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Abstract: Soft lithography allows for the simple and low-cost fabrication of nanopatterns with different
shapes and sizes over large areas. However, the resolution and the aspect ratio of the nanostructures
fabricated by soft lithography are limited by the depth and the physical properties of the stamp.
In this work, silicon nanobelts and nanostructures were achieved by combining soft nanolithography
patterning with optimized reactive ion etching (RIE) in silicon. Using polymethylmethacrylate (PMMA)
nanopatterned layers with thicknesses ranging between 14 and 50 nm, we obtained silicon nanobelts
in areas of square centimeters with aspect ratios up to ~1.6 and linewidths of 225 nm. The soft
lithographic process was assisted by a thin film of SiOx (less than 15 nm) used as a hard mask and
RIE. This simple patterning method was also used to fabricate 2D nanostructures (nanopillars) with
aspect ratios of ~2.7 and diameters of ~200 nm. We demonstrate that large areas patterned with
silicon nanobelts exhibit a high reflectivity peak in the ultraviolet C (UVC) spectral region (280 nm)
where some aminoacids and peptides have a strong absorption. We also demonstrated how to tailor
the aspect ratio and the wettability of these photonic surfaces (contact angles ranging from 8.1 to
96.2◦) by changing the RIE power applied during the fabrication process.
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1. Introduction

Vertical nanostructures with aspect ratios >1 are essential in a variety of fields such as photonics
and nanophotonics [1,2], microfluidics [3,4], microelectromechanical systems (MEMs) [5] and even
in lab-on-a-chip bio-applications such as DNA separation [6]. Soft lithography was introduced as a
low-cost alternative to conventional lithography [7] and has been shown to be a powerful method
of generating reproducible nanopatterns and nanostructures with features sizes ranging from 30 to
100 µm [8] using elastomeric stamps made of polydimethylsiloxane (PDMS). Unfortunately, the low
Young’s modulus of elastomeric formulations (such as PDMS, h-PDMS, and PTFE) limits the aspect
ratio of the nanostructures that can be achieved using soft lithography [9]. When the aspect ratio is
too high or too low, the nanostructures on the PDMS stamp tend to deform and produce defects in
the patterned areas due to the pressure exerted on the stamp during the patterning process [8–10].
Nanoimprint lithography (NIL) is also affected by this limitation, requiring complex post-processing
steps to achieve deep nanostructures [11].
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Several top-down methods have been developed to enable the fabrication of high-aspect-ratio
nanopatterns. Some methods use a double layer of resist and a thin film like hard mask among
the layers to increase the high aspect ratio in the bottom resist [10,12]. However, for transferring
the pattern into Si, it is always necessary to continue the process with a subsequent etching [7].
In this work, a process without a second layer resist is developed through the optimization of the
reactive ion etching (RIE) process to transfer the pattern into Si. The RIE process uses only SF6, CHF3,
and a SiOx mask in a standard RIE chamber, avoiding any cryogenic or other deep-RIE procedures.
Using this patterning-etching procedure, we obtained gratings made out of nanobelts with aspect
ratios >1 using conventional DVD and Blu-ray discs as soft lithographic masters in a simple and
low-cost approach [13–15].

RIE is a reliable method to achieve high-aspect-ratio silicon nanostructures [16] that can use a
mixture of diverse gases such as O2:Ar or Cl2 [10,17]. SF6 plasma is commonly used as the main
reactive agent to etch silicon due to its capacity to generate atomic fluorine (F), which has a high affinity
for Si atoms to form SiFx (x = 1

4 , 2, 4) volatile species [18,19]. The addition of small concentrations of
O2 in the SF6 plasma leads to the generation of F due to the following oxidation reaction: O + SFx →
SOFx−1 + F (x ≤ 5) [18]. To our knowledge, the best aspect ratios (as high as 107) have been achieved
using deep RIE (DRIE) [20], and values of 50 have been reported using Inductively Coupled Plasma
(ICP-RIE) [21]. Unfortunately, the DRIE and ICP-RIE systems are not as extended as conventional RIE
systems due to their higher price. In general, using conventional RIE systems, it is difficult to achieve
aspect ratios larger than 10 and lateral dimensions smaller than 200 nm when using Ni-masks and
electron-beam lithography on thicker PMMA layers (around 300 nm) [22]. This manuscript describes
the cost-effective fabrication of nanostructures 535-nm-tall and 197-nm-diameter (aspect ratio 2.71)
over large areas using a conventional RIE system and starting from PMMA layers as thin as 14 nm.
This simple fabrication process has two steps: (i) soft lithography is used to pattern large silicon
surfaces with PMMA nanostructures; (ii) the PMMA nanostructures are used as a mask during the
RIE etching of a sacrificial SiOx layer that is 14 nm thick. We varied the RIE power applied to SF6/O2

plasma to find the etching conditions that optimized the aspect ratio of the resulting nanostructures
and to control the wetting properties of the final photonic surfaces.

2. Experiment

Figure 1a shows the fabrication process sequence. First, a thin layer of SiOx ~14 nm thick was
deposited on a Si wafer to serve as a hard mask by a plasma-enhanced chemical vapor deposition
(PECVD) system (Surface Technology Systems 310PC-DF) at 300 ◦C. We fabricated elastomeric stamps
using the following masters: (i) digital versatile discs (DVDs) with a lineal grating of 775 nm period,
a 400 nm linewidth, and a 150 nm depth. DVDs were replicated by casting a 5 mm layer of Sylgard
184 PDMS (Dow Corning Corporation, Seneffe, Belgium); (ii) Blu-ray (BR) discs with a lineal grating of
325 nm, a 200 nm linewidth, and a 25 nm depth. We replicated BR discs using a composite formed
by a stiff layer of h-PDMS (30–40 µm thick) supported by a flexible layer (5 mm thick) of Sylgard 184
PDMS [23]. The patterning process over the Si/SiOx substrate required 5 µL of resist (5% PMMA 996k
in gamma-butyrolactone (GBL)) added with a micropipette. The resist solution was covered with
the PDMS stamp and pressed between two glass slides. The resist was cured under vacuum for 3 h.
Figure 1b,c shows the atomic force microscope (AFM) images of the nanopatterns obtained in the
PMMA. The depth of the nanopattern was 50 nm using the DVD stamp (DVD-PDMS sample). For the
sample fabricated with a BR stamp (BR-hPDMS sample), the depth was 15 nm. The limiting factor for
a higher aspect ratio is the thickness of SiOx, which can be etched using the PMMA. Using our etching
recipe, this thickness is between 14 and 20 nm. After that, two RIE etchings were carried out (Oxford
Plasmalab 80). A cleaning procedure of the RIE chamber with Ar and O2 was run before each etching
to ensure reproducibility. The first etching (CHF3 25.0 sccm, chamber pressure 20.0 mTorr, power 50 W,
wafer temperature 30 ◦C) was used to transfer the nanopattern to the SiOx hard mask. The second
etching (SF6/O2 12.0/3.0 sccm, chamber pressure 90.0 mTorr, wafer temperature 30 ◦C, 1 min) was
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used to transfer the nanopattern to the Si [24]. We varied the RIE power between 10 and 100 W to
explore its effect in the aspect ratio, while keeping the rest of the parameters fixed. Each experiment
was carried out three times in order to verify its reproducibility.
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Figure 1. (a) Schematic illustration of the fabrication process; (b) AFM image of the nanopattern
obtained by soft lithography using DVD stamp; (c) a nanopattern obtained by soft lithography using a
Blu-ray (BR) stamp.

3. Results and Discussion

3.1. Optimization of the RIE Process

We determined first the etching time necessary to transfer the PMMA nanopattern to the
14-nm-thick SiOx by AFM inspection. During the RIE process, SiOx and PMMA were etched at
the same rate. The selectivity between PMMA and SiOx is 1:1. Figure 2 shows that 30 s were not
enough time to completely transfer the nanopatterns onto the SiOx surface (DVD-PDMS samples).
After a 1 min RIE process, the nanopatterns were transferred over large areas of the SiOx surface.
BR-hPDMS samples transferred the nanopatterns after 30 s; however, since 1 min of etching did not
change the nanopattern significantly, we decided to use 1 min for both samples.
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Figure 2. AFM images after reactive ion etching (RIE) etching of a 14-nm-thick SiOx layer with CHF3.
(a) AFM image of DVD-PDMS sample after 30 s of etching with CHF3 plasma; (b) AFM image of
DVD-PDMS sample after 1 min of RIE etching with CHF3 plasma; (c) AFM image of BR-hPDMS sample
after 30 s of RIE etching with CHF3 plasma; (d) AFM image of BR-hPDMS sample after 1 min of RIE
etching with CHF3 plasma.
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We also studied the influence of the RIE power during the etching of the Si wafer. Increasing
the RIE power produces more reactive species and improves the ionic bombardment. This affects the
etching rate and both the width and roughness of the patterned nanostructures. SEM pictures show
that no artifacts like “grass” or any other high-level roughness is present (Figure S1). Ten different RIE
powers were used starting from 10 to as much as 100 W. The etching time was fixed at 1 min. Figure 3
shows the AFM images of the nanopatterns obtained after the etching (Figure S2).
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Figure 3. AFM images after RIE with SF6/O2 mixture plasma for different RIE powers. The
images on the left correspond to DVD-PDMS samples, while those on the right were obtained using
BR-hPDMS stamps.

Tables 1 and 2 show the results for DVD-PDMS and BR-hPDMS samples, respectively. The results
were the average of the three experiments for each RIE power.

Table 1. Results obtained for the different RIE powers studied in the DVD-PDMS samples.

RIE Power

10 W 20 W 30 W 40 W 50 W 60 W 70 W 80 W 90 W 100 W

Roughness (nm) 2.1 8 24.5 35 40 45 57.5 50 87.5 65
Linewidth (nm) 380 440 607 615 656 478 426 368 410 368

Depth (nm) 26.5 80 275 312 403 297 460 440 432 391
Selectivity

SiOx/Si 1.8 5.7 19.6 22.2 28.7 21.2 32.8 31.4 30.85 27.92

Aspect Ratio 0.07 0.18 0.45 0.51 0.61 0.62 1.08 1.19 1.05 1.06
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Table 2. Results obtained for the different RIE powers studied in the BR-hPDMS samples.

RIE Power

10 W 20 W 30 W 40 W 50 W 60 W 70 W 80 W 90 W 100 W

Roughness (nm) 2.5 2.5 25.5 60 45 53 47.5 55 50 53.5
Linewidth (nm) 175 190 299 225 269 190 142 201 119 127

Depth (nm) 5.96 2.52 40 62 140 236 225 266 154 204
Selectivity

SiOx/Si 0.42 0.18 2.85 4.42 10 16.85 16.07 19 11 16.57

Aspect Ratio 0.03 0.01 0.13 0.27 0.52 1.24 1.58 1.32 1.29 1.61

When the RIE power was increased, the surface roughness also increased (Figure 4) for both kinds
of samples with a maximum value of 87.5 nm at 90 W in the case of DVD-PDMS and 60 nm at 80 W
in BR-hPMDS.
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Figure 4. Dependence of the roughness of the nanostructures fabricated on the RIE power used for
DVD-PDMS and BR-hPDMS samples.

Figure 5 shows the change in linewidth, depth, selectivity, and aspect ratio versus the RIE power.
Figure 5a shows an increase in the linewidth when the RIE power is lower than 70 W for DVD-PDMS
samples. Higher RIE powers maintain the linewidth with respect to the original linewidth (previous to
the RIE process). In the case of BR-hPDMS samples, the change in the linewidth is less abrupt. That
could be due to the increased difficulty for the reactive species to penetrate between the patterned
lines during the etching. Figure 5b shows the variation of the depth with the RIE power for both sets
of samples. As the RIE power increases, the depth of the nanostructures is higher for the DVD-PDMS
samples. This is not related to the initial thickness of the PMMA resist but rather with the geometry and
dimensions of the stamp used. The maximum depth achieved is 460 nm at 70 W. For the BR-hPDMS
samples, the maximum depth achieved is 266 nm at 80 W. For higher RIE powers, the SiOx mask is
overetched. This produces a drop in the Si depth that can be etched. Figure 5c shows the selectivity
(SiOx/Si) for the SF6/O2 etching at different RIE powers. In the DVD-PDMS samples, the highest
selectivity of 1:32.8 is achieved at 70 W. For BR-hPDMS samples, a high selectivity of 1:19 is achieved
at 80 W. The aspect ratio (depth/linewidth) is shown in Figure 5d. In the DVD-PDMS samples, the
highest aspect ratio is 1.19 obtained at 80 W; in BR-hPDMS, 1.58 at 70 W.

To fabricate 2D arrays of nanostructures (nanopillars), we performed a similar optimization of
the etching by varying the RIE power. The rest of the conditions were the same than used for the
fabrication of the Si nanobelts. A master with nanoholes of diameter ~150 nm and a period ~400 nm
was used to obtain the stamp. Figure 6 shows a SEM image of the obtained nanopattern.

Table 3 shows the dimensions and the selectivity values obtained for 2D nanostructures. Figure 7a
shows the relationship between the depth and the RIE power. We obtained a maximum depth of
535 nm at 70 W. Figure 7b shows an increase in the diameter of the nanopillars for RIE powers from 70
to 80 W. We found the highest selectivity of SiOx/Si to be 1:38.2 at 70 W (see Figure 7c). Figure 7d shows
the aspect ratio (depth/diameter) of the nanopillars with a maximum of 2.71 at 70 W of RIE power.
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Table 3. Results obtained in 2D nanostructures for different RIE powers.

RIE Power

60 W 70 W 80 W 90 W 100 W

Diameter (nm) 170 197 198 173 178
Depth (nm) 353 535 497 360 372
Selectivity

SiOx/Si 25.2 38.2 35.5 25.7 26.5

Aspect Ratio 2.07 2.71 2.51 2.08 2.09
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3.2. Wettability

Controlling the wetting properties of a variety of surfaces through the manipulation of their
physical and/or chemical properties at the nanoscale level has attracted increased attention due to
their multiple applications [25]. Hydrophilic surfaces with a water contact angle of almost 0◦ have
been successfully used as a transparent coating with antifogging and self-cleaning properties, while
hydrophobic surfaces can avoid contamination, the sticking of snow, and erosion [26]. The modification
of the surface morphology and the materials used permits to adjust the wettability from a hydrophilic
material to a hydrophobic one [27]. Specific periods and aspect ratios play an important role for
obtaining hydrophilic or hydrophobic states [28]. The Wenzel model [29] describes sessile droplets
that fully wet the surface texture. On the other hand, the Cassie–Baxter model [30] describes water
droplets that reside partially on the solid texture and partially on a raft of air pockets entrapped
within the microscopic texture that enable the surface to become hydrophobic. In addition to high
aspect ratios (>>1), the feature density, the characteristic geometric length scale, and topography of the
surface texture all play pivotal roles in creating hydrophobic surfaces that exhibit robust Cassie–Baxter
interfaces and that can resist wetting under dynamic conditions [31–33]. Studies have shown that
an array of high-aspect-ratio nanostructures with high densities shows hydrophobicity, with strong
resistance against transition to the Wenzel state [28,32,34]. We studied the wettability properties of the
fabricated Si nanobelt surfaces through the measurement of the contact angle. A 0.5 µL drop of water
was placed over the nanostructured surface to measure its contact angle (Figure 8a,b). Figure 8c shows
that the highest value for the contact angle for DVD-PDMS samples was 96.2◦ (etched with 30 W of
RIE power) and the lowest value was 8.1◦ (50 W). For the BR-hPDMS samples, the highest value of the
contact angle was 36.1◦ (100 W) and the lowest value was 10.5◦ (50 W). We observed that DVD-PDMS
samples had a higher hydrophobicity for low RIE powers (<50 W) and BR-hPDMS samples for higher
RIE powers (>70 W). However, for both types of samples, a high hydrophilic surface was obtained at
50 W. Figure 8d shows the change in the contact angle with the aspect ratio. In DVD-PDMS, the highest
hydrophobicity was achieved at an aspect ratio of 0.45; in BR-hPDMS samples, at 1.6. We found that,
for all surfaces, the wetting state corresponds to a Wenzel state and the contact angle never exceeds the
critical angle needed for the transition to a Cassey–Baxter condition (Figures S3–S6 and Tables S1–S3).
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3.3. Optical Measurements

The interaction of materials with optical waves and photons is strongly dependent on the structure
of their surface. Nanoscale modifications of the structure of a surface can be used to control the
light field distribution and light propagation, allowing for the development of a large range of key
components for optical systems [35]. We measured the reflectivity of the silicon nanobelts in the
polarizations s and p. Figure 9 shows the reflectivity spectra in the polarization s (polarization p
showed lower intensity for both sets of samples) using a UV-visible elipsometer (J.A Woolam M-2000FI,
J.A Woolam Co, Lincoln, NE, USA) Measurements were performed at 45◦ on the DVD-PDMS and
BR-hPDMS samples fabricated with different RIE powers.
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For both cases, we obtained high oscillations in the reflectivity with maximum values reaching
50% of reflectivity. The first peak, around 280 nm, is correlated with the high reflectivity peak of
silicon, although in our case this peak is much narrower due to the nanostructuration (Figure S7).
This is an interesting spectral region in the UVC part of the light spectrum where most proteins show
strong optical absorptions [36]. The rest of the peaks were naturally produced by the periodicity of the
samples. In the DVD-PDMS samples, as well as in the BR-hPDMS samples, the spectrums showed
that the highest reflectivity was achieved when the RIE power was 30 W, and decreased when the RIE
power was increased.

4. Conclusions

This research demonstrates a new method for the fabrication of nanogratings and nanopillars onto
Si wafers with aspect ratios >1 by combining soft lithography and RIE starting from nanopatterned
resist layers as thin as 14 nm. We fabricated 1D and 2D nanostructures using low-cost DVD and BR
stamps, over large areas, in a simple, fast, and reproducible way. We demonstrated the control of the
aspect ratio of the fabricated silicon nanostructures by varying the RIE power during the RIE process.
By optimization of the RIE power, we fabricated nanobelts with aspect ratios up to 1.6 (142 nm of
linewidth and 225 nm of depth, using BR-hPDMS stamps) and an aspect ratio of 2.71 for 2D nanopillars
(197 nm of diameter and 535 nm of depth). We also demonstrated how the wetting properties of the
photonic surfaces that are patterned using this method can be tuned. For the DVD-PDMS samples, the
highest angle achieved was 96.2◦ and the lowest was 8.1◦. For BR-hPDMS, the contact angle varied
between 36.1 and 10.5◦. Finally, the reflectivity was measured with a UV-visible elipsometer, obtaining
a narrow and intense peak of intensity in the UVC spectral region (280 nm), where some aminoacids
and peptides have a strong optical absorption.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/5/109/s1.
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