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Abstract: During the past few years, silver nanoparticles (AgNPs) became one of the most investigated
and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials
proved to have interesting, challenging, and promising characteristics suitable for various biomedical
applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the
therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and
impressive potential for the development of novel antimicrobial agents, drug-delivery formulations,
detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration
and regeneration materials, complex healthcare condition strategies, and performance-enhanced
therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs,
impressive efforts were undertaken on understanding the intricate mechanisms of their biological
interactions and possible toxic effects. Within this review, we focused on the latest data regarding the
biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity,
unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic
anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.

Keywords: silver nanoparticles; biomedical applications; biological interactions; biofunctional
performances; intrinsic anti-inflammatory activity; antimicrobial efficiency

1. Introduction

In the past few decades, tremendous interest and substantial research efforts were directed toward
the biomedical evaluation and revaluation of metallic nanoparticles derived from noble metals, such as
silver and gold, thanks to their specific and genuine chemical, biological, and physical properties [1,2].
In particular, impressive attention was oriented toward the biomedicine-related assessment of silver
nanoparticles (AgNPs), which first attracted worldwide attention as unconventional antimicrobial
agents [3–5]. Even though there is limited information regarding the toxicity and in vivo biological
behavior of AgNPs, these nanostructures were used for a long time as antibacterial agents in the health
industry [6,7], cosmetics [8,9], food storage [10,11], textile coatings [12,13], and some environmental
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applications [14–16]. AgNPs are a class of zero-dimensional materials with distinctive morphologies,
having a size ranging from 1 nm to 100 nm [17].

As to the methods of obtaining AgNPs, different strategies were successfully used, thanks to
the intrinsic versatility of silver metal and silver-based compounds, including physical [18,19],
chemical [20,21], physicochemical [22,23], and biological synthesis approaches [24,25]. However, given the
facile and safe process, reduced economic implications, and repeatability and reproducibility of
experimental results, the method most used in the preparation of AgNPs is represented by the
chemical reduction of silver salts by sodium citrate or sodium borohydrate [26,27]. In addition to their
intrinsic antimicrobial-related applications, AgNPs were thoroughly explored thanks to their beneficial
size-related physicochemical effects exhibited in novel electronic, magnetic, catalytic, and optical
materials [28,29].

Special interest is oriented toward improving the stability of AgNPs, since a particular
limitation of their antimicrobial-related use arises from their instability in bacteria-rich environments,
and consequently, diminution or deprivation of their anti-pathogenic activity. In order to improve
the stability of AgNPs in solution, many inorganic and organic [30,31], synthetic and natural [32,33],
and biotic and abiotic materials were used as capping agents [34].

Though the precise anti-pathogenic mechanism of silver nanoparticles remains to be clarified,
it is postulated that nanosilver-based systems exert their antimicrobial effects through the following
phenomena: (a) microbial membrane damage, caused by the physicochemically guided attachment of
AgNPs on the cell surface, and subsequent structural and functional alterations (such as gap formation,
membrane destabilization, membrane piercing, and cytoplasm leakage); and (b) microbial sub-cellular
structure damage, caused by the release of free Ag+ ions and subsequent reactive oxygen species
(ROS) generation or essential macromolecule (proteins, enzymes, and nucleotides) inactivation [35–37].
Still, the most remarkable mechanistic mode of AgNP-based antimicrobial effects is represented by their
adhesion to microbial cells, ROS and free-radical generation, microbial wall piercing and penetration
inside cells, and modulation and modification of microbial signal-transduction pathways [38].
Metallic silver ions are strong antimicrobials themselves, but they are easily isolated by phosphate and
chloride functions, proteins, and different cellular components [39]. The intrinsic biocide or biostatic
activity of AgNPs is strongly influenced by different physicochemical features, including morphology,
size, oxidation and dissolution states, surface charge, and surface coating [37,40].

The effectiveness of nanosilver-based biomaterials as promising antimicrobial agents was
experimentally assessed against a wide range of medically relevant planktonic and sessile
pathogenic microorganisms, including bacteria [41,42], viruses [43,44], fungi, and yeasts [45,46].
The impressive antimicrobial activity of AgNPs is a solid starting point for the design, development,
and implementation of new and performance-enhanced nanosilver-based biomedical products, such as
anticancer agents, drug-delivery platforms, orthopedic materials and devices [47], bandages, antiseptic
sprays, and catheters [48]. As a consequence of the impressive applicability of AgNPs in the fields of
nanotechnology, biomedicine, and environment, there is a continuous need for the development of
cost-effective methods for the synthesis of AgNPs [49]. The translation of silver-based nanotechnology
to clinical applications requires not only the development of safe, simple, eco-friendly, and cost-effective
methods for the synthesis of silver nanoparticles, but also a thorough understanding of the related
physicochemical particularities, in vitro and in vivo effects, biodistribution, safety control mechanisms,
pharmacokinetics, and pharmacodynamics of AgNPs [48].

2. Antibacterial Characteristics of Silver Nanoparticles

Silver nanoparticles attracted tremendous interest in the biomedical field, thanks to their attractive
and unique nano-related properties, including their high intrinsic antimicrobial efficiency and
non-toxic nature. Among the manifold potential applications of AgNPs in this particular domain,
impressive attention and efforts were lately directed toward their promising implications in wound
dressing, tissue scaffold, and protective clothing applications [50,51]. Some essential aspects related
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to the specific antimicrobial characteristics of AgNPs implies their intrinsic physical and chemical
properties, which include maintaining the nanoscale size of AgNPs, improving their dispersion and
stability, and avoiding aggregation [52]. There are many studies which experimentally proved that the
anti-pathogenic activity of AgNPs is better than that exhibited by silver ions [53].

A major concern of the worldwide healthcare system is represented by the alarming and
emerging phenomenon of pathogenic drug-resistant occurrence. Therefore, AgNPs represent potent
candidates for the nanotechnology-derived development of novel and effective biocompatible
nanostructured materials for unconventional antimicrobial applications [54]. Thanks to their intrinsic
broad bactericidal effects exhibited against both Gram-negative and Gram-positive bacteria and
their physicochemical properties, AgNPs are one of the most used metallic nanoparticles in modern
antimicrobial applications [55]. Different studies reported that AgNPs interact with the bacterial
membrane and penetrate the cell, thus producing a drastic disturbance regarding proper cell function,
structural damage, and cell death [56]. We included in Figure 1 distinctive mechanisms described
during the interaction of AgNPs with bacterial cells [57].
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Currently, it is shown that AgNPs can be successfully used to design and develop improved
wound and burn dressings, thanks to the intrinsic antibacterial and anti-inflammatory effects of
sole metallic nanoparticles [58]. Given the mutation-resistant antimicrobial activity related to
nanosilver-based biomaterials, AgNPs are used in various pharmaceutical formulations as burn
ointments, antibacterial clothing, and coatings for medical devices [59]. Different studies proved that
the stabilization of AgNPs against dissolution and/or agglomeration can be achieved by using various
capping agents, such as sodium citrate, polyvinylpyrrolidone (PVP), or polyethylene glycol (PEG) [60].
The stability of AgNPs was previously investigated, where the reported data indicated that their
stability actively influences their toxicity [60].

The most important physicochemical parameters that affect the antimicrobial effects exhibited by
AgNPs include size [61], shape [62], concentration [63], surface charge [64], and colloidal state [65].
As mentioned before, AgNPs display their intrinsic enhanced antimicrobial activity through various
mechanisms [66].

It is also worth mentioning that the AgNP-based treatment of human cell cultures may induce
cytotoxicity [67], inflammatory responses in a cell-type-dependent manner, and genotoxicity [66].
Thanks to their intrinsic capacity to provide stimuli-dependent responses through the specific
modification of their optical properties, chemical environments, high molar absorptivity [68], and the
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many sorption sites found on their extensive surface [69], AgNPs are also used in various analytical
applications. There are manifold research studies which particularly describe the biocide activity of
silver itself [70].

The current state of the art relies on the beneficial conjunction between antimicrobial silver
nanoparticles and natural or synthetic polymers, in the modern attempt to diminish or even eliminate
the microbial contamination and colonization processes [71].

The major advantage of nanosilver-based biomaterials designed for unconventional antibacterial
applications is related to their intrinsic anti-pathogenic effects exhibited against both planktonic and
biofilm-organized microorganisms. The bactericidal activity of AgNPs is attributed to silver cations,
which possess the ability to specifically bind to thiol groups of bacterial proteins, disrupting their
physiological activity and leading to cell death. The effects of AgNPs on bacterial DNA were not
analyzed in detail with respect to possible DNA lesions and antibacterial action that occur after AgNPs
treatment. Silver nanoparticles exert their bactericidal activity through a Trojan-horse mechanism,
since their initial binding to the cell surface leads to permeability alteration and cellular respiration
impairment, followed by cell-barrier penetration and intracellular metallic silver ion release.

In order to successfully apply nanosilver-based systems as effective antibacterial agents,
it is important to thoroughly understand their action against bacterial cells and bacterial
biofilms [72]. In addition to their improved efficiency against planktonic bacteria (as discussed above),
AgNPs also possess bactericide or bacteriostatic activity against biofilm-organized microorganisms.
The antibacterial effects exhibited by silver-based nanosystems against biofilm-organized bacteria
may be due to intrinsic activity against isolated or block cells, destabilization or disruption of the
exopolymeric substances within the extracellular biofilm matrix, or interfering with bacterial signaling
molecules [73–75]. There are ongoing discussions regarding the role of Ag ions released from AgNPs
and their related toxic effect on microorganisms. Many researchers stated that the toxicity of AgNPs
is due to the nanoparticles themselves, whereas others provided evidence that silver ions released
from AgNPs play a crucial role during antimicrobial activity. Following the release of silver ions from
AgNPs, antibacterial activity is initiated by metallic cations, rather than by metallic nanoparticles [76].

3. Silver Nanoparticles for Drug-Delivery Systems

In medicine, the pharmacokinetics and pharmacodynamics of drugs are as important as
their intrinsic therapeutic effects [77]. Since the specific and selective delivery and action of
therapeutic agents became one of the most studied topics for improving current human healthcare
practice, nanoparticles received tremendous attention regarding the design and development of
novel and enhanced drug-delivery systems [78]. In particular, AgNP-based nanosystems were
evaluated as suitable carriers of various therapeutic molecules, including anti-inflammatory [79,80],
anti-oxidant [81,82], antimicrobial [83,84], and anticancer [32,85] biosubstances.

In order to provide a specific therapeutic effect in human or animal organisms, it is essential
to consider the process or method applied during the administration of the selected pharmaceutical
compound [86]. For obtaining novel and performance-enhanced drug-delivery systems responsive
to thermal, optical, or pH modulations to target inflammatory, infectious, and malignant ailments,
hybrid molecular units consisting of AgNPs were successfully chosen, especially thanks to their
exceptional biocompatibility and viable features for nanoscale-derived therapeutic settings [87].

As a consequence of the difficulty encountered during AgNP synthesis and the concerns regarding
the toxicity and reduced stability of nanosilver-based systems when functionalized according to
conventional salt-aging techniques, silver is not extensively used in nanoparticle-based drug-delivery
applications, instead being replaced with gold or other nanomaterials [88]. An excellent triggerable and
tunable nanosystem for drug-delivery applications should be easy to develop from readily available
components, exhibit optimal responsiveness, and be compatible with more than one trigger [89].
Moreover, such a particular drug-delivery [90] platform should not only provide suitable and
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adjustable drug loading and releasing profiles, but should also enable [70] maximal therapeutic
efficiency at concentrations below that of the sole biosubstance with side-effect minimization [91,92].

Thanks to their intrinsic anticancer activity [93], AgNPs attracted special attention for
this particular domain, and were successfully evaluated as effective anti-tumor drug-delivery
systems [94], acting either as passive [95,96] or active [97,98] nanocarriers for anticancer drugs. For the
preparation of biocompatible AgNPs, different strategies were used, such as organic-water two-phase
synthesis [99–101], micro-emulsion [102–104], radiolysis [105,106], and most commonly, reduction in
aqueous solution [94,107,108]. Impressive attention, scientific knowledge, and financial support were
lately oriented toward the formulation of AgNP-based drug-delivery platforms, thanks to the intrinsic
features of nanosilver, including its capacity to bind a wide range of organic molecules, its tunable and
strong absorption properties, and its low toxicity [109]. Recent studies evidenced the potential use of
AgNPs as vaccine and drug carriers for specific and selective cell or tissue targeting [109]. In addition
to the great optical properties of AgNPs (governed by specific surface plasmon resonance and localized
surface plasmon resonance) [110–112], the recent improvements in AgNP biocompatibility and stability
via surface modification strongly recommend nanostructured systems based on silver as specific,
selective, and versatile candidates for drug-delivery applications [113].

4. Silver Nanoparticles for Catheter Modification

Central venous catheters (CVC) were firstly described by Niederhuber in 1982; since then, these
devices became important therapeutic tools for diverse clinical conditions requiring malnutrition
and replacement therapy (e.g., renal disease and cancer) [114]. CVCs are normally used to provide
access for intravenous fluid administration, hemodynamics monitoring, drug-delivery pathways [115],
and nutritional support in critically ill patients. Still, these medical devices are also a considerable
source of hospital-acquired infections [116], and are considered a specific high-risk category of devices
susceptible to microbial contamination and colonization phenomena [117]. A recent study showed
that various Staphhylococcus aureus strains are responsible for catheter-related infections, and 82% of
them are methicillin-resistant strains possessing many genes expressed in biofilm development and
bacterial dispersion processes [118].

In order to induce antibacterial effects to clinically relevant materials and devices, AgNPs were
extensively explored for the modification of one-dimensional and two-dimensional surfaces [119],
such as cotton fabrics [120,121], natural and artificial fibers [122–124], thin polymer films [125,126],
and wound pads [127,128].

Even if silver (a half-noble metal) is susceptible to quick oxidation processes, the impressive
surface-to-volume atomic ratio related to AgNPs accounts for the sustained local supply of Ag+

ions at the coating/tissue interface [129]. In recent studies, the role of AgNP-modified catheters
as non-toxic devices capable of sustained release of bactericidal silver, exhibiting preventive
effects against infection-related complications, was presented [116,130,131]. Given the fact that
one of the major groups of organisms that causes device-related infections is represented by
coagulase-negative staphylococci (CoNS), the effects exhibited by AgNPs and AgNP-coated catheters
against these organisms were intimately studied [38]. Significant inhibitory effects against both
Gram-positive and Gram-negative bacterial biofilm development were exhibited by CVCs coated with
AgNPs [115,132–134].

Because the binding capacity of silver nanoparticles to bacterial cells is influenced by the
surface area available for interaction, the bactericidal effects are expected to be size-dependent [135].
Catheters treated with silver ions represent a feasible strategy for reducing dialysis-related infections in
patients undergoing peritoneal catheters; however, the antimicrobial efficiency and obtaining methods
of Ag+ are different [136]. Silver/copper-coated catheters were assessed as a promising solution
for preventing methicillin-resistant Staphylococcus aureus (MRSA) infections, since their antibacterial
activity might be improved by limiting non-specific plasma protein adsorption [137].
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The main complication related to urinary catheterization is represented by the occurrence of
catheter-associated urinary tract infections (CAUTIs) [138]. It was shown that a polymer matrix
impregnated with AgNPs displayed hydrophilic surface properties, resulting in the prevention of
bacterial biofilm formation and the deposition of proteins and electrolytes responsible for incrustation
and adherence of microorganisms onto the surface [139]. With regards to silicon urethral catheters,
Kocuran-capped silver glyconanoparticles were successfully evaluated as effective antibiofilm and
antimicrobial coatings [118]. Despite the concerns regarding CVC-related complacency with respect
to septic techniques, catheters with antimicrobial properties were taken into consideration as
a feasible means of supplying additional protection against microbial contamination, further reducing
colonization and infection risks [117].

5. Silver Nanoparticles for Dental Applications

Dental caries represent one of the most extensive oral-cavity-related affections worldwide, being
also an economic burden [140]. By enhancing the remineralization process and controlling biofilm
development, nanotechnology-derived dental-related strategies aim to limit or even eliminate the
clinical impact of caries [140]. In addition to their intrinsic highly biocompatible behavior, the materials
for dental barrier membranes (DBM), which are often used for efficient alveolar bone reconstruction,
must accomplish some specific and additional features and functions [141]. Different metal-coated
implants were evaluated against various pathogens responsible for dental-related biofilm formation
and subsequent implant failure [142].

In order to prevent the pathogenic contamination of dental implants, proper tooth-brushing
techniques, prophylactic antibiotics, and antimicrobial mouthwashes are specifically recommended [143].
A major goal in dentistry is to provide the proper protection of the oral cavity, which represents
a pathogenic-susceptible gateway for the entire body [144]. Biofilms developed on dental implant
surfaces may additionally cause inflammatory lesions on the peri-implant mucosa, thus increasing the
risk of implant failure [145].

Silver was used for centuries in oral care and gained worldwide attention in the 19th century,
being a major component in dental amalgams used for tooth restoration [146]. AgNPs were also
used in various fields of dentistry, such as dental prostheses, restorative and endodontic dentistry,
and implantology [147]. Thanks to their unique properties feasible for different domains of real interest
in modern society, silver nanoparticles hold a prominent place in nanomaterial-related restorative,
regenerative, and multifunctional biomedicine [148,149].

An attractive strategy embraced by worldwide practitioners in order to provide additional
bactericidal effects to general-use dental materials is to modify or embed them with silver-based
nanostructures [150]. Though silver has favorable effects in caries prophylaxis in the form of nanosilver
diamine fluoride (SDF), the use of this particular compound has some disadvantages, one of the
most noticeable effects being represented by tooth staining [151]. By reducing the size of AgNPs,
the contact surface will be considerably increased; in this way, the antimicrobial effects of silver would
be improved, and the use of nanosilver could prevent black staining in teeth, which usually occurs
after the application of SDF [152].

Antibacterial resins could be used in clinical dental applications, both in orthodontics and
restorative dentistry [153]. In orthodontics, these resins could be used as bracket or branked bonding
materials, while, in restorative dentistry, they could be used as filling or denture base material [153].
Therefore, in order to improve their physico-mechanical properties and antimicrobial effects, a method
for incorporating AgNPs into acrylic resin denture-base materials was developed [154].

Because the oral cavity is an active ecosystem usually colonized by various pathogenic
microorganisms, dental materials and implants have an increased risk of contamination and subsequent
colonization processes [155]. In terms of superior antimicrobial activity, promising results were
reported with respect to the incorporation of silver-based nanosystems within adhesive resins [156,157],
orthodontic cements [158,159], and dental composites [160–162]. In addition to being used as
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antimicrobial filling agents within multifunctional biomaterials, another attractive and challenging
dental application of AgNPs relies on their potential use as biostatic or biocide coatings for conventional
titanium-based dental implants [163,164]. Though AgNPs proved to be efficient and effective agents
in dental practice, they remain controversial candidates for this specific area of research, due to their
variable toxicity in biological systems. Therefore, any potential application of AgNPs in dentistry must
include thorough studies regarding the optimal compromise between physicochemical features and
biofunctional performance [165].

6. Silver Nanoparticles for Wound Healing

Wound infections represent an important clinical challenge, with major impact on patient
morbidity and mortality and notable economic implications [166]. Preventing wound dehiscence and
surgical-site infection are challenging and essential aspects in current clinical practice [167]. The skin
is the most extensive and one of the most complex organs in the human body, but it can be easily
affected by different harmful external factors [168]. Physically or chemically induced cutaneous
wounds may significantly disturb skin structural and functional integrity at different stages, leading to
permanent disability or even death, depending on the severity of the injury [169]. In the past few
years, wound infections caused by opportunistic pathogenic microorganism became an important
issue during current healthcare practice [170]. The ultimate tendency and ideal desideratum for
infected-wound management is represented by fast tissue-recovery processes, accompanied by
maximal functionality restoration and minimal scar-tissue formation [171]. The wound-healing
process, as any complex pathophysiological mechanism, includes different stages, such as coagulation,
inflammation, cellular proliferation, and matrix and tissue remodeling [171].

Since ancient times, silver-based compounds and materials were used for the unconventional
and effective control of distinctive infections [172]. Given its intrinsic physicochemical features and
biological peculiarities, nanosilver provides a wide range of efficient biocide activities against an
impressive diversity of anaerobic and aerobic, Gram-negative and Gram-positive bacterial strains. It is
well known that bacterial and mammalian cells poorly absorb metallic or elemental silver, due to its
chemical inactivation. Therefore, in order to provide specific antibacterial effects under physiological
conditions (including the presence of body fluids or secretions), the ionization of silver is required.
After their penetration inside cells, silver ions merge with enzymatic and structural proteins [173].
AgNPs or silver ions used in absorbent wound dressings can interact with and destroy the bacteria
found in exudate [174].

Briefly, recent data provide the following information regarding AgNP skin absorption: (i) there
is plenty experimental evidence with respect to the in vitro skin permeation by nanoparticles, and
(ii) there is an important increase in permeation in the case of damaged skin [175]. When naturally
available biopolymers (e.g., chitosan [176] or collagen [177]) are implied in novel nanotechnology
approaches, they possess tremendous potential regarding the obtaining of novel and functionally
improved platforms for effective wound-healing applications [178].

Acticoat™ and Bactigras™ (Smith & Nephew), Aquacel™ (ConvaTec), PolyMem Silver™ (Aspen),
and Tegaderm™ (3M) are representative biocomposites modified with ionic silver and approved
by the United States (US) Food and Drug Administration (FDA) for wound-dressing applications.
In addition to these commercial products, promising results were reported with respect to the
incorporation of AgNPs within novel and naturally derived biomaterials for enhanced wound-healing
management, such as (but not limited to) modified cotton fabrics [179,180], bacterial cellulose [181,182],
chitosan [176,183], and sodium alginate [184,185].

The use of AgNPs and Ag+ carriers also represents a valuable strategy for delayed diabetic
wound-healing processes, since diabetic wounds may be accompanied by numerous secondary
infections. AgNPs can help diabetic patients in early wound-healing stages, additionally providing
minor scars [186]. Taking into account the efficient and enhanced antibacterial effects exhibited
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by AgNPs and the impressive interest oriented toward their application in wound therapy and
medical-device coatings, their biocompatibility and safety aspects must be thoroughly clarified [187].

7. Silver Nanoparticles for Bone Healing

Every year, millions of people worldwide are affected by distinctive and complex
bone-related pathologies, including infectious diseases, degenerative and genetic conditions, cancers,
and fractures [188]. Unfortunately, the opportunistic contamination and colonization of orthopedic
implants represent major concerns in osseous-tissue replacement strategies, since the related infections
are associated with high morbidity [189]. Bone is an active tissue that undergoes regenerative and
restorative processes through the intrinsic and complex bone-remodeling mechanism [190]. Bone grafts
are usually implanted to replace or restore severe defects that irremediably affect osseous tissue,
such as genetic malformations, tumors, or traumas [191]. Orthopedic and bone-implant-related
infections are usually associated with highly inflammatory processes and subsequent implant loss and
bone-destruction phenomena [192].

Previous studies reported that AgNPs naturally improve the differentiation process of MC3T3-1
pre-osteoblast cells and subsequent bone-like tissue mineralization, when compared with other
NPs [193]. Currently, silver-coated prostheses represent an unconventional approach during the
prophylaxis of tumor-related infections and extensive trauma-related infections. However, no clinical
studies comparing the long-term clinical impact of nanosilver-coated implants for revision arthroplasty
are reported as of yet [194]. The self-repairing capability of bone can be limited when bacterial
activity occurs in bone defects. Compared with usual antibiotics, AgNPs possess intrinsic antibacterial
activity with a broader spectrum. Also, the bacterial resistance to AgNP activity is an uncommon
phenomenon, thus emphasizing that the bactericidal mechanisms of nanosilver act in synergy.
Thanks to this peculiar property, AgNPs have the capability to inhibit or impair biofilm development
or mature biofilm, respectively, in the case of antibiotic-resistant bacteria, such as methicillin-resistant
Staphylococcus aureus [195].

Human bone, dentin, and dental enamel are mainly composed of crystallized hydroxyapatite
(HA), which is a calcium-phosphate salt [196]. Given the specific biocompatibility of biosynthesized
and synthetic HA, this material and its derivatives are extensively explored for the development of
unconventional osseous-related restorative and regenerative strategies, either as artificial bone grafts
or as coating materials for metallic implants [197]. With regards to the superficial modification of
various metallic implant surfaces, biocompatible HA integrated with silver (either in metallic or ionic
form) represents a suitable choice for the fabrication of bioactive and antimicrobial bone implants [198].
The antimicrobial efficiency of HA-based coatings embedded with nanosilver was evidenced against
Gram-positive [199–201] and Gram-negative [202–204] bacterial strains.

In terms of bone-replacement procedures, AgNPs are normally used as doping materials for
synthetic and bio-inspired bone scaffolds, with relevant results being recently reported [205,206].
In order to induce antibacterial properties in HA coatings, several experimental techniques
proved suitable for the incorporation of nanosilver within calcium-phosphate materials, such as
laser-assisted deposition, electrochemical deposition, magnetron sputtering, ion-beam-assisted
deposition, sol-gel technology, and microarc oxidation [207].

Previous studies showed that AgNP-implanted titanium displayed improved antibacterial ability,
as well as excellent compatibility with osteoblasts, thanks to the micro-galvanic effects produced
between the implanted AgNPs and the titanium substrate [208]. Many studies investigated the
feasibility and clinical potential of adjusting acrylic cements with AgNPs, in order to provide
unconventional and functionally improved biomaterials for orthopedic applications. While previous
studies explored different acrylics modified with AgNPs, a significant part of the previous work
is limited, since vital material characteristics and mechanical properties were not thoroughly
analyzed [159,209–211].



Nanomaterials 2018, 8, 681 9 of 25

Moreover, the beneficial addition of antimicrobial AgNPs within composite matrices designed
for bone-tissue engineering were emphasized. In a recent study, it was shown that AgNPs could
promote the osteogenesis and proliferation of mesenchymal stem cells (MSCs), in order to enhance
the healing process of bone fracture [212]. A correlation was also reported between NP uptake and
growth in clathrin-dependent endocytosis in the case of MSCs and osteoblasts, indicating that this
route may represent the principal cellular internalization pathway of AgNPs [213]. Taking into account
the limited capacity of bone tissue to fully reconstruct or replace severe defects, the development of
novel and performance-enhanced implants is required. Thus, new pathways were used to stimulate
bone regeneration and also to prevent the side effects correlated with therapeutics currently used in
the clinic [214].

8. Silver Nanoparticles for Other Medical Applications

Thanks to their unique physiochemical properties and biofunctional features, such as
anti-inflammatory, anti-angiogenesis, antiplatelet, antiviral, antifungal, and antibacterial activities,
AgNPs play an important role in the development and implementation of novel biomedicinal
strategies [45]. Recently, AgNPs were intimately investigated regarding their promising anticancer
effects exhibited in different human cancerous cell lines, such as endothelial cells, IMR-90 lung
fibroblasts, U251 glioblastoma cells, and MDA-MB-231 breast cancer cells [215,216]. AgNPs possess
the intrinsic capability to merge with mammalian cells and to easily penetrate them by means of
energy-driven internalization pathways [217]. Another attractive property of AgNPs relies on their
specific fluorescence, making them suitable candidates for detection and dose-enhancement purposes
in X-ray irradiation applications [218].

At the moment, the combination of therapy and diagnosis, known as theranostics, represents the
most important, attractive, and challenging approach embraced by healthcare practitioners and
researchers with respect to the effective and personalized therapy of cancer desideratum [219].
AgNPs are also plasmonic structures, capable of particularly scattering and absorbing the light
impinging certain areas. After their selective uptake into cancerous cells, AgNP-derived scattered light
can be used for imaging purposes, whereas absorbed light can be used for selective hyperthermia [220].

Cardiovascular diseases (CVDs) represent a major cause of worldwide human death, being
responsible for more than 17.7 million deaths in 2015 [221]. Recently, many studies focused on the
evaluation of the effects of AgNPs on various types of cell encountered in the complex vascular system,
but the reported results were contradictory. However, the collected data can provide substantial
knowledge with respect to the potential benefits of AgNPs for pathological and physiological stages
related to the cardiovascular system, thus contributing to the development of novel and specific
molecular therapies in vascular tone, vasopermeability, and angiogenesis [222]. Cardiovascular
pathologies, such as hypertension, may influence the toxic effects induced by AgNPs [223]. The first
silver-modified cardiovascular medical device was a prosthetic silicone heart valve coated with
elemental silver, which was developed to avoid valve-related bacterial infection and to reduce
inflammation response [224].

Malaria, one of the most common infectious diseases encountered in tropical and sub-tropical
regions, became a major healthcare concern all around the world. It was shown that AgNPs possess
powerful activity against both the malarial parasite (Plasmodium falciparum) and its related vector
(Anopheles female mosquito). The intrinsic anti-plasmodial effects exhibited by nanosilver-based
compounds and materials represent a solid starting point toward the nanotechnology-derived therapy
and worldwide control of malaria [24,225,226].

The human eye is a complex organ, with impressive vascularization and innervation, that
can be easily exposed to microbial contamination under proper temperature and humidity
conditions [227,228]. Nanosilver-based compounds and materials proved promising potential toward
the development of unconventional and performance-enhanced therapy of eye-related infectious
conditions. AgNPs coated with calcium indicators proved to have reduced damage with respect to
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retinal cells, and could be experimentally applied for retinal imaging in a mouse animal model [229,230].
The bactericidal effects related to AgNP-containing nanomaterials are essential aspects which must
be further considered for their exploitation as an improved class of antibacterial agent for ocular
applications [14,231,232].

AgNPs can be successfully used as novel nanostructured platforms for diagnostics and the
treatment of different cancers [233]. The broad-spectrum bioactivity of AgNPs makes them promising
agents not only for anti-infective fighting strategies, but also in critical tumor and multi-drug resistance
tackling approaches.

9. Toxicity of Silver Nanoparticles

Even if AgNPs possess tremendous advantages that recommend them for novel and challenging
biomedical applications, their toxicity became an intensive study subject only recently. The daily
amount of silver derived from natural sources in food and water ingested by humans is approximately
0.4–30 µg [234]. The available studies performed with respect to the toxic effects exhibited by AgNPs
within biological systems, such as bacteria and viruses or human cells, report contradictory and
various results [235,236]. AgNPs are generally presented as highly effective antimicrobial agents with
non-toxic effects to healthy mammalian cells [237]. However, various in vitro studies demonstrated
the nanosilver-related toxic effects in rat hepatocytes and neuronal cells [238], murine stem cells,
and human lung epithelial cells [239]. The toxicity of AgNPs was also investigated during in vivo
assays. The toxicity studies performed in a rat ear model proved that AgNP exposure resulted
in significant mitochondrial dysfunction and subsequent temporary or permanent hearing loss,
depending on the inoculation dose. Even low concentrations of AgNPs were absorbed by retinal cells
and resulted in important structural disruption, due to the increased number of cells that underwent
oxidative stress [240].

The possible toxicity mechanisms related to AgNPs are depicted in Figure 2 [241]. The performed
studies also proved that variations in surface charge resulting from the surface functionalization of
AgNPs can impact cellular uptake, translocation to various tissues, and cytotoxicity. The magnitude of
the surface charge, as measured by the zeta potential, can influence the amount of nanoparticles and
their mechanism of uptake into cells [242].

Nanomaterials 2018, 8, 681 10 of 24 

 

9. Toxicity of Silver Nanoparticles 

Even if AgNPs possess tremendous advantages that recommend them for novel and 

challenging biomedical applications, their toxicity became an intensive study subject only recently. 

The daily amount of silver derived from natural sources in food and water ingested by humans is 

approximately 0.4–30 µg [234]. The available studies performed with respect to the toxic effects 

exhibited by AgNPs within biological systems, such as bacteria and viruses or human cells, report 

contradictory and various results [235,236]. AgNPs are generally presented as highly effective 

antimicrobial agents with non-toxic effects to healthy mammalian cells [237]. However, various in 

vitro studies demonstrated the nanosilver-related toxic effects in rat hepatocytes and neuronal cells 

[238], murine stem cells, and human lung epithelial cells [239]. The toxicity of AgNPs was also 

investigated during in vivo assays. The toxicity studies performed in a rat ear model proved that 

AgNP exposure resulted in significant mitochondrial dysfunction and subsequent temporary or 

permanent hearing loss, depending on the inoculation dose. Even low concentrations of AgNPs 

were absorbed by retinal cells and resulted in important structural disruption, due to the increased 

number of cells that underwent oxidative stress [240]. 

The possible toxicity mechanisms related to AgNPs are depicted in Figure 2 [241]. The 

performed studies also proved that variations in surface charge resulting from the surface 

functionalization of AgNPs can impact cellular uptake, translocation to various tissues, and 

cytotoxicity. The magnitude of the surface charge, as measured by the zeta potential, can influence 

the amount of nanoparticles and their mechanism of uptake into cells [242]. 

 

Figure 2. Schematic representation of plausible methods of cellular uptake of AgNPs [243]. Reprinted 

with permission from [243]. Elsevier, 2015. 

In order to investigate the toxic effects caused by exposure to nanosilver-based systems, 

thorough assays are required, considering both cellular and animal models. Regarding the in vivo 

biocompatibility and biodistribution assays, the reported data evidenced that AgNPs can result in 

structural and physiological alteration of vital organs. For example, inhaled AgNPs may form 

deposits in the alveolar regions, leading to lung injuries, and may also generate significant 

modifications within the nervous system, and liver and kidney tissues. Intratracheal instillation of 

AgNPs can affect vascular reactivity and can further exacerbate cardiac reperfusion/ischemia injury 

[244,245]. 

The toxicity of AgNPs is related to their transformation under biological conditions and 

environmental media, including their interactions with biological macromolecules, surface 

oxidation, and the release of silver ions. Also, it is very important to precisely distinguish the toxicity 

Figure 2. Schematic representation of plausible methods of cellular uptake of AgNPs [243]. Reprinted
with permission from [243]. Elsevier, 2015.



Nanomaterials 2018, 8, 681 11 of 25

In order to investigate the toxic effects caused by exposure to nanosilver-based systems,
thorough assays are required, considering both cellular and animal models. Regarding the in vivo
biocompatibility and biodistribution assays, the reported data evidenced that AgNPs can result in
structural and physiological alteration of vital organs. For example, inhaled AgNPs may form deposits
in the alveolar regions, leading to lung injuries, and may also generate significant modifications within
the nervous system, and liver and kidney tissues. Intratracheal instillation of AgNPs can affect vascular
reactivity and can further exacerbate cardiac reperfusion/ischemia injury [244,245].

The toxicity of AgNPs is related to their transformation under biological conditions and
environmental media, including their interactions with biological macromolecules, surface oxidation,
and the release of silver ions. Also, it is very important to precisely distinguish the toxicity rate
related to either nanosized silver or ionic silver [246]. Many studies proved that AgNP exposure can
induce a decrease in cell viability through different cellular mechanisms. One of these mechanisms is
represented by the induction of apoptosis-related genes and the activation of apoptosis mechanism.
Also, it was proven that nanosilver can cause the formation and intracellular accumulation of ROS,
modification of mitochondrial membrane permeability, and DNA damage [247–249]. The in vitro
toxicity of AgNPs was investigated in several research studies, but there is still a lack of consistent
and reliable data. This is a general concern in nanotoxicology, and more research coherence is
needed to produce meaningful results. According to recent data, the main in vitro outcomes
occurring upon exposure to AgNPs were reported as increases in oxidative stress, genotoxicity, and
apoptosis levels [250–252]. AgNPs may induce significant oxidative damage with respect to the
cellular membrane and organelles such as the nucleus, mitochondria, and lysosomes, thus leading
directly to necrotic or apoptotic phenomena. The oxidative stress caused by AgNPs can result in
inflammatory responses, including the activation of innate immunity and increasing the permeability of
endothelial cells [253]. AgNPs, inoculated at non-cytotoxic doses, may cause chromosomal abnormality,
DNA damage, and possible mutagenicity [254–256].

The genotoxicity and cytotoxicity of AgNPs are influenced by several physicochemical
features, including dispersion rate, concentration, surface charge, size, morphology, and surface
functionalization [257,258]. The physicochemical aspects of nanosilver-based systems and materials
mainly distribute and categorize numerous toxicological concerns, and also establish a ladder of
toxicity framework while imposing on the biological system. The experimental results reported
until recently are insufficient regarding the accurate toxic effects of AgNPs and their related toxicity
mechanisms [35,259].

10. Conclusions

Silver nanoparticles (AgNPs) are intensively explored nanostructures for unconventional
and enhanced biomedical applications, thanks to their size-related attractive physicochemical
properties and biological functionality, including their high antimicrobial efficiency and non-toxic
nature. AgNP-based nanosystems and nanomaterials are suitable alternatives for drug delivery,
wound dressing, tissue scaffold, and protective coating applications. Various physicochemical
parameters were related to the intrinsic antimicrobial effects exhibited by AgNPs, such as size, shape,
concentration, surface charge, and colloidal state. Moreover, the impressive available surface of
nanosilver allows the coordination of many ligands, thus enabling tremendous possibilities with
respect to the surface functionalization of AgNPs.

There is a significant amount of research data proving the beneficial effects of AgNPs in novel
biocompatible and nanostructured materials and devices developed for modern therapeutic strategies.
In addition to their attractive and versatile antimicrobial potential, AgNPs provide additional
mechanical, optical, chemical, and biological peculiarities that recommend them for the design,
obtaining, evaluation, and clinical assessment of performance-enhanced biomaterials and medical
devices. Still, thorough investigations regarding their short-term and long-term toxicity, as well as the
responsible toxic-related mechanisms, are required.
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The current limitations related to conventional healthcare practice and the latest challenges
resulting from nanosilver-based technology outline the impressive potential of silver nanoparticles
in biomedicinal applications. Whether we consider the modification of available biomaterials and
devices or the development of novel nanostructured ones, AgNPs are ideal candidates for achieving
the very close modern biomedicine desideratum.
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Miljković, M.G.; Kaščaková, S.; Réfrégiers, M.; Djoković, V. Interaction of amino acid-functionalized silver
nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. Colloids Surf. B
Biointerfaces 2017, 155, 341–348. [CrossRef] [PubMed]

47. Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties,
applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [CrossRef] [PubMed]

48. Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.S.; Chen, G. Silver nanoparticles: Synthesis, properties,
and therapeutic applications. Drug Discov. Today 2015, 20, 595–601. [CrossRef] [PubMed]

49. Singh, P.; Kim, Y.J.; Singh, H.; Wang, C.; Hwang, K.H.; Farh, M.E.-A.; Yang, D.C. Biosynthesis,
characterization, and antimicrobial applications of silver nanoparticles. Int. J. Nanomed. 2015, 10, 2567–2577.

50. Mokhena, T.C.; Luyt, A.S. Electrospun alginate nanofibres impregnated with silver nanoparticles:
Preparation, morphology and antibacterial properties. Carbohydr. Polym. 2017, 165, 304–312. [CrossRef]
[PubMed]

51. Gudikandula, K.; Vadapally, P.; Singara Charya, M.A. Biogenic synthesis of silver nanoparticles from white
rot fungi: Their characterization and antibacterial studies. OpenNano 2017, 2, 64–78. [CrossRef]

52. Guan, Q.; Xia, C.; Li, W. Bio-friendly controllable synthesis of silver nanoparticles and their enhanced
antibacterial property. Catal. Today 2018. [CrossRef]

http://dx.doi.org/10.1016/j.msec.2017.06.015
http://www.ncbi.nlm.nih.gov/pubmed/28866194
http://dx.doi.org/10.1016/j.jare.2017.10.008
http://www.ncbi.nlm.nih.gov/pubmed/30046482
http://dx.doi.org/10.1016/j.ccr.2017.11.019
http://dx.doi.org/10.1016/j.nano.2015.11.016
http://www.ncbi.nlm.nih.gov/pubmed/26724539
http://dx.doi.org/10.1016/j.jphotobiol.2015.04.034
http://www.ncbi.nlm.nih.gov/pubmed/26048526
http://dx.doi.org/10.1098/rsos.171113
http://www.ncbi.nlm.nih.gov/pubmed/29410826
http://dx.doi.org/10.1016/j.cis.2018.03.001
http://www.ncbi.nlm.nih.gov/pubmed/29549999
http://dx.doi.org/10.1016/j.apsusc.2017.03.176
http://dx.doi.org/10.1016/j.jphotobiol.2018.04.020
http://www.ncbi.nlm.nih.gov/pubmed/29684718
http://dx.doi.org/10.1016/S2222-1808(16)61145-3
http://dx.doi.org/10.1016/j.jviromet.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28065747
http://dx.doi.org/10.1016/j.flm.2018.04.002
http://dx.doi.org/10.1016/j.colsurfb.2017.04.044
http://www.ncbi.nlm.nih.gov/pubmed/28454063
http://dx.doi.org/10.3390/ijms17091534
http://www.ncbi.nlm.nih.gov/pubmed/27649147
http://dx.doi.org/10.1016/j.drudis.2014.11.014
http://www.ncbi.nlm.nih.gov/pubmed/25543008
http://dx.doi.org/10.1016/j.carbpol.2017.02.068
http://www.ncbi.nlm.nih.gov/pubmed/28363554
http://dx.doi.org/10.1016/j.onano.2017.07.002
http://dx.doi.org/10.1016/j.cattod.2018.05.004


Nanomaterials 2018, 8, 681 15 of 25

53. Li, W.-R.; Sun, T.-L.; Zhou, S.-L.; Ma, Y.-K.; Shi, Q.-S.; Xie, X.-B.; Huang, X.-M. A comparative analysis of
antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial
strains. Int. Biodeterior. Biodegrad. 2017, 123, 304–310. [CrossRef]

54. Premkumar, J.; Sudhakar, T.; Dhakal, A.; Shrestha, J.B.; Krishnakumar, S.; Balashanmugam, P. Synthesis of silver
nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatal. Agric. Biotechnol. 2018, 15, 311–316.
[CrossRef]

55. Shao, Y.; Wu, C.; Wu, T.; Yuan, C.; Chen, S.; Ding, T.; Ye, X.; Hu, Y. Green synthesis of sodium alginate-silver
nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 2018, 111, 1281–1292. [CrossRef]
[PubMed]

56. Yan, X.; He, B.; Liu, L.; Qu, G.; Shi, J.; Hu, L.; Jiang, G. Antibacterial mechanism of silver nanoparticles in
pseudomonas aeruginosa: Proteomics approach. Metallomics 2018, 10, 557–564. [CrossRef] [PubMed]

57. Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical
applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32. [CrossRef]

58. López-Esparza, J.; Espinosa-Cristóbal, L.F.; Donohue-Cornejo, A.; Reyes-López, S.Y. Antimicrobial activity
of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria.
Ind. Eng. Chem. Res. 2016, 55, 12532–12538. [CrossRef]

59. Bhat, R.; Deshpande, R.; Ganachari, S.V.; Huh, D.S.; Venkataraman, A. Photo-irradiated biosynthesis of silver
nanoparticles using edible mushroom pleurotus florida and their antibacterial activity studies. Bioinorg. Chem.
Appl. 2011, 2011, 650979. [CrossRef] [PubMed]

60. Izak-Nau, E.; Huk, A.; Reidy, B.; Uggerud, H.; Vadset, M.; Eiden, S.; Voetz, M.; Himly, M.; Duschl, A.;
Dusinska, M.; et al. Impact of storage conditions and storage time on silver nanoparticles’ physicochemical
properties and implications for their biological effects. RSC Adv. 2015, 5, 84172–84185. [CrossRef]

61. Lee, J.-H.; Lim, J.-M.; Velmurugan, P.; Park, Y.-J.; Park, Y.-J.; Bang, K.-S.; Oh, B.-T. Photobiologic-mediated
fabrication of silver nanoparticles with antibacterial activity. J. Photochem. Photobiol. B Biol. 2016, 162, 93–99.
[CrossRef] [PubMed]

62. Ghiut,ă, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D.
Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using bacillus species.
Appl. Surf. Sci. 2018, 438, 66–73. [CrossRef]

63. De Faria, A.F.; Martinez, D.S.T.; Meira, S.M.M.; de Moraes, A.C.M.; Brandelli, A.; Filho, A.G.S.; Alves, O.L.
Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.
Colloids Surf. B Biointerfaces 2014, 113, 115–124. [CrossRef] [PubMed]

64. Zhou, Y.; Hu, K.; Guo, Z.; Fang, K.; Wang, X.; Yang, F.; Gu, N. Plla microcapsules combined with silver
nanoparticles and chlorhexidine acetate showing improved antibacterial effect. Mater. Sci. Eng. C Mater. Biol.
Appl. 2017, 78, 349–353. [CrossRef] [PubMed]

65. Amooaghaie, R.; Saeri, M.R.; Azizi, M. Synthesis, characterization and biocompatibility of silver nanoparticles
synthesized from nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol.
Environ. Saf. 2015, 120, 400–408. [CrossRef] [PubMed]

66. Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver
nanoparticles. Front. Microbiol. 2016, 7, 1831. [CrossRef] [PubMed]

67. Majeed, S.; Danish, M.; Binti Zahrudin, A.H.; Dash, G.K. Biosynthesis and characterization of silver
nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int. J. Mod. Sci.
2018, 4, 86–92. [CrossRef]

68. Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from
phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria.
Microb. Pathog. 2018, 117, 68–72. [CrossRef] [PubMed]

69. Dastafkan, K.; Khajeh, M.; Bohlooli, M.; Ghaffari-Moghaddam, M.; Sheibani, N. Mechanism and behavior of
silver nanoparticles in aqueous medium as adsorbent. Talanta 2015, 144, 1377–1386. [CrossRef] [PubMed]

70. Lim, Y.H.; Tiemann, K.M.; Heo, G.S.; Wagers, P.O.; Rezenom, Y.H.; Zhang, S.; Zhang, F.; Youngs, W.J.;
Hunstad, D.A.; Wooley, K.L. Preparation and in vitro antimicrobial activity of silver-bearing degradable
polymeric nanoparticles of polyphosphoester-block-poly(L-lactide). ACS Nano 2015, 9, 1995–2008. [CrossRef]
[PubMed]

71. Schneider, G. Antimicrobial silver nanoparticles—Regulatory situation in the European Union. Mater. Today
Proc. 2017, 4, S200–S207. [CrossRef]

http://dx.doi.org/10.1016/j.ibiod.2017.07.015
http://dx.doi.org/10.1016/j.bcab.2018.06.005
http://dx.doi.org/10.1016/j.ijbiomac.2018.01.012
http://www.ncbi.nlm.nih.gov/pubmed/29307808
http://dx.doi.org/10.1039/C7MT00328E
http://www.ncbi.nlm.nih.gov/pubmed/29637212
http://dx.doi.org/10.1186/2228-5326-2-32
http://dx.doi.org/10.1021/acs.iecr.6b02300
http://dx.doi.org/10.1155/2011/650979
http://www.ncbi.nlm.nih.gov/pubmed/22190895
http://dx.doi.org/10.1039/C5RA10187E
http://dx.doi.org/10.1016/j.jphotobiol.2016.06.029
http://www.ncbi.nlm.nih.gov/pubmed/27348063
http://dx.doi.org/10.1016/j.apsusc.2017.09.163
http://dx.doi.org/10.1016/j.colsurfb.2013.08.006
http://www.ncbi.nlm.nih.gov/pubmed/24060936
http://dx.doi.org/10.1016/j.msec.2017.04.100
http://www.ncbi.nlm.nih.gov/pubmed/28575994
http://dx.doi.org/10.1016/j.ecoenv.2015.06.025
http://www.ncbi.nlm.nih.gov/pubmed/26122733
http://dx.doi.org/10.3389/fmicb.2016.01831
http://www.ncbi.nlm.nih.gov/pubmed/27899918
http://dx.doi.org/10.1016/j.kijoms.2017.11.002
http://dx.doi.org/10.1016/j.micpath.2018.02.008
http://www.ncbi.nlm.nih.gov/pubmed/29427709
http://dx.doi.org/10.1016/j.talanta.2015.03.065
http://www.ncbi.nlm.nih.gov/pubmed/26452972
http://dx.doi.org/10.1021/nn507046h
http://www.ncbi.nlm.nih.gov/pubmed/25621868
http://dx.doi.org/10.1016/j.matpr.2017.09.187


Nanomaterials 2018, 8, 681 16 of 25

72. Radzig, M.A.; Nadtochenko, V.A.; Koksharova, O.A.; Kiwi, J.; Lipasova, V.A.; Khmel, I.A. Antibacterial
effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation,
mechanisms of action. Colloids Surf. B Biointerfaces 2013, 102, 300–306. [CrossRef] [PubMed]

73. Ribeiro, S.M.; Felicio, M.R.; Boas, E.V.; Goncalves, S.; Costa, F.F.; Samy, R.P.; Santos, N.C.; Franco, O.L.
New frontiers for anti-biofilm drug development. Pharmacol. Ther. 2016, 160, 133–144. [CrossRef] [PubMed]

74. Barker, L.K.; Giska, J.R.; Radniecki, T.S.; Semprini, L. Effects of short- and long-term exposure of silver
nanoparticles and silver ions to nitrosomonas europaea biofilms and planktonic cells. Chemosphere 2018, 206,
606–614. [CrossRef] [PubMed]

75. Joo, S.H.; Aggarwal, S. Factors impacting the interactions of engineered nanoparticles with bacterial cells
and biofilms: Mechanistic insights and state of knowledge. J. Environ. Manag. 2018, 225, 62–74. [CrossRef]
[PubMed]

76. Choi, Y.; Kim, H.-A.; Kim, K.-W.; Lee, B.-T. Comparative toxicity of silver nanoparticles and silver ions to
Escherichia coli. J. Environ. Sci. 2018, 66, 50–60. [CrossRef] [PubMed]

77. Ramezanpour, M.; Leung, S.S.W.; Delgado-Magnero, K.H.; Bashe, B.Y.M.; Thewalt, J.; Tieleman, D.P.
Computational and experimental approaches for investigating nanoparticle-based drug delivery systems.
Biochim. Biophys. Acta (BBA) Biomembr. 2016, 1858, 1688–1709. [CrossRef] [PubMed]

78. Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery
systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomed. 2017, 12,
2957–2978. [CrossRef] [PubMed]

79. Jiang, Q.; Yu, S.; Li, X.; Ma, C.; Li, A. Evaluation of local anesthetic effects of lidocaine-ibuprofen ionic
liquid stabilized silver nanoparticles in male swiss mice. J. Photochem. Photobiol. B Biol. 2018, 178, 367–370.
[CrossRef] [PubMed]

80. Karthik, C.S.; Manukumar, H.M.; Ananda, A.P.; Nagashree, S.; Rakesh, K.P.; Mallesha, L.; Qin, H.-L.;
Umesha, S.; Mallu, P.; Krishnamurthy, N.B. Synthesis of novel benzodioxane midst piperazine moiety
decorated chitosan silver nanoparticle against biohazard pathogens and as potential anti-inflammatory
candidate: A molecular docking studies. Int. J. Biol. Macromol. 2018, 108, 489–502. [CrossRef] [PubMed]

81. Soni, N.; Dhiman, R.C. Phytochemical, anti-oxidant, larvicidal, and antimicrobial activities of castor (Ricinus
communis) synthesized silver nanoparticles. Chin. Herb. Med. 2017, 9, 289–294. [CrossRef]

82. Arumai Selvan, D.; Mahendiran, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Garlic, green tea and
turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro
cytotoxicity studies. J. Photochem. Photobiol. B Biol. 2018, 180, 243–252. [CrossRef] [PubMed]

83. Al-Obaidi, H.; Kalgudi, R.; Zariwala, M.G. Fabrication of inhaled hybrid silver/ciprofloxacin nanoparticles
with synergetic effect against pseudomonas aeruginosa. Eur. J. Pharm. Biopharm. 2018, 128, 27–35. [CrossRef]
[PubMed]

84. Kaur, A.; Goyal, D.; Kumar, R. Surfactant mediated interaction of vancomycin with silver nanoparticles.
Appl. Surf. Sci. 2018, 449, 23–30. [CrossRef]

85. Petrov, P.D.; Yoncheva, K.; Gancheva, V.; Konstantinov, S.; Trzebicka, B. Multifunctional block copolymer
nanocarriers for co-delivery of silver nanoparticles and curcumin: Synthesis and enhanced efficacy against
tumor cells. Eur. Polym. J. 2016, 81, 24–33. [CrossRef]

86. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems:
An updated review. Int. J. Pharm. Investig. 2012, 2, 2–11. [CrossRef] [PubMed]

87. KJ, P. Multi-functional silver nanoparticles for drug delivery: A review. Int. J. Curr. Pharm. Rev. Res. 2017, 9, 1–5.
88. Tahseen, Q.A. Silver Nanoparticles as Drug Delivery Systems. Ph.D. Dissertations, Louisiana State University,

Baton Rouge, LA, USA, 2013.
89. Anandhakumar, S.; Mahalakshmi, V.; Raichur, A.M. Silver nanoparticles modified nanocapsules for

ultrasonically activated drug delivery. Mater. Sci. Eng. C 2012, 32, 2349–2355. [CrossRef]
90. Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous

extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J.
Trop. Biomed. 2017, 7, 227–233. [CrossRef]

91. Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle
technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci.
2014, 9, 304–316. [CrossRef]

http://dx.doi.org/10.1016/j.colsurfb.2012.07.039
http://www.ncbi.nlm.nih.gov/pubmed/23006569
http://dx.doi.org/10.1016/j.pharmthera.2016.02.006
http://www.ncbi.nlm.nih.gov/pubmed/26896562
http://dx.doi.org/10.1016/j.chemosphere.2018.05.017
http://www.ncbi.nlm.nih.gov/pubmed/29778938
http://dx.doi.org/10.1016/j.jenvman.2018.07.084
http://www.ncbi.nlm.nih.gov/pubmed/30071367
http://dx.doi.org/10.1016/j.jes.2017.04.028
http://www.ncbi.nlm.nih.gov/pubmed/29628108
http://dx.doi.org/10.1016/j.bbamem.2016.02.028
http://www.ncbi.nlm.nih.gov/pubmed/26930298
http://dx.doi.org/10.2147/IJN.S127683
http://www.ncbi.nlm.nih.gov/pubmed/28442906
http://dx.doi.org/10.1016/j.jphotobiol.2017.11.028
http://www.ncbi.nlm.nih.gov/pubmed/29190552
http://dx.doi.org/10.1016/j.ijbiomac.2017.12.045
http://www.ncbi.nlm.nih.gov/pubmed/29225179
http://dx.doi.org/10.1016/S1674-6384(17)60106-0
http://dx.doi.org/10.1016/j.jphotobiol.2018.02.014
http://www.ncbi.nlm.nih.gov/pubmed/29476965
http://dx.doi.org/10.1016/j.ejpb.2018.04.006
http://www.ncbi.nlm.nih.gov/pubmed/29654885
http://dx.doi.org/10.1016/j.apsusc.2017.12.066
http://dx.doi.org/10.1016/j.eurpolymj.2016.05.010
http://dx.doi.org/10.4103/2230-973X.96920
http://www.ncbi.nlm.nih.gov/pubmed/23071954
http://dx.doi.org/10.1016/j.msec.2012.07.006
http://dx.doi.org/10.1016/j.apjtb.2016.12.014
http://dx.doi.org/10.1016/j.ajps.2014.05.005


Nanomaterials 2018, 8, 681 17 of 25

92. Kumar, B.; Jalodia, K.; Kumar, P.; Gautam, H.K. Recent advances in nanoparticle-mediated drug delivery.
J. Drug Deliv. Sci. Technol. 2017, 41, 260–268. [CrossRef]

93. Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.;
Uvarajan, S.; Bhaskar, M.; et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities
(MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol.
B Biol. 2017, 167, 282–289. [CrossRef] [PubMed]

94. Benyettou, F.; Rezgui, R.; Ravaux, F.; Jaber, T.; Blumer, K.; Jouiad, M.; Motte, L.; Olsen, J.C.; Platas-Iglesias, C.;
Magzoub, M.; et al. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to
cancer cells. J. Mater. Chem. B 2015, 3, 7237–7245. [CrossRef]

95. Barbinta-Patrascu, M.E.; Badea, N.; Pirvu, C.; Bacalum, M.; Ungureanu, C.; Nadejde, P.L.; Ion, C.; Rau, I.
Multifunctional soft hybrid bio-platforms based on nano-silver and natural compounds. Mater. Sci. Eng. C
2016, 69, 922–932. [CrossRef] [PubMed]

96. Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization
of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C
2015, 53, 298–309. [CrossRef] [PubMed]

97. Ding, Q.; Liu, D.; Guo, D.; Yang, F.; Pang, X.; Che, R.; Zhou, N.; Xie, J.; Sun, J.; Huang, Z.; et al.
Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic
hyperthermia. Biomaterials 2017, 124, 35–46. [CrossRef] [PubMed]

98. Poudel, B.K.; Soe, Z.C.; Ruttala, H.B.; Gupta, B.; Ramasamy, T.; Thapa, R.K.; Gautam, M.; Ou, W.;
Nguyen, H.T.; Jeong, J.-H.; et al. In situ fabrication of mesoporous silica-coated silver-gold hollow
nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers.
Int. J. Pharm. 2018, 548, 92–103. [CrossRef] [PubMed]

99. Díaz-Cruz, C.; Alonso Nuñez, G.; Espinoza-Gómez, H.; Flores-López, L.Z. Effect of molecular weight of peg or
pva as reducing-stabilizing agent in the green synthesis of silver-nanoparticles. Eur. Polym. J. 2016, 83, 265–277.
[CrossRef]

100. Hefni, H.H.H.; Azzam, E.M.; Badr, E.A.; Hussein, M.; Tawfik, S.M. Synthesis, characterization and anticorrosion
potentials of chitosan-g-peg assembled on silver nanoparticles. Int. J. Biol. Macromol. 2016, 83, 297–305. [CrossRef]
[PubMed]

101. Yang, H.; Chen, T.; Wang, H.; Bai, S.; Guo, X. One-pot rapid synthesis of high aspect ratio silver nanowires
for transparent conductive electrodes. Mater. Res. Bull. 2018, 102, 79–85. [CrossRef]

102. Gao, H.; Yang, H.; Wang, C. Controllable preparation and mechanism of nano-silver mediated by the
microemulsion system of the clove oil. Results Phys. 2017, 7, 3130–3136. [CrossRef]

103. Rivera-Rangel, R.D.; González-Muñoz, M.P.; Avila-Rodriguez, M.; Razo-Lazcano, T.A.; Solans, C. Green
synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf
aqueous extract as a reducing agent. Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 60–67. [CrossRef]

104. Clemente, A.; Moreno, N.; Lobera, M.P.; Balas, F.; Santamaria, J. Versatile hollow fluorescent metal-silica
nanohybrids through a modified microemulsion synthesis route. J. Colloid Interface Sci. 2018, 513, 497–504.
[CrossRef] [PubMed]

105. Hanh, T.T.; Thu, N.T.; Quoc, L.A.; Hien, N.Q. Synthesis and characterization of silver/diatomite
nanocomposite by electron beam irradiation. Radiat. Phys. Chem. 2017, 139, 141–146. [CrossRef]

106. Dhayagude, A.C.; Das, A.; Joshi, S.S.; Kapoor, S. γ-radiation induced synthesis of silver nanoparticles in
aqueous poly (N-vinylpyrrolidone) solution. Colloids Surf. A Physicochem. Eng. Asp. 2018, 556, 148–156.
[CrossRef]

107. Zaheer, Z.; Aazam, E.S. Cetyltrimethylammonium bromide assisted synthesis of silver nanoparticles and
their catalytic activity. J. Mol. Liq. 2017, 242, 1035–1041. [CrossRef]

108. Lopes, C.R.B.; Courrol, L.C. Green synthesis of silver nanoparticles with extract of mimusops coriacea and
light. J. Lumin. 2018, 199, 183–187. [CrossRef]

109. Rai, M.; Ingle, A.P.; Gupta, I.; Brandelli, A. Bioactivity of noble metal nanoparticles decorated with
biopolymers and their application in drug delivery. Int. J. Pharm. 2015, 496, 159–172. [CrossRef] [PubMed]

110. Sarkar, S.; Das, R. Shape effect on the optical properties of anisotropic silver nanocrystals. J. Lumin.
2018, 198, 464–470. [CrossRef]

http://dx.doi.org/10.1016/j.jddst.2017.07.019
http://dx.doi.org/10.1016/j.jphotobiol.2016.12.013
http://www.ncbi.nlm.nih.gov/pubmed/28110253
http://dx.doi.org/10.1039/C5TB00994D
http://dx.doi.org/10.1016/j.msec.2016.07.077
http://www.ncbi.nlm.nih.gov/pubmed/27612787
http://dx.doi.org/10.1016/j.msec.2015.04.048
http://www.ncbi.nlm.nih.gov/pubmed/26042718
http://dx.doi.org/10.1016/j.biomaterials.2017.01.043
http://www.ncbi.nlm.nih.gov/pubmed/28187393
http://dx.doi.org/10.1016/j.ijpharm.2018.06.056
http://www.ncbi.nlm.nih.gov/pubmed/29959089
http://dx.doi.org/10.1016/j.eurpolymj.2016.08.025
http://dx.doi.org/10.1016/j.ijbiomac.2015.11.073
http://www.ncbi.nlm.nih.gov/pubmed/26645144
http://dx.doi.org/10.1016/j.materresbull.2018.02.010
http://dx.doi.org/10.1016/j.rinp.2017.08.032
http://dx.doi.org/10.1016/j.colsurfa.2017.07.051
http://dx.doi.org/10.1016/j.jcis.2017.11.055
http://www.ncbi.nlm.nih.gov/pubmed/29179090
http://dx.doi.org/10.1016/j.radphyschem.2017.04.004
http://dx.doi.org/10.1016/j.colsurfa.2018.08.028
http://dx.doi.org/10.1016/j.molliq.2017.07.123
http://dx.doi.org/10.1016/j.jlumin.2018.03.030
http://dx.doi.org/10.1016/j.ijpharm.2015.10.059
http://www.ncbi.nlm.nih.gov/pubmed/26520406
http://dx.doi.org/10.1016/j.jlumin.2018.02.069


Nanomaterials 2018, 8, 681 18 of 25

111. Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Cortez-Valadez, M.; Flores-López, N.S.; Flores-Acosta, M. Optical
properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res.
Bull. 2018, 99, 385–392. [CrossRef]

112. Dos Santos Courrol, D.; Regina Borges Lopes, C.; da Silva Cordeiro, T.; Regina Franzolin, M.; Dias Vieira
Junior, N.; Elgul Samad, R.; Coronato Courrol, L. Optical properties and antimicrobial effects of silver
nanoparticles synthesized by femtosecond laser photoreduction. Opt. Laser Technol. 2018, 103, 233–238.
[CrossRef]

113. Brown, P.K.; Qureshi, A.T.; Moll, A.N.; Hayes, D.J.; Monroe, W.T. Silver nanoscale antisense drug delivery
system for photoactivated gene silencing. ACS Nano 2013, 7, 2948–2959. [CrossRef] [PubMed]

114. Heilman, S.; Silva, L.G.A. Silver and titanium nanoparticles used as coating on polyurethane catheters.
J. Nano Res. 2017, 47, 17–23. [CrossRef]

115. Thomas, R.; Mathew, S.; Nayana, A.R.; Mathews, J.; Radhakrishnan, E.K. Microbially and phytofabricated
agnps with different mode of bactericidal action were identified to have comparable potential for surface
fabrication of central venous catheters to combat staphylococcus aureus biofilm. J. Photochem. Photobiol.
B Biol. 2017, 171, 96–103. [CrossRef] [PubMed]

116. Wu, K.; Yang, Y.; Zhang, Y.; Deng, J.; Lin, C. Antimicrobial activity and cytocompatibility of silver nanoparticles
coated catheters via a biomimetic surface functionalization strategy. Int. J. Nanomed. 2015, 10, 7241–7252.

117. Roe, D.; Karandikar, B.; Bonn-Savage, N.; Gibbins, B.; Roullet, J.B. Antimicrobial surface functionalization of
plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008, 61, 869–876. [CrossRef] [PubMed]

118. Kumar, C.G.; Sujitha, P. Green synthesis of kocuran-functionalized silver glyconanoparticles for use as
antibiofilm coatings on silicone urethral catheters. Nanotechnology 2014, 25, 325101. [CrossRef] [PubMed]

119. Rtimi, S.; Sanjines, R.; Pulgarin, C.; Kiwi, J. Microstructure of cu–ag uniform nanoparticulate films on
polyurethane 3D catheters: Surface properties. ACS Appl. Mater. Interfaces 2016, 8, 56–63. [CrossRef]
[PubMed]

120. Ballottin, D.; Fulaz, S.; Cabrini, F.; Tsukamoto, J.; Durán, N.; Alves, O.L.; Tasic, L. Antimicrobial textiles:
Biogenic silver nanoparticles against candida and xanthomonas. Mater. Sci. Eng. C 2017, 75, 582–589.
[CrossRef] [PubMed]

121. Su, C.-H.; Kumar, G.V.; Adhikary, S.; Velusamy, P.; Pandian, K.; Anbu, P. Preparation of cotton fabric using
sodium alginate-coated nanoparticles to protect against nosocomial pathogens. Biochem. Eng. J. 2017, 117, 28–35.
[CrossRef]

122. Zhang, M.; Lin, H.; Wang, Y.; Yang, G.; Zhao, H.; Sun, D. Fabrication and durable antibacterial properties of 3D
porous wet electrospun rcsc/pcl nanofibrous scaffold with silver nanoparticles. Appl. Surf. Sci. 2017, 414, 52–62.
[CrossRef]

123. Alippilakkotte, S.; Kumar, S.; Sreejith, L. Fabrication of pla/ag nanofibers by green synthesis method using
momordica charantia fruit extract for wound dressing applications. Colloids Surf. A Physicochem. Eng. Asp.
2017, 529, 771–782. [CrossRef]

124. Li, R.; He, M.; Li, T.; Zhang, L. Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr.
Polym. 2015, 115, 269–275. [CrossRef] [PubMed]

125. Biswas, P.; Bandyopadhyaya, R. Biofouling prevention using silver nanoparticle impregnated
polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module. J. Colloid
Interface Sci. 2017, 491, 13–26. [CrossRef] [PubMed]

126. Benavente, J.; García, M.E.; Urbano, N.; López-Romero, J.M.; Contreras-Cáceres, R.C.; Casado-Rodríguez, M.A.;
Moscoso, A.; Hierrezuelo, J. Inclusion of silver nanoparticles for improving regenerated cellulose membrane
performance and reduction of biofouling. Int. J. Biol. Macromol. 2017, 103, 758–763. [CrossRef] [PubMed]
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