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Abstract: As emotions play a central role in human communication, automatic emotion recognition
has attracted increasing attention in the last two decades. While multimodal systems enjoy high
performances on lab-controlled data, they are still far from providing ecological validity on non-lab-
controlled, namely “in-the-wild” data. This work investigates audiovisual deep learning approaches
to emotion recognition in in-the-wild problem. Inspired by the outstanding performance of end-
to-end and transfer learning techniques, we explored the effectiveness of architectures in which a
modality-specific Convolutional Neural Network (CNN) is followed by a Long Short-Term Memory
Recurrent Neural Network (LSTM-RNN) using the AffWild2 dataset under the Affective Behavior
Analysis in-the-Wild (ABAW) challenge protocol. We deployed unimodal end-to-end and transfer
learning approaches within a multimodal fusion system, which generated final predictions using a
weighted score fusion scheme. Exploiting the proposed deep-learning-based multimodal system, we
reached a test set challenge performance measure of 48.1% on the ABAW 2020 Facial Expressions
challenge, which advances the first-runner-up performance.

Keywords: affective computing; emotion recognition; deep learning architectures; face processing;
multimodal fusion; multimodal representations

1. Introduction

Emotions play a vital role in daily human–human interactions [1]. Automated recog-
nition of emotions from multimodal signals has attracted increasing attention in the last
two decades with applications in domains ranging from intelligent call centers [2,3] to
intelligent tutoring systems [4–6]. Emotion recognition is studied in the broader affective
computing field, where the research of natural emotions is the focal point. Research in this
domain is shifting to “in-the-wild” conditions, namely away from lab-controlled studies.
This is due to the availability of new and challenging datasets collected and introduced in
competitions such as Affective Facial Expressions in-the-Wild (AFEW) [7,8] and Affective
Behavior Analysis in-the-Wild (ABAW) [9–13]. Considering the challenging nature of the
data, e.g., background noise in audio, cluttered background, and pose variations in video,
benefiting from multiple modalities including, but not limited to acoustics, vision (face and
body pose), physiological signals, and linguistics is essential [14].
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Maturing over the last decade, earlier approaches to audiovisual emotion recognition
included hand-crafted acoustic and visual features, which are then fed to classifiers that
can handle high-dimensional feature vectors such as Support Vector Machines (SVMs). In
acoustic emotion recognition, extracting Low-Level Descriptors (LLD) and summarizing
them over short (1–4 s) chunks of audio using statistical functionals have been proven to be
successful in a range of paralinguistics tasks [15,16] and have been popularly used in the
INTERSPEECH Computational Paralinguistics Challenge series since 2009 [17–19]. This
scheme was later followed by clustering-based LLD summarization approaches such as
Bag-of-Audio-Words (BoAW) [20,21] and Fisher-Vectors (FVs) [22–25]. The BoAW approach
was inspired by its counterpart in the linguistics domain, where the set of all words in
the training set after preprocessing (e.g., stemming) is first used to form a “bag” of N-
words, and then, each document is represented as an N-dimensional histogram of word
occurrences. In audio and video BoW representation, however, the LLDs from the training
set are first clustered using K-means or Gaussian Mixture Models (GMMs), and then, the
LLDs are assigned to the nearest cluster for a fixed-length, suprasegmental representation.
While the BoAW approach computes the zeroth-order statistics, the FV approach, which
was originally introduced in the vision domain [26], calculates the change in the underlying
model (usually the GMM) parameters with respect to new coming data, thus also including
the first- and the second-order statistics. With the popularity of Deep Learning (DL) and
transfer learning, state-of-the-art systems in speech emotion recognition and paralinguistics
benefit from extracting features from pretrained models [27,28] and deploying end-to-end
models [29–32].

In vision-based emotion recognition, hand-crafted features included Local Binary
Patterns (LBPs) [33], Histograms of Oriented Gradients (HOGs) [34], which are still being
popularly used [35–37]. For video (spatio-temporal) emotion recognition, extensions of
these visual descriptors, such as Local Gabor Binary Patterns from Tree Orthogonal Planes
(LGBPs-TOPs), were proposed [38], and recently have been successfully employed in
combination with deep representations [39–42]. Given sufficient data and/or pretrained
models in a relevant task, state-of-the-art systems in both unimodal and multimodal
emotion recognition heavily deploy DL, in particular Convolutional Neural Networks
(CNNs) and/or Recurrent Neural Networks (RNNs) [43–47].

Motivated by these developments in multimodal emotion recognition and the recent
outstanding performance of deep learning in the audio [48,49] and video [50,51] domains,
as well as the performance of deep transfer learning to alleviate data scarcity in the target
problem [40,52,53], in this study, we employed both deep end-to-end learning and deep
transfer learning for both audio and video modalities, fusing the scores of the uni-modal
subsystems for multimodal affect recognition in out-of-lab conditions. We experimented
with and used the official challenge protocol for the ABAW challenge, the Facial Expressions
Sub-challenge (ABAW-FER Challenge), originally run for Face and Gesture 2020, but later
extended until October 2020. This sub-challenge includes Ekman’s six basic emotions plus
neutral, thus featuring a seven-class classification task.

We conducted extensive experiments with our system (and its components) on the
AffWild2 dataset, adhering to the challenge protocol [54]. The contributions of this paper
include: (1) a novel multimodal framework that leverages deep and transfer learning in
the audio and video modalities; (2) analysis of the components of our proposed system;
(3) comparative results on the official ABAW-FER Challenge. Here, we present, extend, and
advance our contribution to the challenge, which has been ranked third in the competition
and was published in arXiv [55].

The remainder of this article is organized as follows: We analyze the current state
of the multimodal emotion recognition domain and one of the challenges devoted to it
in Section 2. Section 3 presents a developed multimodal emotion recognition system and
describes its parts. Next, in Section 4, we provide the setting used in this work, including
the data utilized, the training hyperparameters, and the preprocessing features. Section 5
presents the results obtained with the proposed multimodal emotion recognition system
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and its unimodal parts. In Section 6, we discuss the features of the developed system
and present interesting findings during the research. Lastly, Section 7 summarizes the
performed work and considers the directions of future research in multimodal emotion
recognition in-the-wild.

2. Related Work

Having exhibited outstanding performance in a range of audio and image recogni-
tion tasks, such as speech and object recognition, deep learning has recently become the
most dominant approach also in affect recognition. Training deep models has become
increasingly popular and relatively easier, as the hunger of the deep models for massive
data is met by the production of more and larger datasets related to affect recognition
tasks. Moreover, deep learning models are developing not only in “depth”, but also in
“breadth”: models process different modalities (e.g., audio, visual) at lower layers with
modality-specific filters and at different sampling frequencies, which are subsequently
combined at a higher abstraction layer via different fusion techniques.

Initial research studies about the application of different machine learning techniques
to the FER started to appear at the beginning of the second millennium [56,57]. The second
explosion of emotion research started with the investigation of deep learning, thanks to
the availability of pretrained deep CNNs such as VGG16 [58] and ResNet50 [59]. While
new developments in the machine learning and deep learning fields have led to significant
improvements, still many research problems remain open including, but not limited to
the alignment of heterogeneous signals (audio, video), handling small and imbalanced
datasets, ensuring the reliability of subjective annotations, and handling data recorded in
naturalistic conditions [60,61].

2.1. Multimodal Emotion Recognition

Multimodal emotion recognition involves taking advantage of multiple modalities
(audio, video, text, physiological, and others) that, through fusion techniques, provide
a single, final prediction. The primary fusion strategies from previous studies for multi-
modal emotion recognition can be classified into feature-level (early) fusion, decision-level
(late) fusion, and model-level fusion [62]. In addition, there is a hybrid fusion that in-
volves the combining of the feature- and decision-level fusions [60]. In a recent review
paper on multimodal affect recognition [60], the authors mentioned that the increase in
the feature set may decrease the classification accuracy if the training set is not large
enough, pointing to the curse of dimensionality problem. Another problem is that the
features from different modalities are collected in varied time scales and hence need to be
synchronized appropriately.

In the last decade, researchers have focused more on the deep neural network in the
multimodal emotion recognition domain. In [63], the authors applied supervised and
unsupervised techniques for feature selection, investigated early fusion, and experimented
with Convolutional Deep Belief Networks (CDBNs). In [64], LSTM was used to capture the
correlation between different modalities and within the modalities. Finally, the results of
LSTM were used as the input of the classifier LIBSVM to make the final prediction. A similar
approach based on two LSTMs instead of LIBSVM was proposed by Tzirakis P. et al. [65].
Another approach is to replace the softmax layer of each unimodal classifier with a new
layer that will combine the deep embeddings of all modalities [66].

There have also been new investigations in the direction of new fusion techniques for
modality merging. In [67], the authors discussed the role of speaker-exclusive models, the
importance of different modalities (audio, video, text), and the generalizability (between
datasets). In terms of ternary modalities, Majumder et al. [68] presented a novel feature
fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities one by
one and only then fusing all three modalities. In [69], novel attention-based methods with
LSTMs were proposed to fuse the modality-specific features.
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Multimodal emotion recognition is still a developing area, and the task itself is far from
maturity. Although there have been insights that deep learning models will be efficient for
this domain, they require more diversified data for training. Challenges are organized to
advance the state-of-the-art in multimodal emotion recognition in real-world environments
by providing novel data and a comparable protocol. The ABAW-FER Challenge [9–13]
is one such competition, whose publicly available data and common evaluation protocol
were used in this paper.

2.2. ABAW-FER Challenge

In the context of the ABAW-FER Challenge, Kuhnke et al. [70] proposed a multimodal
system that exploits Mel-spectrogram, appearance-based visual and facial-landmarks-
based features. The last two are combined and used by a pretrained 3-D CNN, while
Mel-spectrograms are fed into a slightly modified ResNet-18 Deep Neural Network (DNN).
Fusing the output from the models by an additional fully connected layer, the authors
reached a 0.509 Challenge Performance Measure (CPM) on the test set, taking first place in
the Facial Expressions Sub-challenge in the ABAW challenge [70].

Gera, Darshan, and S. Balasubramanian implemented an attention-based frame-
work [71], which fuses local and global attentive features and complementary context
information to obtain features robust to non-trivial face positions and occlusions. The
fusion process was performed on both the feature and decision levels (the loss function
was calculated based on predictions from different “branches” of the framework). Thus,
the authors obtained a 0.441 CPM and took second place in the ABAW-FER Challenge.

Liu et al. [72] combined ResNet and a Bidirectional Long Short-Term Memory Network
(BLSTM), achieving a CPM of 0.408 on the test set. In [73], the authors explored data
balancing techniques and their applications to multitask emotion recognition and found
that data balancing is beneficial for classification, but not necessarily for regression. The
proposed approach yielded a 0.405 CPM. Nhu-Tai Do et al. [74] proposed a temporal and
statistical module to exploit and then fine-tune the face feature extraction model, obtaining
a CPM of 0.389. Sachihiro Youoku et al. [75] used multiple optimized time windows (short-,
middle-, and long-term) for extracting features from video data. In addition, the authors
applied data balancing and fused the single-task models to further improve the prediction
accuracy (CPM = 0.369).

3. Materials and Methods

Since emotion recognition is a complex multimodal paralinguistics task, we used both
audio and video modalities. The final fusion of all systems was implemented as model-
and class-based weighted decision-level fusion, which weights the class probabilities from
each model separately. The pipeline of the fusion system is presented in Figure 1.

We hypothesized that the multimodal system for in-the-wild emotion recognition can
benefit from alternative feature representations and pipelines for visual processing. The
constituents of the fusion system and their optimal hyperparameters may vary depending
on the target dataset. The design settings of the respective components are elaborated in
Sections 3 and 5.
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Figure 1. The proposed pipeline for the multimodal emotion recognition system: Emb.—Embeddings,
Win.—Window, MCWF—Model- and Class-based Weighted Fusion.

3.1. Video-Based Deep Networks
3.1.1. Transfer Learning with VGGFace2-Based CNN

In the visual emotion recognition domain, one of the most informative body parts is
the human face. Multimodal emotion recognition systems often contain a facial expres-
sion recognition model, which catches much information reflected via changes in mimics
ofhuman faces. Moreover, while the audio modality can be absent (the user is silent), the
face of the user is generally available for facial analysis. Therefore, the development of a
robust and efficient facial expression recognition model is one of the important tasks in the
construction of multimodal emotion recognition systems.

A typical choice for facial emotion recognition systems is a deep convolutional neural
network, such as ResNet50. In the emotion recognition domain, it is common to use transfer
learning, namely training the deep neural network on a relevant task/domain, where the
annotated data are sufficiently diverse and rich. While the main idea is using the knowledge
distilled in the pretrained deep network, a popular trend is to use model embeddings (deep
features), which can be extracted from different layers of the deep neural network. Usually,
embeddings from the last convolutional layer are exploited.

To take advantage of transfer learning, as a base model, we used the VGGFace2-model,
which is the ResNet50 model pretrained on the VGGFace2 dataset [76]. The VGGFace2
dataset is intended for training models to recognize identities by faces. It contains 8631
identities in the training set, each with 363 images on average.

Based on the VGGFace2-model, we trained three facial expression recognition models,
which differed in terms of data on which they were fine-tuned. We should note that for
the fine-tuning, we took the VGGFace2-model, removed the last layer that provides class
probabilities over the identities, and stacked two dense layers with 1024 and 7 neurons
above it accordingly (hereinafter, we call this model the VGGFace2-model). The last layer
with the softmax activation function allows the model to predict the probability of every
emotional category. Thus, we obtained the following models:
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• VGGFace2-EE. The VGGFace2-model fine-tuned on the AffWild2 dataset;
• AffectNet-EE. The VGGFace2-model fine-tuned on the AffectNet [77] and FER2013 [78]

datasets (static frames);
• AffWild2-EE. AffectNet-EE, which was further fine-tuned on the AffWild2 dataset

(dynamic frames).

3.1.2. Temporal Modeling

The expression of emotions is inherently dynamic. Some emotions cannot be suc-
cessfully recognized without exploiting the dynamics [40]. Therefore, current emotion
recognition systems effectively exploit different techniques to take into consideration the
temporal context. These techniques include calculating the statistics of frame-level fea-
tures over a time window and employing algorithms specifically developed for working
with time series, such as recurrent neural networks. We implemented both techniques to
investigate their recognition performance for the facial expression recognition task:

• EE + SVM system. First of all, embeddings for every frame were extracted by the
Embedding Extractor (EE), which is one of the fine-tuned CNNs presented earlier.
Next, we grouped the embeddings according to the chosen window in a sequence
and applied statistical functionals, namely the mean and Standard Deviation (STD),
on each sequence. This process summarizes the LLD matrix having dimensions of
N × M (where N denotes the number of frames in a sequence and M is the size of the
embeddings vector obtained from the EE for one image frame) into a suprasegmental
feature vector with dimensions of 1 × M ∗ 2 (since this vector contains the M mean
and M STD statistics). Finally, an SVM classifier was trained on the obtained vectors
to predict one emotion category for the whole window (sequence). The target emotion
to train the SVM model was calculated using the mode (i.e., voting) of the emotion
annotations in the sequence. This approach works best when the window size is close
to the average duration of emotions (2–4 s based on previous research);

• LSTM-based systems. These systems are based on recurrent neural networks, namely
on LSTM networks. As an EE subsystem, AffectNet-EE was used. For the LSTM
network’s training, we also grouped embeddings using a time window.
Here, we experimented with two alternative training schemes:

– EE + LSTM system. The extraction of the embeddings from the EE subsys-
tem was separated from the LSTM network. Thus, the EE subsystem did not
take part in the fine-tuning (training) process, and we exploited it solely for the
embedding extraction;

– E2E system. The EE subsystem was combined with the LSTM network during the
fine-tuning (training) process. Thus, the system was trained as a whole, making
it an End-to-End (E2E) deep neural network system. Moreover, training the EE
subsystem as a part of the E2E system allowed us to generalize the EE subsystem
more since it had “seen” more data including the AffWild2 dataset.

The description of the datasets used for training, training the hyperparameters, and
the preprocessing procedures are elaborated in Section 4.

3.2. Audio-Based Deep Networks
3.2.1. Audio Separation

It is well known that extraneous sounds in audio recordings (e.g., background noises,
music) may significantly decrease the effectiveness of the training process, which results in
poorer emotion recognition performance [79]. To alleviate this, we applied Blind Source
Separation (BSS) using the open-source library Spleeter [80], which contains a set of pre-
trained DNN models. We used a model that allowed us to separate audio into vocals and
accompaniment (all other sounds including music). Spleeter models were trained with
data having 11 kHz and 16 kHz sampling rates. Therefore, we downsampled audio files to
16 kHz and applied BSS. The obtained audio (vocals) was used in all further experiments.
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3.2.2. Synchronization of Labels

Usually, videos from the datasets are annotated per frame, while various videos can
differ in terms of the frame rate. Thus, the annotations also had different sampling rates.
To align them, we downsampled all labels to a sampling rate of 5 Hz. We think that
this frequency is sufficient to detect changes in emotions, because the emotional category
switches rarely.

3.2.3. 1D CNN + LSTM-Based Deep Network

Since there is no publicly available pretrained 1D CNN on raw audio, we constructed
our own. To grasp the temporal information from 1D CNN embeddings more efficiently,
we stacked two LSTM layers on top of it. The final layer had seven softmax neurons to
match the number of classes. To represent window temporal modeling, the sequence-to-one
modeling scheme was implemented. It maps one portion of the input acoustic raw data
(for example, 4 s of audio) into emotional category probabilities. The number of model
parameters was around 4.5 M. The architecture of the developed sequence-to-one model is
presented in Figure 2. We would like to note that such a model is also an E2E model since
it directly maps the raw audio to one of the emotion categories (or class probabilities).

Figure 2. The architecture of the proposed 1D CNN + LSTM-based deep neural network.

3.3. Fusion Techniques

We employed “Model- and Class-based Weighed Fusion” (MCWF), where we had a
fusion matrix of L × K, where L and K denote the number of models and classes, respec-
tively. That is, we had an importance weight for each class of each model, separately. The
fusion weights can be optimized for any measure of interest from a pool of matrices that
are generated randomly using a Dirichlet distribution for each class, such that the weights
for each class over models sum up to unity. This approach has been successfully applied in
former video-based affect recognition in-the-wild challenges [40].

4. Experimental Setting

In this section, we provide the experimental setting. This includes the data descrip-
tion, the features of dataset preprocessing, the set of hyperparameters used, and the way
they were optimized during the training of the models. The code for reproducing the
results is available at https://github.com/DresvyanskiyDenis/ABAW-SIU, accessed on 30
November 2021.

4.1. Datasets Used in the Study

AffectNet [77] is a large dataset of human emotional expressions, collected by web
querying in six different languages and annotated in terms of seven emotional categories,
namely Ekman’s six basic emotions [81] plus neutral. Overall, the database contains around

https://github.com/DresvyanskiyDenis/ABAW-SIU
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450 K images of facial expressions, partially in an in-the-wild manner. The AffectNet class
distribution is strongly shifted to the neutral and happiness classes (these two classes
comprise 73.7% of all dataset instances), which introduces a class imbalance issue [82] that
needs to be solved.

To relax the AffectNet class imbalance, we mixed it (excluding major neutral and hap-
piness classes) with the FER2013 [78] dataset, increasing the examples of minority classes to
around 15% on average. The FER2013 database contains approximately 34 K grayscale face
images, annotated in terms of 7 emotional categories, and has a class imbalance problem
as well.

The AffWild2 [11] dataset was used to evaluate the effectiveness of the proposed
approaches. The database was collected from YouTube and consists of about three million
annotated frames with different qualities. The annotation process for seven basic emotions
was performed in a frame-by-frame manner, eliminating the widely known problem of
evaluator lagging during time-continuous annotation. The class distribution of the AffWild2
dataset is presented in Table 1. Thus, it has an even higher class imbalance (the top two
classes account for 79.7% of all instances and the top three for 90.6%) in comparison with
AffectNet. Moreover, the challenging conditions of the data include different occlusions,
pose variations, the absence of a person/face, and in some cases, the existence of multiple
people in a frame, while each frame is annotated and should be predicted properly.

Table 1. The class distribution of the AffWild2 dataset.

Emotion Training Validation

Neutral 589,215 (63.39%) 183,636 (56.76%)
Anger 24,080 (2.59%) 8002 (2.47%)

Disgust 12,704 (1.37%) 5825 (1.80%)
Fear 11,155 (1.20%) 9754 (3.01%)

Happiness 152,010 (16.35%) 53,702 (16.60%)
Sadness 101,295 (10.90%) 39,486 (12.21%)

Surprised 39,035 (4.20%) 23,113 (7.14%)

The typical video sequence from the AffWild2 database is presented in Figure 3. For
example, the first row of images represents the arising occlusions and unusual colors, while
the second one the arising second human in the frame (in one frame, the face detection
algorithm erroneously detected him as the main person) and a high amount of movements
from the participant (wiggling, nodding, occluding the head with the arms). Moreover,
the AffWild2 database contains several videos with two annotated persons occurring in
different timings. Such difficulties make this database essentially in-the-wild and difficult
to process, yet interesting and challenging to the research community.

Figure 3. The example frames of two videos in the AffWild2 dataset, which demonstrate such
challenges as pose variations and various occlusions.

4.2. Preprocessing of the AffWild2 Dataset

As a helpful supplement, the authors of the AffWild2 dataset provided the cropped
faces for all frames in the video files. They localized them utilizing the HeadHunter
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detector [83]. However, we found several problems while working with these local-
ized faces: (1) the target face is confused with secondary faces (see Figures 3 and 4);
(2) in case the face is covered by hands or other objects (obstacles), the face detector does
not work properly, as exemplified in Figure 4.

Figure 4. The examples of two video sequences, on which the HeadHunter face detector had
many failures.

The noticed problems highly contributed to the effectiveness of the model training
due to the loss of important information, consequently affecting the efficacy of the temporal
aggregation and recognition. To eliminate the second problem, we exploited the RetinaFace
detector [84], which works more accurately, including the cases when the face is covered
by obstacles by more than 50% [85]. We tackled the first problem as well by utilizing the
pure VGGFace2-model: we extracted the facial embeddings from the preceding and the
current frames and compared the embeddings, using the cosine similarity. In case the
cosine similarity is more than 0.5, the current face is considered as a correctly detected area.
We can observe the higher reliability and accuracy of the obtained face detection approach
in Figure 5. In comparison with the HeadHunter face detector, no faces were missed, and
all of them were identified correctly.

Figure 5. The face detection results on the same two video sequences presented in Figure 4
using RetinaFace.

4.3. Models Setup
4.3.1. Audio Emotion Recognition Models

To obtain more data during the training, we set the shift of the window with a step
equal to 2/5 the size of the window so that every audio chunk had an overlap of 3/5 with
the respective former chunk. Thus, we approximately doubled the amount of training data.
Since the audio after the noise cleaning (see Section 3.2.1) had a sampling rate of 16 kHz,
the temporal context of 4 s in this case, for example, equals 48,000 samples in the waveform
and 20 labels. As we applied the sequence-to-one modeling, we should have retained
only one label per window. This was performed by selecting the mode of the whole label
sequence, which is the most frequent emotion category.
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The training process was conducted using the Adam optimizer with learning rate =
0.00025 and the categorical cross-entropy loss function. To regularize the model, a dropout
with a rate of 0.3 after every convolutional layer was applied as well.

4.3.2. Visual Emotion Recognition Models

VGGFace2-EE. To construct an embedding extractor, we used the VGGFace2-model.
To smooth the class imbalance, while training the VGGFace2-model on the AffWild2
database, we downsampled every class category in the training set: for the neutral class,
we considered every tenth frame in every video, for the anger, disgust, fear, and surprise
classes every second frame, and for the happiness and sadness classes every fifth frame.
Subsequently, to make the model more robust to interference, we used data augmentation
techniques such as rotation, horizontal flip, and brightness variation. Moreover, we applied
logarithmic weighting to the loss function. According to the logarithmic weighting, the
weight of class i is calculated as:

wi = ln(
rM
ni

), ŵi =

{
1, i f wi < 1,
wi otherwise,

(1)

where ln() denotes the natural logarithm, r is a regularization parameter, M is the number
of samples in the training set, and ni is the number of samples in class i. We experimented
with various values of the hyperparameter r in the [0, 1] range and optimized it as 0.47.

AffectNet-EE. For the AffectNet-EE training, we removed the VGGFace2-model’s last
layer and added above it Gaussian noise and one fully connected layer with 512 neurons
and l2-regularization. Lastly, a softmax layer with seven neurons was stacked on top of
the obtained model. The main difference of the AffectNet-EE model is that it was trained
on the AffectNet dataset (and not on AffWild2). Moreover, to increase the proportion of
the minority classes, the samples from the FER2013 dataset were added to the overall
training set.

In the training process, such augmentation techniques as rotation, shear, horizontal
flip, shifting, and changing the image contrast were used. In addition, to “dilute” the
majority classes, we used the mixup [86] approach, which mixes two images and their
labels, applying the weights generated by the Beta-distribution. Moreover, inversely
proportional class weighting was applied to the categorical loss function.

During training, we exploited the cosine annealing with cold restart [87] as follows:
the initial learning rate was set to 0.0001, which steadily descended to a minimum learning
rate of 0.00001 within 6 epochs (=1 annealing cycle) and then sharply recovered to the
initial learning rate. This procedure was repeated 5 times, resulting in the model training
within 30 epochs.

AffWild2-EE. Structurally, Affwild2-EE is the same as AffectNet-EE; however, it was
further fine-tuned on the AffWild2 corpus. To train the embedding extractor, we downsam-
pled AffWild2 as follows: in every video, for category neutral, we took every tenth frame,
for categories anger, disgust, fear, and surprise every second frame, and for happiness and
sadness every fifth frame. All the other parameters, as well as the augmentation techniques,
were chosen the same as for the AffectNet-EE training.

4.3.3. Temporal Modeling Techniques

As mentioned earlier, to handle the varying Frames Per Second (FPS) over the videos
and correctly the implement subsystems using LSTM, we aligned all videos to have 5 FPS.
Then, using AffectNet-EE, CNN embeddings were extracted and formed in a sequence of
different lengths according to the window length and fed to the LSTM input.

As we describe below, we applied two different techniques of modeling temporal
dependencies: calculating statistics from features within one window or using specially
designed methods such as RNNs. Both methods have their pros and cons, and therefore,
we employed both in our fusion framework. In addition, we should note that in most
cases (except the fully end-to-end approach described in Section 5.1.2), we prepared the
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features for temporal modeling in advance for computational efficiency. For every video
frame, we extracted deep embeddings exploiting either the VGGFace2-EE, AffectNet-EE,
or AffWild2-EE models. Thus, every frame was represented as 512 deep features obtained
from the penultimate fully connected layer.

EE + SVM system. For statistical functional-based summarization of the frame-level
features, we used two approaches:

• SVM. Means and STDs were calculated over each fixed-sized window, resulting in a
vector with a length of 1024. Next, a meta-parameter search for the SVM using calcu-
lated suprasegmental features was carried out. We conducted extensive experiments
with various kernels including linear, polynomial, RBF (γ optimized in [0.001, 0.1]), and
regularization parameter C (in [1, 25]). The best result was obtained with following
settings: kernel - polynomial, γ = 0.1, C = 3;

• L-SVM. We calculated the means, STDs, and leading coefficients for polynomials of the
first and the second orders over each fixed-size window, resulting in a suprasegmental
feature vector of dimensionality 2048. Next, we consistently applied cascaded nor-
malization, in the form of z-, power-, and l2-normalization, respectively, and trained
the Linear Support Vector Machine (L-SVM) on the obtained normalized vectors, as
suggested in [88].

EE + LSTM system. As the second approach, we used “raw” deep embeddings as the
input in the constructed LSTM neural network. It consisted of two layers with 512 and
256 neurons with l2-regularization and dropout between them (with a dropout rate of 0.5).
On top of them, the fully connected softmax layer with seven neurons was placed.

In addition, for the training of the LSTM systems, we decimated the FPS rate in all
AffWild2 dataset videos to 5. This had to be done, since all videos had different FPS (the
lowest FPS was 7.5; the maximum FPS was 30), while the similarity in the rate of temporal
context is a crucial point for LSTM networks. Then, using AffectNet-EE or AffWild2-EE
(depending on the model), CNN embeddings were extracted and formed in a sequence of
different lengths according to the window length and fed to the LSTM input.

Thus, both temporal modeling approaches performed sequence-to-one modeling,
mapping frame-level deep embeddings within a fixed window into seven class probabilities.
However, originally, one window contained several emotional labels, the number of which
depended on the video frame rate. Therefore, after prediction, we expanded the vector of
predicted probabilities with size 1 × 7 to n × 7, where n is the original number of emotional
labels in the particular fixed window. Since we had an intersection between windows, to
obtain the final decision on each concrete video frame, the intersected class probabilities
were averaged.

4.4. Performance Measure

During our research, we considered two measures for model evaluation: Unweighted
Average Recall (UAR) and the official ABAW-FER CPM, which is defined as [54]:

CPM = 0.67 ∗ F1 + 0.33 ∗ Accuracy, (2)

where F1 is the weighted average of the Recall and the precision (also known as the
F-measure) and the Accuracy is the fraction of predictions that are correctly classified.

We utilized UAR mostly during choosing the models (see the experiments described
in Section 5.1) because of its ability to elicit and neglect overfitted models, while the
CPM was used in order to be able to compare our models with other participants of the
ABAW-FER Challenge.

5. Results

In this section, we describe the results obtained during the extensive experiments we
conducted on the AffWild2 dataset. Moreover, the adoption of a variant of the proposed
multimodal system within the ABAW-FER Challenge is presented.
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5.1. Visual Emotion Recognition SubSystem
5.1.1. EE + SVM Subsystem

As we noted before, different techniques for temporal aggregation may be used. In this
work, we focused on such methods as SVM and LSTM applied to the CNN embeddings.
However, the first question to address is: What is the optimal context length? To find this
out, we conducted experiments, fixing all the parameters except the temporal window
length. For simplicity, we fixed the following parameters: (1) the face detector: HeadHunter;
(2) AffWild2 as a training dataset (that is, VGGFace2-EE); (3) the temporal aggregation
technique: EE + SVM system; (4) the logarithmic class weighting technique. We varied
the length of the window from 2–8 with exponential steps, with an additional probe of 3 s.
The experimental results are presented in Table 2. We chose two performance measures
for the models’ evaluation: Unweighted Average Recall (UAR) was chosen since it is
known to be an unbiased measure of the reliability of the model (how much attention the
model pays to every class), while the CPM was also chosen for comparison in terms of the
ABAW-FER Challenge. As we can see from Table 2, a temporal context of 4 s was the best
option for functional-based temporal aggregation (EE + SVM system), and therefore, all the
subsequent experiments with this technique were performed using a temporal window
of 4 s.

Table 2. The experimental results on the temporal window length selection on the AffWild2 vali-
dation set. VGGFace-EE was used as the embeddings extractor; SVM was used as a classifier on
suprasegmental features. The best result within the column is highlighted in bold.

SysID Window Length UAR (%) CPM (%)

1 2 41.9 54.5
2 3 42.8 55.3
3 4 43.3 55.6
4 8 37.5 47.8

Fixing the length of the temporal context, we continued optimizing the model via ex-
periments on the variation of the face detector, embeddings extractors, and class weighting
schemes. The results of the experiments are presented in Table 3. Here, we can highlight
the models with the SysID 1 and 2: they had the highest UAR and CPM over all the other
models. We discuss the results of the ABAW-FER Challenge in Section 5.3; however, we
should note that one of these two models (namely SysID 2 in Table 3) was submitted during
the ABAW competition.

Table 3. The performance results (%) for different combinations of face detectors, embeddings
extractors, and class weighting schemes. SVM was used as a classifier on the suprasegmental features.
The best results within the column are highlighted in bold.

SysID Face Detector Embedding
Extractor Class Weighting UAR CPM

1 HeadHunter VGGFace2-EE Logarithmic 43.3 55.6
2 HeadHunter VGGFace2-EE Balanced 43.2 55.6
3 RetinaFace VGGFace2-EE Logarithmic 39.0 52.6
4 HeadHunter AffectNet-EE Logarithmic 42.3 55.3
5 RetinaFace AffectNet-EE Logarithmic 39.1 51.7
6 RetinaFace AffectNet-EE Balanced 38.2 50.9
7 HeadHunter Affwild2-EE Logarithmic 42.1 54.7
8 RetinaFace Affwild2-EE Logarithmic 42.4 55.3
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5.1.2. EE + LSTM Subsystem

Although the systems based on SVM with suprasegmental features reached a decent
performance on the validation set, relatively low results were obtained on the test set. This
may be caused by an insufficient ability to generalize data expressed via overfitting to the
training set. Therefore, we decided to utilize a more sophisticated temporal aggregation
method such as LSTM-NN, which was originally developed to process time series and
has a memory mechanism to capture long temporal dependencies. Fixing the choice of
the face detector and training data (pretraining the model on the AffectNet dataset, that
is AffectNet-EE), we conducted an experiment, varying the weighting scheme and length
of the temporal window, as was done in the previous subsection. We used only context
window lengths of 2 s and 4 s due to the computational complexity faced during the
investigation. The results of the experiments are presented in Table 4. First of all, we
should note that we chose the best model according to the UAR score, since it reflects the
model’s generalization ability more adequately than the CPM (this was observed during
overfitting to the development set in the previous subsection). Thus, the model with the
balanced class weighting technique and a temporal window size of 2 s was chosen for the
further experiments.

Apart from that, we decided to train the AffWild2-EE + LSTM model using the
best parameters found during the experiments with the AffectNet-EE + LSTM model.
Despite the relatively low performance (UAR = 43.85% and CPM = 52.84%) obtained
on the AffWild2 validation data, we found that AffWild2-EE + LSTM achieved a Recall
performance gain of 22.6% on the neutral class and 3.23% on the happiness class. This
makes the AffWild2-EE + LSTM model a good contributor in the fusion systems (comprising
several models); therefore, we used it in our further experiments.

Table 4. The experimental results on a selection of temporal window length and class weighting
scheme on the AffWild2 validation set. AffectNet-EE was used as an embeddings extractor; LSTM
was used as a temporal aggregation technique. The best result within the column is highlighted
in bold.

SysID Window Length Class Weighting UAR (%) CPM (%)

1 2 Logarithmic 43.3 55.1
2 4 Logarithmic 43.2 52.8
3 2 Balanced 52.8 49.0
4 4 Balanced 50.8 49.0

Additionally, we carried out the experiment with the number of frozen layers while
training the model. To do so, we fixed the meta-parameters of training as in the previous
experiment and tried to conduct experiments with different options: training the whole
CNN + LSTM model (AffectNet-E2E) simultaneously and training only the LSTM part
of the model, while the CNN part was frozen (AffectNet-EE + LSTM). The results are
presented in Table 5. We can clearly see that E2E training demonstrated higher performance
in terms of the CPM, while using the main convolutional layers as embedding extractors,
the AffectNet-EE + LSTM approach gave a more balanced Recall over classes expressed via
a higher UAR. This means that E2E models sacrifice the Recall of minority classes in favor
of higher accuracy. In addition, we can observe that our previous findings (see Table 4)
were reinforced with the E2E learning: the temporal window of 2 s turned out to be the
best one in terms of both performance measures. Thus, since we believe that UAR is more
informative and adequate in comparison with the CPM, we chose the AffectNet-EE + LSTM
model with a window size of 2 s for future fusion experiments.
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Table 5. The classification performance comparison of the fully end-to-end (AffectNet-E2E) and
separate model training (AffectNet-EE + LSTM) approaches on the AffWild2 validation set. The best
result within the system is highlighted in bold.

Window Length AffectNet-EE + LSTM AffectNet-E2E
UAR (%) CPM (%) UAR (%) CPM (%)

2 52.8 49.0 45.9 53.6
4 50.8 49.0 42.2 51.1

5.2. Audio Emotion Recognition Sub-System

For the audio model (1D CNN + LSTM), we also optimized the length of the temporal
context (window size). We conducted experiments using the AffWild2 validation set with
different lengths of windows (from 2–12 s with steps of 2 s). The best performance was
observed with a temporal context of 4 s, which is partially in line with our findings from
the video emotion recognition subsystem.

We also tried to use Pretrained Audio Neural Networks (PANNs) [89] that have
demonstrated state-of-the-art performance in audio pattern recognition. These models
extract features from raw waveforms, then process those data and return predictions in real
time. In this study, we used the CNN-14 model, which consists of one layer for extracting
features and six convolutional blocks, inspired by VGG-like CNNs [58]. The CNN-14
model was pretrained on the AudioSet dataset [90]. We fine-tuned the PANN model for
the Expression Challenge. In this pipeline, we used 2D Mel-spectrograms as the features.
However, our 1D CNN + LSTM model showed better results.

5.3. Multimodal Emotion Recognition System

As already mentioned, we took part in the ABAW competition. However, our results
are not limited only by this challenge: we subsequently continued experimenting and
improving our multimodal system after the challenge as well. Therefore, to be consistent
and to have the possibility to compare our results with other works, we continued working
on the AffWild2 dataset, using the same performance measure as before: the CPM. In
this section, we present our results in chronological order to explain the research progress
during and after the challenge.

During the ABAW-FER Challenge, first of all, we examined the efficacy of the unimodal
subsystems individually. We chose as the simplest the following models: 1D CNN + LSTM,
VGGFace2-EE, and VGGFace2-EE + SVM. Each of them represents one of the possible
usages of a modality, namely audio, visual-static, and visual-temporal. Since multimodal
systems usually perform better than unimodal models, we decided to submit a multimodal
system as well. Exploiting the visual-temporal model turned out to be more accurate over
using just the visual-static model (framewise prediction); therefore, we constructed the
multimodal system from the 1D CNN + LSTM and VGGFace2-EE + SVM approaches.
It should be noted that the fusion of these two unimodal systems was performed via a
decision-level fusion. The best results obtained within the ABAW competition are presented
in the first part of Table 6. Using the decision fusion of the audio- and video-based systems,
we reached a CPM of 42.10% and ranked third place in the ABAW-FER Challenge (the
results of the first five participants are shown in Table 7).

Upon the analysis of the state-of-the-art works in the multimodal emotion recognition
domain, we extended our system with new subsystems that collectively can catch the
emotional states more accurately. To adjust the VGGFace2-model more to the motion
recognition task, we applied a multi-state fine-tuning of the VGGFace2-model, obtaining
the AffectNet-EE model after the first stage and AffWild2-EE after the second stage, as
described in Section 4.3.2. In addition, since the SVM hyperparameters need to be adjusted
every time the training set is changed, we shifted towards an end-to-end approach such as
combining the CNN and LSTM.
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Table 6. The performances of the Audio (A) and Visual (V) systems on the ABAW-FER Challenge
Validation (Val.) and the test sets. The first block (four lines) shows the results obtained in the scope
of the competition, and the rest are the results of our extended systems obtained after the challenge.
All results are in % CPM. Baselines: CPM-Val. = 36%, CPM-Test = 30%. The best result within the
column is highlighted in bold.

SysID Modality System Val. Test

1 A 1D CNN + LSTM 35.09 -
2 V VGGFace2-EE 50.23 40.60
3 V VGGFace2-EE + SVM 55.66 42.00
4 A & V Decision Fusion of SysID 1 & 3 55.90 42.10

5 V AffWild2-EE + LSTM 54.73 44.21
6 V SysID 5 & AffectNet-EE + LSTM 57.61 46.34
7 A & V SysID 6 & 1D CNN + LSTM 54.69 47.58
8 A & V SysID 7 & AffWild2-EE + L-SVM 58.95 48.07

The results of the proposed multimodal fusion system and its subsystems are presented
in the second part of Table 6. We see that the fine-tuned AffWild2-EE + LSTM alone was able
to outperform our best multimodal system in the challenge by 2.1% absolute. This partially
confirms that LSTM can operate better with time series than just estimating statistics and
making decisions based on them by SVM. Combining the two fine-tuned visual EE + LSTM
subsystems (AffectNet-EE + LSTM and AffWild2-EE + LSTM) further improved the CPM
by 2.1% absolute. The addition of the end-to-end audio model, namely the 1D CNN-LSTM
model, to these two EE + LSTM visual subsystems in a weighted fusion framework further
contributed, reaching a CPM of 47.6%. Finally, in the proposed system (System 8 in Table 6),
we fused all our best performing subsystems and, therefore, further extended this fully end-
to-end multimodal system with the use of a Linear SVM (L-SVM) on the functional features
obtained from the AffWild2-EE. This final one advances the first runner-up performance
on this challenge corpus (see Table 7).

Table 7. Top-5-performing systems at the ABAW-FER Challenge 2020 compared to the performance
of our work.

Rank Work CPM (%)

1 Kuhnke et al. [70] 50.9

2 Gera and
Balasubramanian [71] 43.4

3 Dresvyanskiy et al. [55] 42.1
4 Zhang et al. [91] 40.8
5 Deng et al. [73] 40.5

This work 48.1

6. Analysis and Discussion

When analyzing the classwise F1-scores of our proposed multimodal system (see
Figure 6), we observed that the visual modalities had both higher and more balanced
F1-scores over classes compared to the audio model, which eventually contributed to the
final fusion system (see Figure 7). From the weights figure, we observed that the most
significant contribution for neutral, anger, and surprised classes was made by L-SVM, for fear
and sadness by AffWild2-EE + LSTM, for happiness by AffectNet-EE + LSTM and L-SVM
(almost equally). Interestingly, the highest contribution of the audio modality was observed
on the disgust emotion, which weighed evenly with the contribution from AffectNet-EE +
LSTM. Thanks to the MCWF, which combines the classwise strengths of each model, the
fusion system’s F1-scores were better than or on par with the best unimodal counterpart.
Although the found optimal fusion weights and the corresponding F1-scores were highly
correlated, the models with the highest F1-score on a class did not always obtain the highest
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weight. Alternatively, the genetic-algorithm-based informed search can be investigated to
improve the MCWF.

Ne An Di Fe Ha Sad Sur

AffectNet

AffWild2

Audio M.

L-SVM

Fusion

0.67 0.13 0.29 0.17 0.70 0.67 0.47

0.77 0.17 0.19 0.28 0.64 0.65 0.49

0.68 0.05 0.14 0.01 0.12 0.15 0.04

0.80 0.12 0.15 0.21 0.73 0.66 0.48

0.81 0.17 0.32 0.28 0.73 0.70 0.61

Figure 6. Classwise F1-scores for the proposed unimodal models and their fusion. Ne—Neutral,
An—Anger, Di—Disgust, Fe—Fear, Ha—Happiness, Sad—Sadness, Sur—Surprised.

Ne An Di Fe Ha Sad Sur

AffectNet

AffWild2

Audio M.

L-SVM

0.28 0.16 0.37 0.02 0.41 0.18 0.29

0.21 0.17 0.20 0.75 0.05 0.73 0.05

0.11 0.03 0.37 0.05 0.08 0.07 0.14

0.39 0.64 0.07 0.18 0.47 0.01 0.52

Figure 7. The values of the weights used in the proposed multimodal fusion system.

We further analyzed our best embedding extractor (CNN model), namely AffWild2-EE,
using GradCAM [92] to check where it attended and why it failed. In Figure 8, we provide
sample saliency maps overlayed on the images. For the images in the first row, the CNN
attended to eye region and was observed not to be effected by the partial occlusion of the
mouth area. The second raw embeddingshowed that the CNN performed well on pose
and occlusion variations. The examples show that the subtlety of facial expressions is an
important factor for misclassifications.
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Figure 8. GradCAM-based saliency maps for predicted classes by AffWild2-EE.

We also investigated the performance of our system in the neighborhood of an emotion
change point t with respect to the ground truth annotations. We provide a breakdown of the
performance of the proposed system (Sys. 8) in the temporal neighborhood of the emotion
change, namely in (A) [t − 4, t − 2), (B) [t − 2, t), (C) [t, t + 2), and (D) [t + 2, t + 4) s. The
analysis window step of 2 s was based on our former window size optimization (2–4 s with
different models). As shown in Table 8, we observed a drop in recognition performance
around the emotion change point; however, even after the drop, the performance was
around a 50% CPM and thus was at an acceptable level. The performance outside the ±2 s
relative to the emotion change points was almost the same as the overall development set
CPM. We note that even though on average there were 11.6 emotion change points per
video clip, considering the number of frames, this happened very rarely (the proportion of
emotion change points to the total number of development set frames was 0.25%).

Table 8. The statistics of emotion change points and CPM performances around the emotion change
points. # means number of; ECP means Emotional Change Point.

# Development Clips # Frames # ECPs [t − 4, t − 2) [t − 2, t) [t, t + 2) [t + 2, t + 4)

70 323,518 810 0.6191 0.4910 0.4835 0.5807

Sample sequences of frames taken from the temporal neighborhood of emotional
change points are illustrated in Figure 9. Here, in each row, the frame in the center
corresponds to the reference emotional change point t. From left to right, the relative
time points (in seconds) are t − 4, t − 2, t, t + 2, and t + 4. Despite the challenges such as
facial occlusions and pose variations, we observed a decent performance of capturing the
emotions before and after the expression change points.
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Figure 9. Example frames in the temporal vicinity of emotion change points in video clips with the
corresponding ground truth and predicted emotion classes.

To sum up, our results are in line with the former works that reported higher unimodal
predictive performance for and a contribution to the multimodal system by the visual
modality over the acoustic modality [40,70,71,73,91]. Unlike former studies that reported
only the visual modality contributing to the recognition of disgust [40], in our study, we
observed the contribution of the acoustic system to this class. This contribution may stem
from extralinguistic vocalizations, which deserves future investigation.

Inference Time Analysis

Additionally, we would like to note that the final system (SysID 8) presented in Table 6
(with a test set CPM of 48.07%) can be considered as a real-time method. To demonstrate this,
we calculated the time needed for each processing step, namely from data preprocessing to
the prediction generation step.

In Table 9, we provide the inference time based on the consecutive execution of all
operations. However, some of them could be parallelized. For example, all the feature
extraction models can be run in parallel on different CPUs. The same can be applied for
the prediction generation process. Considering parallelization, the overall inference time
would be 66.76 s for this video clip (0.56 SFI). This evidence allows stating that our method
is a real-time inference method.

Table 9. The inference time for different sub-processes of the final fusion system. For the system’s
testing, the video file “134.avi” with a duration of 119 s was chosen. SFI means “Seconds For
Inference”, denoting the seconds needed to process one second of video.

Operation Preprocessing Feature Extraction Prediction Generation

Sub-processes

Video frame decimation AffectNet-EE (6.63 s, 0.06 SFI) AffectNet-EE + LSTM
(2.70 s, 0.02 SFI)

Face detection & Cropping AffWild2-EE (1.75 s, 0.01 SFI) AffWild2-EE + LSTM
(2.40 s, 0.02 SFI)

Cosine similarity l-SVM (6.13 s)
1D CNN + LSTM
(5.53 s, 0.05 SFI)

Inference time 54 s (0.45 SFI) 7.78 s (0.07 SFI) 16.76 s (0.14 SFI)

Total inference time:
78.54 s (0.66 SFI)

7. Conclusions

This article investigated the efficacy of deep learning models in the in-the-wild au-
diovisual emotion recognition domain. We showed that the transfer learning performed
via multi-stage fine-tuning of deep CNN model allows increasing the model performance
significantly. We also observed that in both audio and video modalities, the deployed fully
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end-to-end 1D CNN + LSTM and 2D CNN-EE + LSTM neural network architectures can be
successfully exploited for catching the spatio-temporal patterns for the audiovisual emotion
recognition task. Moreover, we demonstrated that the MCWF fusion of different deep
neural networks with correctly fitted weights is able to enhance the predictive performance
of the fused system over the unimodal systems.

One of the interesting findings in this research is that, despite its low individual
performance, the audio-based model significantly contributed to the multimodal fusion
process, especially for the emotion disgust. Analyzing the training dataset, we can note
that the low performance of the audio model can be partly attributed to the long silence
durations and background music or noise accompanying the participants’ speech. Although
the cleaning of the audio helped to significantly separate the human voices from other
sounds, the ambiguity reflected by several different voices in one audio file was not
illuminated. Nevertheless, even such a “confusing” audio channel contributed to the overall
system performance. This underlines once more the necessity of using the multimodal
emotion recognition system due to the possibility of combining the various advantages of
unimodal subsystems.

In our future work, we plan to try more flexible information fusion techniques such as
cross-modal attention-based fusion. Such an approach has shown promising results in other
domains [93–95] and can significantly increase the performance of the considered system.
To enhance the multimodal fusion via additional information, which can be extracted from
already existing information channels, we plan to exploit the linguistic modality, which has
shown promising results as an additional modality for multimodal emotion recognition
systems [25].
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