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Abstract: An efficient hole-transporting layer (HTL) based on functionalized two-dimensional (2D)
MoS2-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites has been
developed for use in organic solar cells (OSCs). Few-layer, oleylamine-functionalized MoS2 (FMoS2)
nanosheets were prepared via a simple and cost-effective solution-phase exfoliation method; then,
they were blended into PEDOT:PSS, a conducting conjugated polymer, and the resulting hybrid film
(PEDOT:PSS/FMoS2) was tested as an HTL for poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid
methyl ester (P3HT:PCBM) OSCs. The devices using this hybrid film HTL showed power conversion
efficiencies up to 3.74%, which is 15.08% higher than that of the reference ones having PEDOT:PSS as
HTL. Atomic force microscopy and contact angle measurements confirmed the compatibility of the
PEDOT:PSS/FMoS2 surface for active layer deposition on it. The electrical impedance spectroscopy
analysis revealed that their use minimized the charge-transfer resistance of the OSCs, consequently
improving their performance compared with the reference cells. Thus, the proposed fabrication of
such HTLs incorporating 2D nanomaterials could be further expanded as a universal protocol for
various high-performance optoelectronic devices.
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1. Introduction

Organic solar cells (OSCs) have many striking properties such as flexibility, solution processability,
light weight, and simple manufacturing, especially if compared with their inorganic counterparts.
To enhance their performance, numerous strategies have been proposed, including novel photoactive
materials, morphology control, interfacial engineering, plasmonic nanoparticles incorporation,
and alternative buffer layers and electrodes [1–6]. Their power conversion efficiency (PCE) has been
recently improved up to >13% with rapid advances in new photovoltaic materials [7]. In the typical
bulk heterojunction (BHJ) OSCs configuration, a photoactive blend layer consisting of acceptor/donor
pairs is sandwiched between a bottom transparent anode and a top low-work-function cathode,
combined with the corresponding interlayers. Such interlayers are crucial for determining the overall
PCE and stability of OSCs because they reduce the potential energy barrier between photoactive layer
and electrodes, enhancing the extraction of holes and electrons at the anode and cathode, respectively.

Until now, many hole-transporting layer (HTL) materials, such as conducting conjugated
polymers [8–10], conjugated polyelectrolytes [11,12] metal oxides/sulfides [13–17], and graphene
oxide and its hybrid films [18–21], have been explored for use in OSCs. Among them, the conjugated
polymer poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been the most
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widely used due to its adequate work function for creating a good ohmic contact between active
layer and anode, solution processability, and high conductivity. However, its hygroscopic and
acidic nature often induces chemical instability between active layers and indium tin oxide (ITO)
anodes, affecting the device stability and efficiency [22,23]. Moreover, there is a clear surface energy
mismatch between PEDOT:PSS (hydrophilic nature) and the active layer (hydrophobic and made
of, e.g., poly(3-hexylthiophene) (P3HT)) [24,25]. To overcome such drawbacks, various PEDOT:PSS
modification strategies, such as incorporating metal nanoparticles [26–28], modification by metal
salts [29,30], polymer doping [31,32], and hybridization with graphene [33,34], have been developed.
Interfacial engineering with long alkyl chains is an alternative but attractive method to reduce the
surface energy mismatch between HTL and active layer and also to accomplish desirable molecular
orientation in the active layer for enhancing the charge transport in OSCs [35].

Single and few-layer molybdenum disulfide, a two-dimensional (2D) transition metal
dichalcogenide (TMDC), has recently received much interest in electronics and optoelectronics
research due to its excellent optical (bandgap: 1.8 eV), electrical (device mobility: 10–130 cm2 V−1 S−1),
and mechanical (Young modulus: 270 GPa) properties [36,37]. Among the key preparation/exfoliation
methods for TMDCs, namely, micromechanical cleavage [38], chemical vapor deposition [39],
and liquid-phase exfoliation (LPE) [40], the latter is more attractive because it is scalable and
cost-effective. MoS2 has been tested as HTL for OSCs [41–43] to exploit its extraordinary optical
and electrical properties in photovoltaics; nevertheless, the results have revealed that neat MoS2 is
not sufficient to replace PEDOT:PSS as OSC HTL, possibly because of its work function mismatch
and unexpected phase transition. Hence, Xing et al. fabricated PEDOT:PSS/WS2 hybrid films and
demonstrated their applicability as effective OSC HTLs [44]. However, the long-time (48 h) sonication
they adopted for TMDC exfoliation in the PEDOT:PSS aqueous dispersion may affect the structure
of both PEDOT:PSS and MoS2 in the final product; therefore, innovative strategies for effectively
integrating these materials in OSCs are still highly demanded.

Here, we report the fabrication of oleylamine-functionalized MoS2 (FMoS2) combined
with PEDOT:PSS as an effective hybrid HTL (PEDOT:PSS/FMoS2) for use in conventional
P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)-based OSCs. The so-obtained OSCs exhibited
better PCE and short-circuit current density (Jsc) values compared with the reference cell having simple
PEDOT:PSS as HTL. FMoS2 was characterized by various spectroscopic techniques including Raman
spectroscopy, ultraviolet–visible (UV-Vis) absorption and transmittance, photoluminescence (PL),
and transmission electron microscopy (TEM); the active layer microstructure and the surface properties
of the hybrid HTL were analyzed by grazing-incidence wide-angle X-ray scattering (GIWAXS), atomic
force microscopy (AFM), and contact angle measurements. Electrochemical impedance spectroscopy
(EIS) measurements were carried out using an electrochemical analyzer (IVIUMSTAT.XR, IVIUM
Technologies) under illumination at 0.1 V.

2. Experimental

2.1. Materials and Methods

The following chemicals were used in our experiment: molybdenum (IV) sulfide (<2 µm, 99%) and
oleylamine (Sigma-Aldrich, Gyeonggi-do, Korea), P3HT (1-Material, Gyeonggi-do, Korea), PEDOT:PSS
(Heraeus Deutschland GmbH & Co., Leverkusen, Germany), isopropyl alcohol (IPA) (Dae-Jung
Chemicals & Metals Co., Ltd., Gyeonggi-do, Korea), and methanol (Samchun Chemicals, Seoul, Korea).

2.2. Synthesis of FMoS2 Nanosheets and PEDOT:PSS/FMoS2 Hybrids

FMoS2 nanosheets were synthesized according to the liquid-phase exfoliation method reported
in literature [45], with small modifications. Briefly, bulk MoS2 powder (200 mg) was bath-sonicated
in oleylamine (2 mL) by using a Branson ultrasonic bath for 20 min and successively stirred at 60 ◦C
for 12 h in an N2-filled glove box. Then, 1,2-dichlorobenzene (DCB) (18 mL) was added, and the
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dispersion was further bath-sonicated for 5 h. The resulting suspension was centrifuged at 4000 rpm,
and the top 80% dark-green color supernatant, which contains excess oleylamine, DCB, and FMOS2

was collected. Then, the FMoS2 nanosheets were separated by adding excess acetone, followed by
sonication for 2 min and high-speed centrifugation (10000 rpm). The separated FMoS2 nanosheets
were settled at the bottom of the centrifuge tube, which was re-dispersed in a small amount of IPA by
mild sonication, and different concentrations (5, 20, and 50 µL) of the resulting dispersion were added
into PEDOT:PSS:methanol (1:1 V%) aqueous solutions, which were successively ultrasonicated for
30 min to obtain PEDOT:PSS/FMoS2 hybrid solutions.

2.3. Fabrication of OSCs

The OSCs having device architectures of ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al and
ITO/(PEDOT:PSS/FMoS2)/P3HT:PCBM/LiF/Al were fabricated as follows. ITO-coated glass substrates
were cleaned via sequential ultrasonication in acetone, IPA, and distilled water, followed by oxygen
plasma treatment for 10 min; then, they were spin-coated with a PEDOT:PSS (Clevios P VP Al 4083) or
PEDOT:PSS/FMoS2 solution at 4000 rpm for 40 s and dried at 130 ◦C for 30 min to complete the HTL
deposition. Next, an active layer consisting of a P3HT:PCBM (1:0.6 wt%) binary blend solution was
spin-coated on the resulting HTL layer at 2500 rpm for 40 s inside an N2-filled glove box and annealed
at 150 ◦C. Finally, LiF and Al layers were deposited by thermal evaporation. The active area of the
fabricated OSCs was 0.06 cm2.

2.4. Characterization

The absorption properties of the samples were analyzed using a UV-Vis absorption spectrometer
(Cary 5000, Varian, Inc.). Raman spectra were recorded on a Horiba Jobin-Yvon spectrometer.
The emission properties were investigated with a luminescence spectrometer (LS55 Perkin Elmer).
The TEM measurements were carried out on a JEOL JSM-2100-F system. The surface morphologies
were investigated using a tapping-mode atomic force microscope (Veeco D3100). The water contact
angles of the samples were measured with a KSV CAM 101 instrument. The GIWAXS analysis was
conducted at the PLS-II 9A U-SAXs beamline of the Pohang Accelerator Laboratory (Korea) at the
following operating conditions: incidence angle of ~0.12◦, wavelength of 1.12 Å, and sample-to-detector
distance of 224 nm. The GIWAXS patterns were recorded using a 2D charge-coupled device camera
(Rayonix, SX-165, USA) with an exposure time of 10–30 s. The JV properties of the solar cells were
measured with a Keithley 2400 solar cell IV measurement system under AM 1.5 G illumination at
100 mW cm−2.

3. Results and Discussion

OSCs having two different device architectures, ITO/(PEDOT:PSS/FMoS2)/P3HT:PCBM/LiF/Al
and ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al (for comparison), were fabricated as schematized in Figure 1.

First, we synthesized FMoS2 nanosheets via the solution-phase ultrasonic exfoliation of bulk
MoS2 in the presence of oleylamine and 1,2-dichlorobenzene as a solvent; then, they were incorporated
in different concentrations (5, 20, and 50 µL) into PEDOT:PSS, and the resulting PEDOT:PSS/FMoS2

(denoted as PEDOT:PSS/FMoS2(5), PEDOT:PSS/FMoS2(20), and PEDOT:PSS/FMoS2(50) according to
the FMoS2 loading) was used as HTL for conventional OSCs.

Raman spectroscopy is a powerful nondestructive technique for monitoring structural changes in
2D materials [46]. The Raman spectrum of bulk MoS2 showed two characteristic peaks at 374.83 and
402.05 cm−1 corresponding, respectively, to the E

1
2g and A1g vibrational modes (Figure 2a); the first

arose from the in-plane vibration of Mo and S atoms, while the second resulted from the out-of-plane
vibrations of sulfur [47,48]. As regards FMoS2, the peaks for both the E

1
2g and A1g vibrational modes

were blue-shifted toward higher wavenumbers (respectively, 382.66 and 405.66 cm−1), suggesting
interactions between oleylamine and MoS2. Moreover, the wavenumber difference between these two
vibrational modes is closely related to the layer number present in the MoS2 nanosheets [49], and in
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our case, this difference decreased from 27.2 cm−1 for bulk MoS2 to 23 cm−1 for FMoS2 nanosheets,
demonstrating the successful exfoliation of MoS2 nanosheets during the oleylamine treatment.
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Figure 1. Fabrication process for poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS)/oleylamine-functionalized MoS2 (FMoS2) hybrid hole-transporting layer (HTL) for
organic solar cells.

The absorption properties of the FMoS2 nanosheets were further investigated via UV-Vis absorption
spectroscopy; their spectrum (Figure 2b) clearly showed two characteristic absorption peaks of MoS2

at 618 and 677 cm−1 corresponding, respectively, to the A1 and B1 direct excitonic transitions with the
energy split from valence band spin–orbital coupling [50]. Furthermore, unlike bulk MoS2, FMoS2

yielded dark-greenish dispersion in 1,2-dichlorobenzene. These results clearly indicate some alteration
in the surface properties of MoS2 due to the oleylamine treatment [51].

Bulk MoS2 is an indirect bandgap semiconductor that does not exhibit any photoluminescence;
however, upon exfoliation, its luminescence increases with decreasing its layer thickness, so that
single-layer MoS2 shows the highest photoluminescence due to its transition into a direct bandgap
semiconductor [52,53]. As expected, FMoS2 exhibited significant photoluminescence (see the PL
spectra in Figure S1, Electronic Supporting Information (ESI)), which clearly proves the successful
layer thinning of MoS2 during the functionalization process.
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The TEM images of the FMoS2 nanosheets are displayed in Figure 2c,d, showing a thin nanosheet
morphology with sizes of several hundred nanometers. A careful observation of the nanosheet edges
reveals the presence of few-layer nanosheets, confirming the effectiveness of the liquid-based exfoliation
with oleylamine. AFM measurements were carried out (Figure S2, ESI) to further evaluate the layer
thickness; that of FMoS2 was ~6.7 nm, suggesting the existence of few-layer nanosheets, while the
reported thickness of monolayer MoS2 ranges between 0.9 and 1.2 nm [54].

To improve the performance of conventional PEDOT:PSS-based HTL for OSCs, we incorporated it
with FMoS2 via a simple solution-blending method because we believed that the introduction of 2D
sheet-like MoS2 functionalized with a long-chain primary alkyl amine (oleylamine) would have made
the PEDOT:PSS surface more hydrophobic, facilitating the following deposition of the hydrophobic
active layer. In addition, the amine group of oleylamine tends to be located near Mo atoms in MoS2

due to metal–amine interactions, while its long alkyl chain with –CH3 groups is oriented toward the
active layer, and this kind of configuration should enforce the active layer with a desirable molecular
orientation for efficient charge transport in OSCs; P3HT thin films deposited on insulator substrates
modified with –CH3 groups formed face-on orientation because of π–H interactions [55,56].

The contact angles of ITO with PEDOT:PSS and PEDOT:PSS/FMoS2 containing 5, 20, and 50 µL of
FMoS2 were 30◦, 47◦, 54◦, and 56◦, respectively (Figure S3, ESI), which indicates that the hydrophobicity
of PEDOT:PSS was slightly increased by the FMoS2 addition and, hence, the hydrophobic active layer
solution was more compatible on hybrid HTL than that of the hydrophilic PEDOT:PSS one.

The surface morphology of the various samples was compared via tapping-mode AFM analysis
(Figure S4, ESI); the root-mean-square (rms) roughness value of PEDOT:PSS was 1 nm and decreased
down to 0.69 nm for PEDOT:PSS/FMoS2(5), suggesting a smooth surface morphology in the hybrid
HTL. However, PEDOT:PSS/FMoS2(50) exhibited an rms roughness value of 0.97 nm, indicating that
the addition of higher FMoS2 concentrations would decrease the film smoothness.

All the synthesized PEDOT:PSS and PEDOT:PSS/FMoS2 hybrid films exhibited similar UV-Vis
transmittance values (Figure S5a, ESI), showing that the FMoS2 addition did not affect any absorption
property of the PEDOT:PSS matrix. As regards the P3HT:PCBM (active layer) films spin-coated on
glass substrates predeposited with PEDOT:PSS or PEDOT:PSS/FMoS2 HTLs (Figure S5b), for all the
samples, their absorbance ranged from 400 to 650 nm, with a maximum at 512 nm, and two shoulders
around 550 and 600 nm. The existence of vibronic feature at 600 nm suggests that the P3HT film existed
in a high degree of ordered crystalline lamella due to strong interchain interactions [57].

The current–voltage (JV) characteristics of the fabricated P3HT:PCBM OSCs having
PEDOT:PSS/FMoS2 as HTL are shown in Figure 3a. Their performance is compared with that
of reference devices having PEDOT:PSS as HTL in Table 1. The reference cells showed PCE = 3.25%,
Jsc = 7.92 mA cm−2, Voc = 0.671 V, and FF = 0.61. The FMoS2 incorporation led to significant PCE and
Jsc improvements; in particular, the device based on PEDOT:PSS/FMoS2(5) exhibited the highest PCE,
Jsc, and FF.

The external quantum efficiency (EQE) measurements (Figure 3b) showed improved EQE for
the hybrid HTL-based OSCs compared with the reference cells and confirmed also their increased
Jsc, demonstrating the enhanced charge extraction at the HTL/active layer interface and the charge
collection at the electrodes [58,59]. The photovoltaic parameters such as PCE, Jsc, FF and Voc as
a function of FMoS2 in PEDOT:PSS HTLs are plotted in Figure 3c, d, e and f respectively.
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Figure 3. (a) Current density–voltage curves, (b) external quantum efficiency (EQE)
profiles, (c) power conversion efficiencies (PCE), (d) short-circuit current density
(Jsc), (e) fill factor, and (f) open-circuit voltage (Voc) values of organic solar cells
based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and
PEDOT:PSS/oleylamine-functionalized MoS2 (FMoS2) as hole-transporting layers. The reported
average PCE values are extracted from nine identical cells for each sample.

Table 1. Photovoltaic performance of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl
ester-based organic solar cells having poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSSS) and PEDOT:PSS/oleylamine-functionalized MoS2 (FMoS2) as hole-transportation layers.

FMoS2 Concentration (µL) in
PEDOT:PSS PCE (%) Voc (V) Jsc (mA cm−2) FF (%)

0 (Reference) 3.25 ± 0.03 0.671 ± 0.004 7.92 ± 0.09 61.2 ± 0.26
5 3.74 ± 0.02 0.665 ± 0.004 9.02 ± 0.17 62.24 ± 0.41
20 3.51 ± 0.15 0.667 ± 0.006 8.57 ± 0.33 61.34 ± 0.68
50 3.39 ± 0.08 0.669 ± 0.005 8.30 ± 0.17 61.10 ± 0.48

To understand the charge transport, we analyzed the microstructure (chain-orientation and
crystallinity) of the active layer (P3HT:PCBM) on both the PEDOT:PSS and PEDOT:PSS/FMoS2 samples
by GIWAXS (Figures 4 and 5). Charge transport in conjugated polymers occurs either in the π–π
staking direction or the chain backbone one, which is the fastest but its vertical alignment of chains
backbones along the z direction is rarely observed [60,61]. In general, P3HT crystallizes into two main
configurations, namely, edge-on and face-on orientations; in the former, both chain backbone and
π–π staking directions lie parallel to the substrate; in the latter, π–π staking occurs perpendicular to
the substrate, which is a desirable orientation in OSCs for vertical charge transport [62]. Figure 4
shows the GIWAXS diffraction patterns of P3HT:PCBM thin films deposited on PEDOT:PSS and
PEDOT:PSS/FMoS2 HTLs. In both cases, the thin films exhibited strong (100), (200), and (300)
diffractions along the z axis, confirming the existence of the strong edge-on lamellae configuration
of P3HT [63]. In addition, the absence of π–π staking peak (010), corresponding to the face-on
orientation near the z axis, indicates that P3HT preferentially adopted the edge-on configuration in
both PEDOT:PSS and PEDOT:PSS/FMoS2 HTLs. Since the use of –CH3 group-functionalized substrates
tends to promote the face-on orientation of P3HT [55,56], we aimed to improve such configuration
of the active layer by incorporating the described oleylamine (having –CH3 groups)-functionalized
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MoS2 into PEDOT:PSS, but we did not observe any significant difference in its molecular orientation,
maybe because the low FMoS2 concentrations used were not sufficient for such change. Thus, we can
conclude that the PCE and Jsc enhancement in the OCSs having PEDOT:PSS/FMoS2 as HTL may be
due to its surface compatibility for the active layer deposition, as observed in the AFM and contact
angle measurements.
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with (b) 5, (c) 20, and (d) 50 µL of oleylamine-functionalized MoS2.
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Figure 5. (a) In-plane and (b) out-of-plane spectra of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric
acid methyl ester thin films deposited on poly (3,4-ethylendioxythiophene): poly(styrenesulfonate)
(PEDOT:PSS) and PEDOT:PSS combined with 5, 20, and 50 µL of oleylamine-functionalized MoS2

samples obtained from grazing-incidence wide-angle X-ray scattering.

Electrical impedance spectroscopy (EIS) was performed to investigate the charge transport
dynamics of the OSCs fabricated with PEDOT:PSS and PEDOT:PSS/FMoS2(5) as HTL (Figure 6).
This analysis allowed us to observe the current response by applying alternating current voltage as
a function of frequency; the OSCs with PEDOT:PSS/FMoS2(5) demonstrated slightly lower charge
transfer resistance, revealing that the holes were effectively transported from the active layer to the
anode (ITO). In order to elucidate the origin of the improvement in the photovoltaic performance,
especially both FF and Jsc for PEDOT:PSS/FMoS2(5), we further calculated the resistance of the devices.
In general, it is well known that lower series resistance (RS) and higher shunt resistance (RSH) are
required to achieve higher FF in the solar cell device [64]. Based on the J–V curves obtained from the
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devices, it is clearly revealed that the device with PEDOT:PSS/FMoS2(5) as HTL showed the lowest RS

while maintaining higher RSH, leading to enhancement in charge extraction. The corresponding RS

value of cells employing PEDOT:PSS/FMoS2(5) as HTL was 134.8 Ω·cm2, while the reference showed
180.0 Ω·cm2. Lower RS indicates that better interfacial contact and charge collection efficiency were
obtained due to the addition of the conducting FMoS2 layer. In the case of the RSH, no significant
changes in the shunt resistance were observed for the devices. In the point of view of the identical RSH,
barrier resistance at the interface and the leakage current level flowing across the photoactive layer is
similar. Therefore, the addition of FMoS2 might contribute to extract photoexcited charges efficiently
by lowering the RS.
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4. Conclusions

The application of solution-processed PEDOT:PSS/FMoS2 hybrids as effective HTLs for OSCs has
been successfully demonstrated. Raman, UV-Vis, PL, TEM, and AFM analyses confirmed the successful
exfoliation of bulk MoS2 into few-layer nanosheets in the presence of oleylamine via a simple and
cost-effective solution-based method. The OSCs fabricated with the synthesized PEDOT:PSS/FMoS2

hybrids as HTL exhibited PCE values up to 3.74%, which is 15.08% higher than that of the reference
cells having simple PEDOT:PSS as HTL. The hybrid HTL films showed better surface properties for the
deposition of the hydrophobic active layer, consequently, the charge-transfer resistance was minimized
for OSCs fabricated with hybrid HTL compared with reference cells, improving the OSC performance.
Due to their simple preparation method, 2D FMoS2-incorporated PEDOT:PSS-based HTL provides
valuable alternative HTL for OSCs.
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