Catalytic Performances of Cu/MCM-22 Zeolites with Different Cu Loadings in NH₃-SCR

Jialing Chen ¹,* , Gang Peng ¹, Tingyu Liang ², Wenbo Zhang ¹, Wei Zheng ¹, Haoran Zhao ¹, Li Guo ¹,* and Xiaoqin Wu ¹,*

¹ Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; penggang@btrchina.com (G.P.); wustzhangwenbo@163.com (W.Z.); zhengwei321@126.com (W.Z.); Zhaohr290370@163.com (H.Z.)

² Key Laboratory for Green Chemical Process of Ministry of Education, and Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; ltingyu2006@yahoo.com

* Correspondence: chenjialing@wust.edu.cn (J.C.); guoli@wust.edu.cn (L.G.); wuxiaoqin@wust.edu.cn (X.W.)

Figure S1. Relationship between the intensity of CuO diffraction peaks and Cu contents over xCu/MCM-22 zeolites.

Figure S2. Correlations between the loss percentage of (A) surface areas (S_{BET}, BET surface area, and S_{micro}, micropore surface area), or (B) pore volumes (V_{total}, total pore volume, and V_{micro}, micropore volume) with Cu contents over xCu/MCM-22 zeolites.
Figure S3. Deconvolution of the NH$_3$-TPD profiles of H-MCM-22 and xCu/MCM-22 zeolites.

Figure S4. Deconvolution of the H$_2$-TPR profiles of xCu/MCM-22 with different copper contents.
Figure S5. H$_2$-TPR profile of 6Cu/MCM-22.