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Abstract: Hollow halloysite nanotubes have been used as nanocontainers for loading and for the
triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers
into the tubular nanocontainer is proposed and the sustained release from the cavity is reported.
The incorporation of Ca(OH)2 into the nanotube lumen, as demonstrated using transmission electron
microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation,
delaying the reaction with CO2 gas. This effect can be further controlled by placing the end-stoppers.
The obtained material is tested for paper deacidification. We prove that adding halloysite filled with
Ca(OH)2 to paper can reduce the impact of acid exposure on both the mechanical performance and
pH alteration. The end-stoppers have a double effect: they preserve the calcium hydroxide from
carbonation, and they prevent from the formation of highly basic pH and trigger the response to acid
exposure minimizing the pH drop-down. These features are promising for a composite nanoadditive
in the smart protection of cellulose-based materials.
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1. Introduction

Halloysite clay (HNT) is a natural and abundantly available nanoparticle formed by rolled kaolin
sheets. The main deposits of HNT are from Dragon Mine and Matauri Bay, which are in Utah (USA) and
Northland (New Zealand), respectively. Due to its biocompatibility [1,2] HNT was recently studied for the
development of innovative nanomaterials useful for biotechnological applications, such as the controlled
release of drugs [3–6], tissue engineering [7–9], oil recovery [10], and eco-compatible packaging [11–13].
Furthermore, several studies proved that HNT is a suitable catalytic support [14,15], as well as an efficient
removal agent [16], because of its geometrical and surface properties (large specific area, hollow
tubular shape, and tunable surface chemistry). Both the sizes and polydispersity are influenced by
the HNT geological deposit [17]. Typically, the HNTs lengths range between 0.1 and 3.0 µm, while
their external and inner diameters are ca. 50–200 and 15–70 nm, respectively [18]. The HNT surfaces
are oppositely charged within a large pH range (between 2 and 8) because of their different chemical
compositions [19]. Particularly, the internal surface consists of gibbsite octahedral sheet (Al–OH)
groups with a positive surface charge, whereas the outer surface is composed of siloxane groups
(Si–O–Si) with a negative electrical potential. Accordingly, the selective HNT functionalization can
be easily achieved through electrostatic interactions between the nanoparticle surfaces and ionic
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molecules, such as polymers [20], surfactants [21,22], enzymes [23], and proteins [24]. Inorganic hybrid
nanoparticles are considered suitable building blocks for nanomaterials with smart properties [25–28].
The HNT cavity is an efficient nanocontainer for the loading of chemically- and biologically-active
compounds allowing the fabrication of hybrid nanomaterials with functional properties (antibacterial,
antioxidant, and anti-acid) [4,29–33]. Interestingly, the release of the encapsulated species can be
controlled under specific external stimuli dependent of the environmental conditions, such as pH or
temperature [5]. A Monte Carlo model was successfully used to describe the effect of environmental
variables (pH and temperature) on the transport and release of dexamethasone molecules from
HNT [34]. A recent review [35] highlighted that a typical release time of water-soluble active molecules
from the nanotubes is 5–10 h. It should be noted that slower release kinetics are generally needed for
composite materials with antioxidant, flame-retardant, and antimicrobial properties. A time-extended
release can be achieved by the HNT coating with thin polymeric layers or through the formation of
tube-end stoppers [36–39]. Using dextrin as a smart end-stopper endowed a targeted release of the
payload within cancer cells [39].

The functionalized HNT can be employed as a filler for biopolymeric matrices in order to generate
functional bionanocomposite films with long-term activity [40,41]. The paper consolidation with
perfluorinated modified HNT induced a flame-retardant effect on the cellulose [42]. Similarly, pristine
HNTs provided thermal stability and flame-retardant effects on poly(propylene) [43].

The mechanical resistance of cellulose-based materials is significantly influenced by the degree
of hydrolytic and oxidative reactions. The material deterioration depends on the environmental
conditions (temperature, presence of oxygen, humidity, etc.) and it might be retarded by adding
nanoparticles with specific anti-acid [44] and antibacterial [45] properties. It was demonstrated that
non-aqueous dispersions of alkaline nanoparticles, such as calcium and magnesium hydroxide, are
efficient deacidifying treatments for cellulose-based works [44,46,47]. Due to their high reactivity,
these nanoparticles provide a stable neutral environment by rapidly turning into slight alkaline
species (carbonates). Ca(OH)2 nanoparticles are typically stabilized in short-chain alcohol dispersions.
A recent study proved that Ca-alkoxides are formed and they can hamper/delay the strengthening or
consolidation effects of nanolimes [48]. In general, acid paper is a challenge and many approaches have
been published and reviewed [49,50]. Industrial scale deacidification processes have been installed since
the 1990s and the approach we propose in this study offers a benefit to the known technologies [49].

In this paper, we propose an innovative deacidification and consolidation treatment for paper
based on HNT filled with calcium hydroxide and hydroxypropyl cellulose (HPC). The method
represents an improvement of the consolidation obtained by HNT/HPC mixtures [42]. The selective
loading of the alkaline molecule into the HNT cavity was investigated by using several microscopic
techniques, while the kinetic release of calcium hydroxide was studied by pH and thermogravimetry
measurements. The HNT modification with calcium salts (triphosphate) was explored as an original
approach for the formation of tube end-stoppers, which can generate a time-extended release of the
loaded calcium hydroxide and, consequently, a consolidation and deacidification for the treated paper.
The acquired knowledge represents an advanced step for designing tubular alkaline nanoparticles
with an extended deacidification activity towards cellulose-based materials.

2. Results and Discussion

2.1. Characterization of HNT/Ca(OH)2 with and without End-Stoppers

The thermal behavior of loaded calcium hydroxide was determined by thermogravimetry. Ca(OH)2

presents a mass loss from 400 to 600 ◦C due to the dehydration process and CaO formation (Figure S1).
Halloysite nanotubes present ca. 20 wt % mass loss due to hydration water [11]. By comparing
the thermoanalytical curves of pristine materials and the HNT/Ca(OH)2 composite (Figure S1) it
turned out that, in the composite material, the Ca(OH)2 is likely present as an additional mass loss is
observed. The Ca(OH)2 loaded amount can be evaluated by considering the residual mass at 900 ◦C
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for pristine components and assuming the rule of mixtures. On this basis, one can calculate a value
of 3.9 ± 0.2% w/w (corresponding to 4.5 ± 0.3% v/v) for the loading. Given that the full geometrical
filling would provide ca. 10% v/v of loaded material [19], one may conclude that ca. half of the lumen
is filled by the calcium hydroxide. The presence of Ca(OH)2 in the HNTs-Ca(OH)2 composite was
confirmed by Fourier transform infrared spectroscopy (FTIR) spectra. As evidenced in Figure 1, the
composite material presents the characteristic bands of both components, proving that during the
loading procedure the Ca(OH)2 is preserved and incorporated in the composite.
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S1). To investigate the end-stopper formation, TEM experiments were carried out on HNTs-Ca(OH)2 
with calcium phosphate end-stoppers. Literature reports on TEM images for HNTs samples were 
able to identify the lumen filling especially for high electron density materials, such as metals [51,52]. 
The images for HNTs-Ca(OH)2 based system show that the lumen of HNTs is filled (Figure 2, 
additional images are in Figure S2).  

 
Figure 2. TEM images of HNTs/Ca(OH)2 with calcium phosphate end-stoppers. 

Figure 1. FTIR spectra for Ca(OH)2, HNTs and HNTs/Ca(OH)2.

Thermogravimetric analysis (TGA) data on HNTs-Ca(OH)2 with calcium phosphate end-stoppers
did not show any significant difference from the HNTs-Ca(OH)2 sample as proof that the end-stopper
treatment did not alter the general composition of the material to a large extent (Figure S1). To investigate
the end-stopper formation, TEM experiments were carried out on HNTs-Ca(OH)2 with calcium phosphate
end-stoppers. Literature reports on TEM images for HNTs samples were able to identify the lumen filling
especially for high electron density materials, such as metals [51,52]. The images for HNTs-Ca(OH)2 based
system show that the lumen of HNTs is filled (Figure 2, additional images are in Figure S2).
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EDX mapping allowed us to make a proper identification of the filling; as Figure 3 shows, the Ca
signals come from the same spots where tubular-like nanostructures are imaged. As a confirmation,
this is also the case for Al and Si, which are HNT components, and the Ca signal is absent in pristine
HNTs. Going further, a phosphorus signal was detected, proving that phosphate was, by some means,
kept in the sample during the treatment. Its concentration is relatively small and far below that
stoichiometrically expected for Ca3(PO4)2. On the other hand, P is not phase separated within the
observed sample. By a close look at the nanotube ends (Figure 1), it is revealed that they are closed by
what appears to be a stopper, moreover the lumen cavity nearby the HNTs’ termination appears empty.
Such a morphological observation is in agreement with a mechanism of end stopper formation based
on the reaction between partially-released Ca(OH)2 and Na3PO4 in proximity of the nanotube ends
forming Ca3(PO4)2 due to a high local concentration. It should be noted that a flow of Na3PO4 aqueous
solution is used and that a short solution-HNT/Ca(OH)2 contact time is ensured by vacuum filtration
in order to avoid a complete HNT unload. A schematic representation of end stoppers’ formation is
depicted in Figure 4.
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Additional dark field optical images were taken from the aqueous dispersion HNTs-Ca(OH)2 with
calcium phosphate end-stoppers. Figure 5 shows that the nanotubes generate a uniform dispersion
as they are not aggregated in water. Therefore, the preparation protocols avoid any clustering of
nanoparticles. The literature reports that aggregation and dispersion behaviours of halloysite nanotubes
(HNTs) can be influenced by pH [53]. In particular, it is reported that the pH variation could be used
as a strategy for blocking and opening the halloysite cavity. In our system, based on the observed
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morphology by TEM and dark field (DF) microscopy, we can exclude a clustering of HNTs-Ca(OH)2
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end-stoppers in water.

2.2. Kinetics Study on Carbonatation and Release of Ca(OH)2 from HNT Lumen

In addition to the interesting molecular architecture, we investigated the functionality of the
end stopper in playing any barrier role for gas or to control the release of Ca(OH)2 from the lumen.
Calcium hydroxide typically undergoes CO2 capture with CaCO3 formation. This process has been
widely investigated due to the relevant applicative interest [54]. To explore the ability of HNT lumen in
controlling such a process, we used thermogravimetric analysis under a CO2 atmosphere. The degree
of Ca(OH)2 conversion to CaCO3, based on measured mass gain and initial Ca(OH)2 content in the
measured sample is provided in Figure 6 as a function of time.
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HNT/Ca(OH)2 with phosphate end-stoppers.

It is worth noting that confining Ca(OH)2 within the HNTs lumen cavity significantly retards the
carbonation reaction. Furthermore, the end-stoppers prevent the CO2 contact and less than 10% of the
calcium hydroxide is converted to carbonate after 1 h under the experimental conditions. Although
the time frame is relatively short (one hour), the experiment proves that encapsulated Ca(OH)2 is
still in its original form when bare Ca(OH)2 undergoes complete conversion. This result is very
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promising for applications as it shows the possibility to keep Ca(OH)2 preserved from carbonation
during the treatment.

The release kinetics of Ca(OH)2 in water were investigated by measuring the pH of the dispersion
over time. To this aim, the aqueous dispersions of HNT and HNT/Ca(OH)2 with and without
end-stoppers (0.1 wt %) were left to equilibrate under static conditions while a glassy electrode was used
to monitor the pH. A blank experiment reporting the kinetics for pure Ca(OH)2, in the same amount as
the loaded value in HNTs, revealed a quick dissolution of the hydroxide that occurs within 5 min. After
that a constant pH value was approached, 0.15 cm3 of HCl (0.1 M) was added to the dispersion, and the
pH response was measured for 18 h. With respect to the release in water, the HNT/Ca(OH)2 composite
showed a sustained increase of pH (Figure 7). Even slower is the pH increase for the composites with
the phosphate end-stoppers being the most efficient in retarding the hydroxide solubilization in water.
It is reported that the dissolution kinetics of nanosized materials is influenced by the grain size due to
high specific area and surface energy effects. It should be noted that even if the net Ca(OH)2 amount
was similar for all samples, a higher pH is approached at the plateau for the HNT/Ca(OH)2 composite
compared to the system with end-stoppers. This result reflects the ability of the end-stopping strategy
to retain the hydroxide in the HNT lumen even in water media for a certain extent.

The HCl addition generates a sudden drop-down of the pH that slowly returns toward higher
values due to a further release of the calcium hydroxide from the lumen. The pH increasing trend is
significantly slowed by the end-stopper presence. Moreover, the ∆pH, due to the HCl addition and after
equilibration, is 0.35 and 0.85 for HNT/Ca(OH)2 with and without end-stoppers, respectively. From
the stoichiometric calculation a pH change of 1.35 is expected if all of the calcium hydroxide would
have been dissolved prior to HCl addition. Therefore, we might conclude that confining Ca(OH)2 into
the HNT lumen generates an alkaline reservoir which is released in response to acid addition.
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2.3. Effect of HNT/Ca(OH)2 on Paper Deacidification and Consolidation

The efficacy of the prepared nanomaterials on paper deacidification was monitored by cycling
the aging protocols and controlling the paper conditions and its damage by pH measurements and
tensile experiments.

The paper sample without a Ca(OH)2 basic reservoir reaches acid pH values after the first aging
cycle and it remains constant, not being able to compensate for the effect of acid gas presence (Table 1).
The HNTs/Ca(OH)2 system generated a paper alkaline pH which systematically decreases with
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aging approaching the value for the paper sample without the basic reservoir. Keeping in mind the
strong acidic environment used in this investigation compared to the actual situations that might be
experienced in the conventional conservation for books, the obtained results are already promising.
On the other hand, the end-stopped system could be considered even more performant as the starting
value for pH is only slightly basic and the pH change is kept within one unit even after two aging
cycles when a still alkaline/neutral pH is maintained.

Tensile measurements provided information on the alteration of mechanical performance for
paper samples after exposure to acidic gas. Stress at breaking point (σr) data showed that no treatments
significantly altered the paper property, while only the samples with the alkaline reservoir were able to
minimize the σr reduction upon aging (Table 1). The mechanical performance might also be described
by the storage energy parameter (SE) that is obtained from the stress vs. strain curve integral and
provides an idea on the maximum energy that can be adsorbed by the paper sample until it breaks
down. Results in Figure 8 demonstrate that paper aging reduced the SE if the alkaline reservoir is
not introduced within the paper. On the other hand, the end-stopped system is more efficient in
strengthening the paper, maintaining a relatively high SE value even after the aging protocol.
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Table 1. Paper pH values and stress at the breaking point before and after aging under HNO3

saturated vapours.

Sample pH before
Aging

pH after First
Aging Cycle

pH after Second
Aging Cycle

σr/Mpa before
Aging ∆σr

a/MPa

Paper 6.7 6.3 6.2 24.3 ± 0.3 −8.6
Paper + HPC/HNTs 7.7 6.2 6.3 23.7 ± 0.2 −5.0

Paper + HPC/HNTs-Ca(OH)2 10.4 8.5 6.2 22.8 ± 0.2 −3.3
Paper + HPC/HNTs-Ca(OH)2
with phosphate end-stoppers 8.5 7.6 7.6 23.6 ± 0.2 −3.2

a ∆σr represents the reduction of the stress at breaking point induced by the aging cycle.
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3. Materials and Methods

Materials: Halloysite nanotubes with a specific surface area of 65 m2·g−1 and a specific
gravity of 2.53 g·cm−3 are from Sigma-Aldrich (Milan, Italy). Ca(OH)2, Na3PO4·12H2O, HNO3 60%,
2-hydroxypropylcellulose (HPC), and ethanol (96%) were purchased from Sigma-Aldrich (Milan, Italy)
and used without further purification. The paper sample is cellulose based from Albet® (Milan, Italy)
(70 g·m−2, thickness 0.138 mm and water capillary raise > 178 mm/h).

Thermogravimetry analysis (TGA): Experiments were done using the Q5000 IR (TA Instruments,
Milan, Italy) under nitrogen flow (25 cm3·min−1) by heating the samples from room temperature
to 900 ◦C. Each sample (ca. 5 mg) was placed in a platinum pan and heated under the temperature
program of 10 ◦C·min−1. Loading was calculated according to the procedure in the literature and errors
were evaluated from standard deviations of three measurements [11]. The CO2 capturing experiments
were carried out by quickly heating the sample (200 ◦C·min−1) to 600 ◦C in a N2 flow (25 cm3·min−1).
Afterwards, the gas flow was switched to CO2 with 99.995% chemical purity (25 cm3·min−1). The mass
gain was monitored for 60 min. The high temperature was chosen to accelerate the CO2 capture based
on literature reports [55]. Calibration was carried out as reported elsewhere [56].

Tensile Analysis: Tensile properties on paper samples were determined by means of a DMA Q800
instrument (TA Instruments, Milan, Italy). Tensile tests were performed on rectangular paper samples
(10 mm × 4 mm) under a stress ramp of 1 MPa min−1 at 26.0 ± 0.5 ◦C. We determined the stress at
which the material undergoes fractures (σr) and stored energy up to sample breaking by integrating
the stress vs. strain curves. The reproducibility was checked by repeating the experiment three times.

pH measurements: The pH curves were obtained by using a PCD650 pH meter (Eutech Instruments,
Landsmeer, The Netherlands) immersed in an aqueous dispersion of loaded nanoclay under stirring
conditions. For all of the tested nanomaterials, dispersions were kept under a controlled environment,
magnetic stirring, and measured continuously. Degassed water was used and the concentration of the
dispersions was 0.1 wt %. The pH values of paper was measured by using a HI 1413B/50 portable pH
meter with a flat-tip electrode (Hanna Instruments, Milan, Italy) in accordance with a non-destructive
test that may be used to measure the hydrogen ion concentration (pH) on the surface of the paper in
books and documents that constitute the collections of libraries and government archives (working
procedure: TAPPI T 529 om-04).

TEM-EDX: For electron microscopy imaging and energy-dispersive X-ray analysis (EDX) a Hitachi
HT7700 Exalens transmission electron microscope (Tokyo, Japan) was used. The samples were prepared
by placing 10 µL of the suspension on a carbon-coated lace 3 mm copper grid, then dried at room
temperature. TEM imaging was performed at a 100 kV accelerating voltage in TEM mode. EDX
analysis was carried out in scanning transmission electron microscope (STEM) mode using an Oxford
Instruments (High Wycomb, UK) X-Max™ 80T detector.

Enhanced dark-field imaging: During enhanced dark field microscopy experiments the images were
obtained using a CytoViva® enhanced dark-field condenser attached to an Olympus BX51 upright
microscope equipped with fluorite 100× objectives and a DAGE CCD camera. Extra-clean dust-free
Nexterion® glass slides and coverslips (Schott, Mainz, Germany) were used for EDF microscopy
imaging to minimise dust interference.

Loading of Ca(OH)2 onto HNTs: Degassed aqueous solution of Ca(OH)2 (1.5 g·dm−3) was mixed
with halloysite powder (5 g·dm−3) and sonicated for 15 min. Then, the obtained suspension was
stirred and kept under vacuum for 5 min resulting in light fizzling and the loaded compound
condensated within the tube. This procedure was repeated three times to improve the loading
efficiency. Successively, the nanotubes were separated from the aqueous phase by centrifugation and
dried under vacuum at 70 ◦C overnight.

End-stopper formation: Aqueous phosphate solution was prepared by dissolving 40 g of trisodium
phosphate dodecahydrate in 250 cm3 of water. This solution was poured onto the HNT/Ca(OH)2

powder placed in a Buechner funnel with filter paper placed on the perforated plate. Vacuum was
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applied during the pouring. The filtered material was dried by using a side-arm flask connected to
a vacuum pump.

Paper treatments: For the paper treatment we prepared a 2 wt % HPC solution in ethanol. A certain
amount of HNT (1 wt %) was added to the polymer solution and kept under stirring over night at
25 ◦C. The same procedure was followed by using HNT/Ca(OH)2 with and without end-stoppers.
It should be noted that ethanol was used as the solvent to avoid calcium hydroxide solubilization
during the paper treatment. The paper samples were cut in a rectangular shape (40 mm × 8 mm) and
they were deeply immersed into the well-dispersed aqueous mixtures for 24 h at 20 ◦C. The treated
samples were dried at 35 ◦C.

Paper aging under acidic conditions: Paper specimens were placed in a closed desiccator. The vapours
were saturated with HNO3 by equilibrating the system with 30% acid solution. One aging cycle was
three days. Before any characterization, the paper samples were re-equilibrated with air for 20 days.

4. Conclusions

We developed a novel strategy for sustained release and controlled access to the halloysite
nanotubes lumen. Calcium hydroxide was loaded into the HNTs lumen and imaged by TEM and
EDX mapping. End-stoppers were created when calcium hydroxide was partially released in the
presence of phosphate anions. The obtained end-stoppers prevent CO2 from entering the tube lumen
and preserving the calcium hydroxide from carbonation. Moreover, they slow the release in water,
minimizing the pH jumps if an acid is added to the dispersion. These features are very promising
for paper preservation, as was demonstrated by aging experiments on treated and pristine cellulose
paper samples. This composite nanomaterial would allow adding an alkaline reservoir to the paper
and minimizing the pH changes, as well as the aging impact on the mechanical performance of the
sample. The proposed strategy could be interesting in designing and building up nanocontainers with
nanogates that are sensitive to external stimuli.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/8/199/s1.
Figure S1: TGA curves for HNT-based hybrid materials. Figure S2: Additional TEM figures.
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