Supplementary Materials:

Synthesis of TiO$_2$/WO$_3$ Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis

Vincent Otieno Odhiambo 1,*, Aizat Ongarbayeva 1, Orsolya Kéri 1, László Simon 2 and Imre Miklós Szilágyi 1

1 Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Szent Gellért tér 4., Hungary; ayzatonga@gmail.com (A.O.); orsolyakeri@gmail.com (O.K.); imre.szilagyi@mail.bme.hu (I.M.S.)

2 Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Budafoki út 8., Hungary; simon.laszlo92@gmail.com

* Correspondence: vincent.odhiambo@mail.bme.hu

Percentage of semi-conductor oxides in the precursor

TiO$_2$

\[C_6H_{10}N_2O_6Ti \rightarrow TiO_2 + N_2O_x + CO_{x-1} + nH_2O \]

\[
\frac{79.97}{294.08} \times 100 = 27.16\%
\]

WO$_3$

\[(NH_4)6[H_2W_{12}O_{40}]xH_2O \rightarrow 12WO_3 + 6NH_3 + (x + 4)H_2O\]

\[
\frac{2781.6}{2956.30} \times 100 = 94.08\%
\]
Tauc plots

Figure S1. Tauc plots for annealed fibers (a) 100% TiBALDH (b) 90% TiBALDH (c) 50% TiBALDH (d) 10% TiBALDH (e) 0% TiBALDH.
Figure S2. Apparent rate constant(slope) and r^2 values for the photocatalytic degradation of methyl orange in UV light.

Figure S3. Apparent rate constant(slope) and r^2 values for the photocatalytic degradation of methyl orange in Visible light.