. In general,
technology-driven location-based services depend on underlying networks such as fixed line access,
cell based and GPS assisted services. However, for each case the reliability, accuracy, efficiency
and speed of service delivery cannot be compromised, especially in cases of emergency and rescue
intervention [45].

The European Telecommunication Standards Institute (ETSI) provides parameterization of
telecommunication services for eHealth applications. These include the following considerations and
are summarised in Table 3:

• Ubiquity: a technology is referred to as ubiquitous when it is omnipresent within the zone of
its deployment.

• Mobility: this refers to the capability of a device to modify its physical connection point to the
telecommunication network without losing its logical connectivity.

• Security: this includes service authorization, confidentiality provision, and station and
infrastructure authentication.

• Connection capability: this can be circuit or packet mode of operation. An example of a circuit
mode is the conventional telephony with a continuous electrical connection between end points
with orderly arrangement of data at the point of exit. The packet mode is currently in use with
discrete packets via different routes and can arrive out of order.

• Connection topology: this could be point to point (unicast), point to multipoint (multicast) or
point to all points (broadcast).

• Content type: examples include data, video, audio and image.
• Quality of Service (QoS): this refers to the ability of a device to maintain an established connection.

3.3. Reference Architecture for eHealth

There is a growing global trend towards electronic health records (EHR) [46–48].
Three considerations for eHealth communication architecture are critical. These include reliability,
security and accuracy [49]. However, eHealth communication technologies are also expected to be
user-friendly, ubiquitous and user-centric in order to maximize their benefit [7]. In addition, overall
persistence for events and occasional temporal persistence for sensor data stream represent two key
requirements for architectural development for eHealth monitoring [32].

The Continua Health Alliance is a non-profit standardization industry and a multi-stakeholder
group which provides a framework for creating interoperable personal health devices and solutions.
The Continua Health Alliance in providing a reference architecture has made significant progress in
developing the pioneer blueprint of an interoperable end-to-end device for local area network (LAN) and
wide area network (WAN) interfaces [50]. Figure 7 shows the Continua personal telehealth ecosystem
indicating device connectivity with various enterprise services. Continua’s primary aim is to build a
system of personal health solutions that are interoperable by certifying and branding Continua-enabled
products to support disease management, ageing independently, health and fitness [51].
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Table 3. Summary of wide area communication technologies for eHealth applications [45].

Global System
for Mobile

Communications
(GSM)

General
Packet
Radio

Services
(GPRS)

Terrestrial
Trunked Radio

(TETRA)

Third
Generation

(3G)

Wireless
Fidelity

(WiFi) (IEEE
802.11a/b/g/n)

Worldwide
Interoperability for
Microwave Access

(WiMAX)

Description
Cellular network
used for mobile

phones.

General
Packet Radio

Service

Private mobile
radio for

ambulance and
a host of other

services

Third-generation
mobile phone

network
technology

A suite of
wireless
Ethernet

standards

Worldwide
Interoperability for
Microwave Access

operating in the
licensed spectrum

zone

Mobility Yes Yes Yes Yes Limited Yes

Security Privacy
enhanced

Privacy
enhanced Yes Privacy

enhanced No No

Connection
capability Packet, Circuit Packet Packet, Circuit Packet, Circuit Packet Packet

Connection
topology Unicast Unicast

Unicast,
Multicast,
Broadcast

Unicast,
Multicast,
Broadcast

Unicast,
Multicast,
Broadcast

Unicast, Multicast,
Broadcast

Content Audio Data Audio, Data Audio, Data,
Video Data Data, Video
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The PAN interface connects the PAN device (a sensor or an actuator) to the application-hosting
device (cellphone or a personal computer) via wired or wireless technologies [50,52]. Figure 8 shows
the hierarchical Continua open systems interconnection (OSI) 7-layer model with relevant standards for
the PAN interface. The PAN lower layers consist of the classic OSI layers 1–4 with USB and Bluetooth
as communication technology options while the upper layers comprise the standard OSI layers 5–7
which are deployed using the ISO/IEEE Std 11073-20601 Optimized Data Exchange Protocol.

In addition, the Continua Health Alliance provides an end-to-end reference architecture showing
the different network tiers, device topology and constraints as depicted in Figure 9.

The LAN interface is used for communication at a particular location or facility and to connect the
LAN devices (which could be a sensor or an actuator) to the application-hosting devices. For example,
the Zigbee Health Care Profile can be adopted for the transport layer function [45]. The LAN interface
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lower layer is based on IP technology such as ethernet and Wi-Fi while the upper layer can support the
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The WAN interface is used to link the application hosting device to a variety of WAN services
such as health care provider, disease management and implant monitoring services. This interface
upper layer uses a device data model which is compatible with that of the LAN interface upper layer
model. An IP-based technology such as the general packet radio services (GPRS), peripherical or
centralised networks (EDGE), and digital subscriber line (xDSL) is used for the WAN interface lower
layer. The electronic Health Records Network (xHRN) interface is used to establish a link between the
WAN device and a health record device for patient-centric data communications such as health reports
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to enterprise systems. Also, this interface permits various enterprise healthcare entities to exchange a
patient’s health information securely.

4. Discussion

This literature survey reviewed 16 out of an initial 2923 articles. This low number indicates that
research in outdoor space automation for remote health monitoring of the elderly demographic in
peer-reviewed literature is limited. The extant literature concentrates on home automation, smart home
and home health-monitoring technologies, and their applications in health-service management.

The primary focus of this review is to determine the current approaches of integrating sensors
and eHealth technologies in outdoor spaces to collect and transfer data from the elderly demographic,
who engage with such built landscapes, to appropriate stakeholders. In terms of sensor integration,
the literature can be classified into two main approaches:

1. Wearable: in this approach, the individual to be monitored or tracked wears or carries the
sensors [21–29,34,36–41]. A common example of this approach is the smart watch that has
multimodal sensors and is therefore capable of sensing multiple physiological parameters
through the wrist.

2. Environmental: in this approach, the sensors are deployed in the outdoor space environment or
on furniture that will be used by the elderly demographic [32].

It is interesting to note that 15 out of the 16 articles used the wearable approach of sensor
integration. This is understandable given the prevalence of wearable devices such as smart watches
and mobile phones that are commercially available and ready for use. The latter is especially gaining
dominance as the platform of choice for health monitoring (in both indoor and outdoor settings) due to
its penetration into populations, availability of apps, connectivity and most importantly, data capture
at an individual level [43].

The lack of studies using the environmental sensor integration approach is due to the many
difficult challenges it poses on the long-term operation of sensors, chief among which are the lack of
power source availability and communication impairments induced by harsh outdoor conditions [53].
While the available wireless communication technologies can be adopted for outdoor use, harsh outdoor
conditions can cause unreliable transmission of sensor data. Nevertheless, the wearable approach has a
major drawback: the acceptance of wearable technology among the elderly is still ambivalent [54] and
they can be obtrusive. The latter is especially problematic. Not only do wearable devices require elderly
to wear or carry them on a daily basis, they require substantial attention such as regular recharging,
synchronizing and uploading of information to the cloud, and performing regular software updates.
These tasks may seem insignificant or trivial to younger or tech-savvy individuals, but to many older
people, especially those with cognitive impairments, such impositions they can be a substantial burden.

The eHealth technologies used in the literature reflect the past and more recent communication
standards that are already in mass adoption. This is not surprising, as it is generally prohibitively
expensive to develop dedicated eHealth technologies just for smart therapeutic and rehabilitation
outdoor spaces. With the exception of fixed Internet connectivity, the eHealth technologies used in the
proposed solutions are mostly wireless because of its many advantages, especially support for mobility,
which is critical in application scenarios where the elderly move in outdoor spaces. The communication
range determines the manner by which the eHealth technologies are used, namely:

1. Sensor access: this refers to short-range technologies such as ZigBee, IEEE 802.15.4 and Bluetooth,
which are used by the sensor to send its data to a gateway. This is referred to as the PAN and
LAN interfaces in the Continua end-to-end reference architecture (Figure 9).

2. Backhaul access: this refers to long-range technologies such as cellular technology or the fixed
IP network, which is used by the gateway to send aggregated sensor data to a server. This is
referred to as the WAN interface in the Continua end-to-end reference architecture (Figure 9).
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The Bluetooth standard recently adopted a low-power version called Bluetooth Low Energy (BLE)
which operates differently from Classic Bluetooth [55]. Huang et al. [56] took advantage of BLE’s
low energy consumption to develop low-power wearable sensors for long-term monitoring of heart
rate, blood oxygen, sleep quality and daily walking steps. A similar standard proposed for wireless
body area networks is the IEEE 802.15.6. This technology is designed to enable short-range wireless
communications of sensors deployed near or inside the human body [53].

Advances in wireless communication technologies are progressing fast, and there are now newer
commercially available technologies that can be used to support the deployment and reliable operation
of low-power, low data rate sensors in outdoor settings. Communication technologies such as NB-IoT,
LoRa and SigFox [57–59], which fall under the new category of Low Power Wide Area Network
(LPWAN), can support a large number of devices within an area, provide long range (10–40 km in rural
areas and 1–5 km in urban areas) and operate on batteries for 10 years or more. Meanwhile, the emerging
5th Generation (5G) cellular network supports machine-to-machine (M2M) type communication for
ubiquitous coverage and ultra-long battery life [60].

The smart therapeutic and rehabilitation outdoor space is envisaged to be a part of a bigger
ecosystem that aims to deliver better health and wellness outcomes for the elderly. Achieving this
aim requires the integration of data collected from the wearable and environmental sensors to the
bigger eHealth system. One of the greatest challenges of information eHealth technology in health
care delivery is interoperability [61]. Interoperability is defined as the ability of two or more systems,
networks, components, applications and devices to exchange information externally and readily
use the information that has been exchanged effectively and securely [62–73]. The ultimate goal
of interoperability is to enable a seamless bidirectional flow of data (information) between various
disparate devices over a network [51].

The need to share and exchange data (information) amongst devices from various vendors and
connection of different databases to the internet now make interoperability a key issue that must
be addressed to ensure a successful leverage of information technology in health care delivery [62].
Theoretically this can be easily achieved by extensive collaborative efforts from various stakeholders
such as manufacturers, system architects, engineers, research and development centres [64]. The eHealth
European Interoperability Framework (eEIF) can be useful in deciding the core competencies required
for the different activities in interoperability projects. This project identified the various stakeholders
who can be involved in different levels of interoperability and confirmed the need for collaborative
efforts on various organisational levels with different levels of expertise [4,61].

In order to ensure a seamless deployment of assistive and eHealth technologies for remote
monitoring of the elderly demographic with complex needs, there is an urgent research need to deal
with the following technical constraints:

• Technology application considering the dynamic and often harsh outdoor environmental
conditions, which could hamper availability and accessibility of wireless network services.
Research is required to investigate the performance of various eHealth technologies in outdoor
spaces for telehealth monitoring. Metrics that can be used to characterize performance include
reliability, throughput, latency and security.

• Deployment of interoperable medical devices to ensure devices from various manufactures can be
integrated seamlessly in outdoor environments. This means research efforts need to be geared
towards developing standards and protocols for heterogeneous devices to communicate in a
plug-and-play fashion. Also, there is a need to ensure backward compatibility with existing legacy
devices to operate easily with new medical devices.

• Design, development and deployment of technology to manage user mobility and ensure a more
accurate localization of older persons in case of emergency. Research related to the human body
(e.g., design of wireless PAN) needs to consider a realistic abstraction of the inter-body channel
variations which happens as a result of human mobility behaviours [74]. Also, research is currently



Multimodal Technol. Interact. 2020, 4, 76 18 of 22

required to design and manufacture power or battery sources with higher efficiency and enhanced
battery life for assistive technologies used in a landscape-built environment.

• Data security and confidentiality research is required to avoid unauthorized access to private
health information system. The integration of Cloud computing and IoT-based health architectures
opens a new research area especially in data security.

5. Conclusions

Recent progress in ICT, sensor networks, control engineering, wired and wireless home networking
has led to a significant advancement in home automation for remote health monitoring; however,
less research has been undertaken on outdoor environments. This review provides an insight about the
use of assistive technologies for older persons in smart therapeutic and rehabilitation outdoor spaces.
The complexity of the elderly demographic health profiles and the need for an increase in the use of
outdoor spaces for cost-effective maintenance and improvement in health and well-being demands
greater sophistication in equipment and technologies. For the elderly, it is particularly important
to consider person-centeredness, usability and accessibility of eHealth technologies to ensure that
meaningful data is captured and feedback is provided so as to avoid technology adoption resistance.

This technology requires a smart interactive platform for integrating collected biometric data
via sensor networks which can be shared with health services through eHealth technologies.
Reliable eHealth technologies and interfaces are pivotal in ensuring that robust, timely, secure
and valid biometrics from the interaction with outdoor landscapes and equipment are exchanged
between health centres and patients in such spaces. Biometric data and technology are two critical
factors needed to enhance evidence-based decision making, monitoring, evaluation and clinical audit
for older people in outdoor spaces.

It is also crucial that new technologies from various vendors can interoperate in such a way that
ensures easy and efficient modifications. In addition, apart from being user-friendly, ubiquitous and
user-centric, three major considerations for eHealth communication architectures in outdoor spaces
are reliability, security and accuracy. Other important factors to be considered in building such smart
spaces for older persons are ambient intelligence, computational methods, and effective measurement
and communication technologies. Furthermore, smart therapeutic landscapes require onsite remote
monitoring tools, a mechanism to trigger assistive technologies for emergency cases and localization of
affected older persons.

In general, the level of technology uptake and readiness for smart outdoor spaces is still developing
and is currently outpaced by the growth of elderly fitness zones in public spaces. This article will be
of value to policy makers, landscape designers, ICT/eHealth engineers, industry partners, medical
professionals and other stakeholders affected by age-related loss of function, impairment and disability.
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