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Abstract: The fabrication and characterization of template silver nanoshell
structures and the encapsulation of gold nanoparticles using biocompatible
poly(oxyethylene)-poly(butylene) diblock co-polymer vesicles is described in this work.
These vesicles have a narrow diameter size distribution around 200 nm. Silver nanoparticles
(φ = 1–10 nm) functionalized with decanethiol were successfully entrapped in the
hydrophobic membrane and non-functionalized gold nanoparticles (φ = 3.0–5.5 nm) were
encapsulated in the vesicle core. Transmission Electron Microscopy confirms the localisation
of the particles; silver functionalized nanoparticles appear to thicken the vesicle membrane
as shown with TEM image analysis. The enhancement of the optical properties is confirmed
using transmission spectrophotometry; the 430 nm plasmon resonance peak of the silver
nanoparticles was replaced by a broader extinction spectrum to beyond 700 nm (O.D. = 0.8).
For a number density of 4.8 × 1012 mL−1 the scattering cross section was calculated to be
0.92 × 10−4 µm2 with a scattering coefficient of 0.44 mm−1. The measurements
indicate scattering cross section of 3.8 × 10−5 µm2, attenuation coefficient of
0.18 mm−1 and extinction efficiency equal to 1.2 × 10−3. Stable and biocompatible
block co-polymer vesicles can potentially be used as plasmon-resonant optical contrast
agents for biomedical applications.
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1. Introduction

1.1. Block-Copolymer Vesicles

Poly(oxyethylene)-poly(butylene) diblock co-polymer (PEO-PBO) is known to form stable vesicular
structures in solution [1]. Polymerosomes are formed in a controlled stepwise process from a lamellar
film structure to solution-filled protuberances and finally to vesicles [2]. The geometry of these structures
is controlled by the length of the polymer chains and the final polymer concentration in aqueous
solution [3–7]. Once the vesicles are formed, the diameter size can be controlled by mechanical
extrusion of the solution through a porous membrane with defined porous size [8]. These polymer
vesicles can be used as intracellular delivery systems giving more stability and circulation times in
blood than the traditional systems [8,9]. Furthermore, these well-designed nanostructures can overcome
biocompatibility issues [10], making them suitable for biomedical applications [11,12].

1.2. Contrast Agents and Metallic Nanoparticles

Metallic nanoparticles have been of particular interest because of their high surface
plasmon-resonance [13]. Gold and silver nanoparticles are excellent in absorbing and scattering visible
and infrared radiation [14,15]. Different sizes and shapes of nanoparticles give different absorption and
scattering properties [13] which make them of great interest for biological imaging applications [16,17].
Because biological tissues disturb the photon trajectories and can be difficult to image at visible
wavelengths, the use of near infrared radiation and contrast agents [18–20] is required because longer
wavelength infrared radiation can penetrate tissue in greater depth.

1.3. Polymerosme-Metallic Nanoparticle Constructions

It has been shown that it is possible to construct templates for metallic nanoparticles by interaction
of the particles and self-assembling biocompatible materials [21–25]. The possibility of combining
the optical advantages offered by the nanoparticles and the controlled assembly of PEO-PBO
polymerosomes is explored in this work.

2. Experimental Section

The diblock copolymers synthesized by sequential anionic polymerization [26] were provided by
the Department of Chemistry, University of Sheffield, UK. The copolymer contains 16 units of
poly(oxyethylene) and 22 units of poly(oxybutylene) [7]. Gold metallic nanoparticles (G1402, gold
colloid solution 0.01% HAuCl, 3.0–5.5 nm mean particle diameter) and silver nanoparticles (673633,
decanethiol functionalized silver nanoparticles, 0.1% Ag-SCH2(CH2)8CH3 in hexane, 1–10 nm particle
size) were purchased from Aldrich and used upon arrival.

2.1. Vesicle Formation

The copolymer is a viscous transparent liquid that forms very stable vesicles at the critical vesicle
formation concentration [6]. In order to reach that concentration, solutions of 10 mg of polymer in 3 mL
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chloroform were prepared using glass vials. The chloroform promotes the separation and dispersion of
the concentrated copolymer chains. Once the polymer was completely dissolved, glass vials containing
this solution were left open in a vacuum oven at 50 ◦C overnight. This process generates a thin film on
walls of the glass vial as shown in Figure 1A.

Figure 1. Vesicle formation and encapsulation process. (A) Copolymer film formation by
solvent evaporation; (B) Disruption of the copolymer lamellar structure forming polymer
aggregates in solution by stirring; (C) Perfusion of the particles in solution into the polymer
vesicles by sonication; (D) Vesicle extrusion to narrow the diameter size distribution to 200
nm; (E) Size exclusion separation of the polymer vesicles from non-encapsulated particles
and polymers through a sepharose column.

The film was then brought to the critical vesicle formation concentration of 10 mg/mL [5], with
phosphate buffer, stirring for 1 h (Figure 1B). This process allows the separation of the highly packed
lamellar structures forming polymer aggregates in solution [2,5]. The solution was sonicated for 10 min
in a water bath sonicator (70–80 kHz, Sonicor Instruments). This promotes the vesicle formation
and disrupts the polymer aggregates, thus enabling the encapsulation of the particles in solution.
(Figure 1C). The formed vesicles were then homogenized in size using an extrusion apparatus
(Figure 1D) LiposoFast-Basic [27]. The extrusion was performed by passing the solution through a
polycarbonate membrane with a 200 nm pore size (Avestin, Inc). This process narrows the vesicle size
distribution to about 200 nm in diameter [8]; analogous process have shown encapsulation efficiency
of 20% using this technique [28]. The extruded solution is eluted using a size exclusion column
(d = 1 cm × H = 12 cm) filled with Sepharose 4B (Sigma-Aldrich). The aliquots contained solutions
of the polymerosomes separated from non-assembled polymer chains and non-encapsulated particles
(Figure 1E). This step dilutes the samples to a 20% of the initial concentration.

2.2. Particle Encapsulation

The gold nanoparticles in aqueous solution (0.01%) were incorporated in step B in Figure 1. The
decanethiol functionalized silver nanoparticles in hexane (i.e., 3 mL of 0.1% Ag-SCH2(CH2)8CH3 sol.)
were added before the film formation in step A in Figure 1, together with the chloroform for an estimated
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final concentration in the vesicles of 0.06%. The hydrophilic-hydrophobic nature of the nanoparticles
permits to allocate the particles in the membrane (Figure 2A) or the vesicle core (Figure 2B).

Figure 2. Nanoparticle encapsulation exemplification. (A) Hydrophobic functionalized
silver particles entrapped in the membrane; and (B) hydrophilic gold nanoparticles
encapsulated in the core. Red and blue areas depict the hydrophobic and hydrophilic domains
of the block copolymer in the vesicles.

2.3. Electron Microscopy Imaging

Samples of encapsulated gold and silver were mounted into carbon coated copper grids with no metal
enhancement or staining. The grids were treated with uranyl formate solution 2% w/w and dehydrated
with ethanol. The images were recorded in the transmission electron microscope (Phillips CM100 TEM)
with a Gatan CCD camera and analysed with a TEM image processing software DigitalMicrograph
v3.6.5 (Gatan Inc).

2.4. Transmission Spectrophotometry

The transmission spectrophotometry was performed with a double beam, double monochromator,
Lambda 900 Perkin-Elmer UV-Vis-IR spectrophotometer. The capture speed was set to 600 nm/min
with a beam slit of 1 nm, using 1 cm quartz cuvettes with burnished sides.

2.5. Scattering Calculations

The scattering efficiency of light passing through a homogeneous medium with spherical particles
in solution can be calculated using the Mie solution for the Maxwell’s equations. For this solution,
it is required to specify the refractive index of the medium, the refractive index of the particles, the
wavelength of the incident light, the particle diameter and the particle concentration. We calculated
these parameters considering the membrane thickness t, the vesicle diameter D and the values reported
in Table 1.
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Table 1. Data for PEO-PBO polymerosomes [7].

Area per molecule Volume per molecule Membrane thickness

am = 1.130 nm2 vm = 2.712 nm3 t = 2.4 nm

Molecular weight Avogadro’s number Polymer concentration

MW = 2300 NA = 6.022 × 1023 mol−1 C = 10 gL−1

With a mean diameter of 200 nm the volume occupied by the membrane Vm is calculated as

Vm =
3

4
π

(
D

2

)3

− 3

4
π

(
D − 2t

2

)3

(1)

with this value it is possible to calculate the polymer units per vesicle Pv

Pv =
Vm
vm

(2)

the mass of the polymer in the per vesicle mv

mv =
PvxMW

NA

(3)

and the vesicles concentration η

η =
C

mv

(4)

The vesicles concentration or number density η was calculated to be 2.412 × 1016 L−1. This value is
affected by a dilution of 20% of the initial concentration (i.e., η = 4.8 × 1012 mL−1). Using Mie scatter
calculation software [29] it is possible to calculate the scattering properties of the particles using Mie
theory. Calculations were done using λ = 700 nm and refractive index of nm = 1.33 for the medium and
nAg = 1.54 for the Ag particles as required for this calculation, reported elsewhere [30–33] for Ag metal
particles. The output gives the scattering cross section, σt. This parameter divided by the cross-sectional
area gives the scattering efficiency parameter Qt

Qt =
σt
πr2

(5)

The total attenuation coefficient is given by the scattering cross section multiplied by the number density
of the scatterers.

µt = σtη (6)

The script gives values for the total attenuation coefficient and scattering cross section of µt = 0.44 mm−1

and σt = 0.92 × 10−4µm2 respectively. Assuming that the silver particles are allocated in the membrane
acting as a template for the silver nanoshells formation.

3. Results and Discussion

3.1. Transmission Electron Microscopy

It was found that the non-functionalized gold nanoparticles were encapsulated inside the vesicles
without forming any uniform structure. Figure 3 shows the enhanced contrast of the nanoparticles
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encapsulated in the polymer vesicles. As the vesicles are made of a soft polymeric material, the electron
beam of the electron microscope progressively damages the vesicle membrane and deforms their original
shape, as it can be seen in the figure [34]. However, the contrast between the vesicle material, the
nanoparticles and the surrounding media can still be observed.

Figure 3. TEM images of encapsulated non-functionalized gold nanoparticles. Red arrows
point at spherical gold particles.

Silver nanoparticles coated with hydrophobic chains would interact with the hydrophobic domain
of the polymer during the vesicle self-assembly. Therefore, functionalized silver nanoparticles were
expected to be found entrapped in the membrane. Figure 4A shows a schematic representation of
the membrane entrapped particles. It was also found that the inclusion of silver nanoparticles in the
membrane increased the membrane thickness from t = 2.4 nm to t ≈ 6.1 ± 1.3 nm (see Table 1),
indicating the particle entrapment. The particles contribute to not only the membrane thickening but
also the enhanced contrast and optical properties. The polymers are soft materials that lack sufficient
contrast for a TEM to be seen. Although PEO-PBO have proven to have high stability for imaging
the membranes, the soft spheres can be damaged at high magnifications by the electron beam [7]. Here,
however, the membranes can still be seen with enhanced contrast as observed in Figure 4B. These results
also suggest that only small silver particles from the solution (φ = 1–5 nm) were encapsulated and larger
particles were eliminated during the encapsulation process. The membranes collapsed when the electron
beam is focused at the vesicles because, since the Ag particles are localized in the membrane, it is
difficult to determine the presence of these particles within the core.

3.2. Transmission Spectrophotometry

In order to corroborate the actual enhancement of the optical properties of the silver nanoshells, it is
necessary to compare the optical transmission spectrum for the different constructions. It has been shown
elsewhere that the configuration of nanoparticles in space can lead to changes in the surface plasmon
resonance of the engineered conglomeration of particles [35]. Figure 5 shows the comparison of the
absorption spectrum of the gold nanoparticles, the encapsulated gold nanoparticles and the PEO-PBO
vesicles. The solutions containing gold nanoparticles showed a small peak where the surface plasmon
resonance of gold appears. However, non-enhancement of the optical properties was appreciated. As
the particles are randomly distributed in the core of the vesicles, the optical properties remain the same
as in solution; therefore, the optical absorption is only modified by the scatter of the cloudy polymer
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solutions. Therefore, encapsulation of gold nanoparticles in the core did not produce vesicles with
enhanced optical properties.

Figure 4. (A) Schematic representation of the nanoparticles thickening the membrane; The
normal thickness of the PEO-PBO vesicle membranes is 2.4 nm [7]; (B) TEM images of
vesicles showing the membrane thickening up to 7.5 nm and enhanced contrast for TEM,
together with intensity histogram analysis (DigitalMicrograph v3.6.5, Gatan Inc).

Figure 6 shows the spectrum comparison for silver nanoparticles, membrane entrapped silver
nanoparticles and PEO-PBO vesicles. The functionalized silver nanoparticles encapsulated in the
membranes for a shell that could potentially lead to surface plasmon resonance variations [35]. In the
experiment described here, the entrapment of silver nanoparticles in the vesicle membranes caused a
change in the optical properties of the vesicles. The surface plasmon peak expected for silver appears for
the silver nanoparticle solutions but it seems to be modified for the vesicle containing silver nanoparticles
in the shell. This construction shows that encapsulated silver nanoparticles have a broader extinction
spectrum to beyond 700 nm with an optical absorption greater than 0.8 O.D., as shown in Figure 6; in
fact, the enhancement occurs for λ = 210–700 nm. Silver nanoparticles do not usually absorb at those
wavelengths when in a colloidal solution; after being assembled in the vesicle membranes the combined
optical properties are enhanced. Some applications that require absorption in the near infrared for
non-invasive diagnosis could potentially use encapsulated contrast enhancers like the one described here.
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Figure 5. Optical spectrum of encapsulated gold nanoparticles (AuEB1), gold nanoparticles
solution 0.04 mg/mL (AuN), PEO-PBO block copolymer vesicles only (EB1), and solution
buffer (PBS).

Figure 6. Optical spectrum of membrane entrapped functionalized silver nanoparticles
(AgEB1), silver nanoparticles solution 0.6 mg/mL (AgN), PEO-PBO block copolymer
vesicles (EB1), and solution buffer (PBS).

3.3. Optical Densities and Attenuation Coefficient

It is possible to relate the spectrophotometry measurements of optical density to the total attenuation
coefficient from Equation (6) using the Lambert-Beer law

O.D. = −log10
(
I

I0

)
(7)

I

I0
= exp(−ησtl) (8)

where I0 is the intensity of the incident beam, I the intensity of the transmitted light and l the path length;
giving µt = 0.23 O.D. in mm−1. For λ = 700 nm, the total attenuation coefficient µt is 0.18 mm−1. This
equates an extinction cross section σt of 3.8 × 10−5 and extinction efficiency Qt = 1.2 × 10−3. Knowing
the extinction efficiency of the material is important for its use in certain biomedical applications in which
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contrast agents are required to differentiate from normal tissue scatter or absorption, so that the material
can be compared and used if suitable. For example, some studies report that optical tomography scanners
require scatter coefficients µs above 0.5 cm−1, other studies suggest µs = 2–6 mm−1 (µt = µa + µs, µa

absorption coefficient) [36–38]. Certain parameters can be improved for better extinction efficiency
(i.e., concentration of the particles, diameter size, etc.). Using biocompatible nanostructures with
controllable size and shape as templates for silver nanoshells gives advantages for bioimaging techniques
that require near infrared scatter.

4. Conclusions

Metallic nanoparticles were successfully incorporated into self-assembled PEO-PBO diblock
copolymer vesicles. Non-functionalized gold nanoparticles were encapsulated in the vesicle core
whereas silver decanethiol functionalized nanoparticles were entrapped in the membrane. The silver
nanoparticles were shown to thicken the vesicle membranes, giving enhanced optical properties. Since
the PEO-PBO vesicles are biocompatible, the metallic nanoparticle templates can potentially be used as
contrast agents in the near infrared for bioimaging applications.
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