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Abstract: This paper focuses on modeling a disorder ensemble of quantum dots (QDs) as a special
kind of Random Geometric Graphs (RGG) with weighted links. We compute any link weight as
the overlap integral (or electron probability amplitude) between the QDs (=nodes) involved. This
naturally leads to a weighted adjacency matrix, a Laplacian matrix, and a time evolution operator
that have meaning in Quantum Mechanics. The model prohibits the existence of long-range links
(shortcuts) between distant nodes because the electron cannot tunnel between two QDs that are
too far away in the array. The spatial network generated by the proposed model captures inner
properties of the QD system, which cannot be deduced from the simple interactions of their isolated
components. It predicts the system quantum state, its time evolution, and the emergence of quantum
transport when the network becomes connected.

Keywords: quantum dot; disorder array of quantum dots; probability amplitude; complex networks;
spatial network; Random Geometric Graphs; quantum transport

1. Introduction

Conceptually, a quantum dot (QD) [1] is a “small” (less than the de Broglie wave-
length), zero-dimensional (0D) nanostructure that confines carriers in all three directions
in space [2–4], and exhibits a delta density of states (DOS), unlike those of quantum wells
(2D nanostructure [5]) and quantum wires (1D) [2], as shown in Figure 1a. In particular, a
(type I) semiconductor QD is a heterostructure [6] made up of a small island (generally 10–
20 nm in size) of a semiconductor material (“dot material”) embedded inside another with a
higher bandgap (“barrier material” –BM–), which is able to confine both electrons and holes,
as illustrated in Figure 1b). This creates discrete energy levels for carriers, and modifies
both its electronic and optical properties [3]. The problem of manufacturing high densities
of high-quality QDs is successfully addressed by using self-assembled QD (SAQD) [7]
technologies. Figure 1c shows different SAQD growth modes. In the Stranski–Krastanow
(SK) growth mode [8], the deposition of the dot material starts with the formation of a
two-dimensional, very thin wetting layer (WL), and when a critical amount of strained dot
material has been deposited, the formation of pyramidal QDs occurs to relax strain. In the
Volmer–Weber (VW) mode, the QDs grow directly on the bare substrate [9]. Sub-monolayer
(SML)-QDs [10] can be formed as a disk or as a spherical QD because the growth method
consists of multilayer deposition with a fraction of a monolayer of dot material on the
barrier matrix [8]. SML-QDs have several advantages over SK-QDs, such as a smaller
base diameter (5–10 nm), higher dot density (∼5 ×1011 cm−2), and better control of QD
size [10,11].
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4. IMPLEMENTATION OF THE INTERMEDIATE BAND SOLAR CELL  BY MEANS OF QUANTUM DOTS 
 

size is so small that carriers are almost completely localised within the dot and  discrete 

levels are formed. This is just one of the reasons that compels us to propose the use of 

quantum dots: the ability to create a discrete energy level within the forbidden gap of 

the barrier semiconductor (i.e., our “intermediate level”) and control its energy [Ma00]. 

Since the density of states (DOS) of carriers confined in a QD is ideally a delta function 

[Fig. 4.2 (b)], the intermediate state in the dot is separated from the CB and from the 

VB by means of sub-gaps of zero density of states. The IB would ideally derive from 

the intermediate electron bound state in the ordered superlattice of dots [Ma01b] as 

illustrated in Fig. 4.2 (c). By doping the QD-array at a rate of one donor impurity per 

QD, the IB may potentially be half filled with electrons [Ma01a, Ma01b]. 

 

 

 

Fig. 4.2. (a) Illustration of a spherical quantum dot of radius RD and the three-
dimensional confinement energy potentials, Ue and Uh, for electrons and holes (not to 
scale). They have been represented along an imaginary line that crosses its centre. EI 
represents the electron energy level. (b) Density of states (DOS), g, in the system 
QD/barrier. NQD is the dot density. (c) Band structure derived from an ordered array of 
these identical dots (From [Cu03c, Cu04a]).  
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from suggesting QWs for implementing the IBSC. An electron optically pumped from 

the ground state in the well (actually the first sub-band) up to the second sub-band (or 

even to the continuum in the CB) would easily relax to the first sub-band. Thus 

electrons in the QW sub-bands and in the CB continuum are described by the same 

quasi-Fermi level, EFC. A similar discussion can be applied to the hole sub-bands. 

Therefore, as only two quasi-Fermi levels exist in a QW-cell, (EFC and EFV, which 

describe the carrier concentration in the electron and hole sub-bands), the QW-cell 

behaves like a conventional single-gap cell whose effective gap corresponds to the 

separation between the ground electron and hole sub-bands. Although the MQW cell 

has the potential advantage of increasing its ISC by the absorption of sub-bandgap 

photons, this is, nevertheless, at the expenses of reducing its VOC.  

 

 

 

Fig. 4.11. Electron density of states, N(E): (a) in a bulk semiconductor, (b) in a quantum 
well, (c) in a quantum wire, and (d) in a QD [Le00].  

 

 

 

 

On the contrary, the QD DOS is discrete, is a delta-function [Su99a, Su99a, 

As86, Ba93] and, as said in advance, there are true sub-gaps with zero density of states 

between the intermediate level in the dot and the continuum in the CB and the VB 
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From this perspective, since QDs are able to create discrete energy levels, they 

mimic some of the properties of the atoms, and sometimes, even it is said that they are 

“artificial atoms” [We91]. In this context, it is also said that a QD is a zero-dimensional 

structure (0D). This statement requires some comments in order to clarify what “0D” 

physically means. It is known that the reduction in dimensionality from a bulk 

semiconductor to a thin layer confines electrons (or holes) to this layer. This causes 

outstanding changes in some of the carrier properties. This is the case, for example, of a 

QW, which currently is the best known and more used low-dimensional structure 

[Sh99]. But more exciting modifications in electronic and optical properties can be 

achieved by a further reduction in the dimensionality of the carrier surroundings from a 

two-dimensional (2D) QW to a one-dimensional (1D) quantum wire, and finally, to a 

zero-dimensional QD. This process of reducing dimensionality has artistically been 

represented in Fig. 4.10. 

 

Fig. 4.10. Representation of the three different kinds of low-dimensional structures: 
quantum well (two-dimensional heterostructure), quantum wire (one-dimensional) and 
quantum dot (zero-dimensional). 

 

 

 

 

 

In this context, the term “dimensionality” refers to the number of degrees of 

freedom in the electron momentum. For instance, as shown in Fig. 4.10, an electron in a 

quantum well is confined in only one direction (the growth direction) while it is free to 

move in the other two. There are thus two degrees of freedom in its motion. A further 
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Figure 1. (a) Conceptual representation of nano-structures and their corresponding density of states
(DOS) for quantum wells, quantum wires and quantum dots; (b) confinement potentials for electrons
(Ue) and holes (Uh) in a type I QD (or simply, QD), and its corresponding density of states; (c) different
classes of growth in self-assembled quantum dots. See the main text for details.

SAQD technologies help both research in Quantum Mechanics (QM) and manufacture
novel devices. On the one hand, SAQD technologies assists in manufacturing high quality
QDs for studying QM and exploring novel effects in electronics, photonics, and spintronics.
For instance, SAQD-based devices help achieve single-electron charge sensing [12], entan-
glement between spins and photons [13,14], single-photon sources [15], or single-spin [16],
and help also the control of Cooper pair splitting [17], spin transport [18], spin–orbit in-
teraction [19], g-factor [20], and Kondo effect [21]. On the other hand, SAQD technologies
allow for manufacturing high density of QDs, which are crucial for implementing opto-
electronic devices such as QD-based light-emitting diodes (LEDs) [22], QD-memories [4,23],
QD-lasers [24–27], QD-infrared photodetectors [8,28,29], and QD-solar cells [30]. A key
point in these devices is that the position of carrier level(s) can be tuned by controlling the
dot size [2], and, this, by modifying the growth conditions [6,10,11,31].

In this work, we model a system formed by QDs as a special graph in the effort of
exploring electron transport. Our approach could be considered as belonging to Complex
Networks (CN) Science. CN have become a multidisciplinary research field [32–34] for
studying systems with a huge amount of components that interact with each other. These
range from artificial systems (such as power grids [35,36], or the Internet [37]) to natural
systems (vascular networks [38], protein interactions [39], or metabolic networks [40]).
More examples showing the feasibility of CN to study many other systems can be found
in [32,41,42] and the references therein. All these very different systems have in common
that all of them can be described in terms of a graph [32]: a set of entities called nodes
(or vertices) that are connected to each other by means of links (or edges). A node repre-
sents an entity (generator/load in a power grid [36], or a species in an ecosystem [43]),
which is connected with others (linked by electrical cables in power grids, or related by
trophic relationships in ecosystems). This way, any system can be encoded as a graph, a
mathematical abstraction of the relationships (links) between the constituent units (nodes)
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of the system. In broad sense, CN science models not only the structure (topology), but
also some dynamic phenomena such as information spreading [44], epidemic processes
(both biological [45], and artificial viruses [46]) or cascading failures [47,48]. These are very
common in large engineered networks: wireless sensor networks [49], Internet [50], power
grids [35,51,52], or transportation networks [53]. Some of these CN, such as transportation
networks, are networks in which the nodes are spatially embedded [54] or constrained to
locations in a physical space with a metric. For many practical applications, the space is
the two-dimensional space and the metric is the Euclidean distance dE. This geometric
constraint usually makes the probability of having a link between two nodes decrease
with the Euclidean distance [53]. This particular subset of networks are called spatial
networks (SN) [53,55] or spatially embedded CN [56]. A particular class of SN are Ran-
dom Geometric Graphs (RGGs) [57] in which N nodes are uniformly distributed over the
unit square, while the link between two nodes i and j is formed if the Euclidean distance
dE(i, j) < r, a given model parameter. RGGs have been successfully used to model wireless
sensor networks [58] and ad hoc networks [59] in which r is related to the range of the
radio devices.

The previous paragraph has shown that CN science has been applied to a broad
variety of macroscopic, “classical” (non-quantum) systems. As will be shown in our review
of the current state of the art in Section 2, CN science has also been used to study quantum
nanosystems, although to a much lesser extent and not with the RGG approach that we
will show throughout this paper.

The purpose of our work is to propose a particular class of RGG whose links have
weights computed according to QM with the aim of studying electron transport in a system
of disordered QDs like the one in Figure 2a. It consists of a number of N QDs—for in-
stance, a layer of SAQDs [6], which produce finite quantum confinement potentials (QCPs),
randomly distributed in the physical metric space, R2, characterized by the Euclidean
distance, dE.

Node Link
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Figure 2. (a) Random distribution of QDs in R2. Each QD, represented by a node, causes a quantum
confinement potential. (b) A link between two nodes is allowed if and only if the electron wave-
functions at such nodes have non-zero overlap. Any link has a weight that is quantified by such
overlap. See the main text for details.

In our model, any QD causing a QCP in Figure 2a is represented by a node. To
understand how links have been generated in Figure 2b, it is convenient to have a
look at Figure 3. On its left side, we have represented, for illustrative purposes, two
of these QDs, labeled i and j. For the sake of clarity, we have assumed that each QD
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has radius RQD . Their centers are separated by a Euclidean distance dE(i, j). As shown
in Figure 3a, we have also represented an ξ axis that passes through the centers of both
QDs. The ξ axis will assist us in clearly representing the associated concepts in Figure 3b,c.
Figure 3b shows the corresponding finite QCP caused by a QD along ξ axis: V(ξ) = −VC
(inside the QD) and V(ξ) = 0 (otherwise). Since the QCP is finite, there is a part of the
electron wavefunction that spreads outside the QD, as qualitatively shown in Figure 3c.
Note that the QDs are close enough that the electron wavefunctions overlap. According to
QM, the electron, a, is in both QDs with a probability amplitude as the one in Figure 3c.
The electron can tunnel from one QD to the other. We model this quantum phenomenon
by forming a link between nodes i and j (Figure 3d). We will show throughout the paper
that the link weight wij between two nodes i and j depends on the extent to which the
electron wave-functions in both nodes overlap. Quite often, however, there are electron
wave-functions in sufficiently remote QDs that do not overlap at all. Regarding this, we
have represented in Figure 3e two nodes that are so far apart that their corresponding
wave-functions do not overlap (Figure 3g). Thus, an electron that is in node i at the initial
time t = 0 will remain localized in that node even if t →∞. We model this QM result
through the absence of a link (wij = 0), as shown in Figure 3h (not connected nodes).
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Figure 3. (a) Two of the QDs that create QCPs as those in Figure 2a. We have considered QDs with
radius RQD and whose centers are separated by a Euclidean distance dE(i, j). x represents an axis that
passes through the center of both QDs. Along x-axis, we have represented in (b) the corresponding QCP
(�VC inside the node, 0 otherwise) and the electron wave-functions (c). As wave-functions overlap, an
electron can be in both QDs with the represented probability amplitude. (d) We model this with a link
whose weight wij is given by the overlap. (f) The rightmost panel represents the opposite case in which
the nano-structures are so far apart that the wave functions do not overlap (g), and link formation is
not allowed (g).

Our main result is that the proposed RGG is able to capture inner properties of the complex97

quantum system: it predicts the system quantum state, its time evolution, and the emergence of98

quantum transport (QT) as the QD density increases. In fact, QT efficiency exhibits an abrupt99

change, from electron localization (no QT) to delocalization (QT emerges). This is an electron100

localization-delocalization transition that has also observed in [60].101
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Figure 3. (a) Two of the QDs as those in Figure 2a. We consider QDs with radius RQD and whose
centers are separated by a Euclidean distance dE(i, j). ξ represents an axis that passes through the
center of both QDs. Along the ξ-axis, we have represented in (b) the corresponding QCP (−VC inside
the node, 0 otherwise) and the electron probability amplitudes (c). An electron can be in both QDs
with the represented probability amplitude. (d) We model this with a link whose weight wij is given
by the overlap. (e) Opposite case in which the QDs are so far apart (f) that there is no overlap (g) and
link formation is not allowed (h).

Our main result is that the proposed RGG is able to capture inner properties of the
complex quantum system: it predicts the system quantum state, its time evolution, and the
emergence of quantum transport (QT) as the QD density increases. In fact, QT efficiency
exhibits an abrupt change, from electron localization (no QT) to delocalization (QT emerges).
This is an electron localization–delocalization transition that has also observed in [60].

Our proposal could have potential application not only in improving the efficiency
of QD-based optoelectronic devices (LEDs, solar cell, lasers, etc.) that make use of SAQD
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layers but also in single, huge macromolecules (light-harvesting molecules [61]) to study
the quantum transport (energy, charge) between specific areas of their structures.

The rest of this paper has been structured as follows. After reviewing of the current
state of the art in Section 2, Section 3 briefly introduces the QD system that we want to
study, while Section 4 explains our RGG proposal. The experimental work in Section 5
allow for predicting inner features of the system such as the system quantum state, its time
evolution, or the emergence of quantum transport. Section 6 discusses potential applica-
tions, strengths, and weaknesses of the proposed method. Finally, Section 7 completes the
paper. Appendix A lists the symbols used in this work.

2. Current State of the Art

There are basically two approaches that combine CN and QM concepts [62]. The
first one applies concepts inspired by QMs to better study CN. For instance, Ref. [63]
proposes a way to navigate complex, classical (non-quantum) networks (such as, the
Internet) based on quantum walks [64] (the quantum mechanical counterpart of classical
random walks [65]). More examples belonging to this first framework can be found in [62]
and in the references therein. The second approach, in which the present article can be
included, is based on applying CN concepts to explore nanosystems, which are governed
by the laws of QM [66] and not by those of classical physics. A representative instance is
the system studied in [67]: any atom trapped in a cavity is represented by a node, while
the photon that the two atoms (nodes) exchange is encoded by a link between them. This
and other papers have in common the fact of studying quantum properties on networks
using quantum walks. This is because the quantum dynamics of a discrete system can
be re-expressed and interpreted as a single-particle quantum walk [68,69]. This is the
reason why quantum walks have been used to study the transport of energy through
biological complexes involved in light harvesting in photosynthesis [70]. Quantum walks
have also been used to explore transport in systems described by means of CN with
different topologies [71,72]. Specifically, continuous-time quantum walks (CTQW)—a class
of quantum walks on continuous time and discrete space [64]—have been used extensively
to study quantum transport (QT) on CN [72], and will also be used in our work. There are
several works that have studied QT over regular lattices [72–74], branched structures [75,76]
(including dendrimers [76]), fractal patterns [77], Husimi cacti [78], Cayley trees [79],
Apollonian networks [80], scale-free networks [81], small-world (SW) networks [82] and
start graphs [83,84], leading to the conclusion that QT differs from its classical counterpart.
Having a quantitative measure of the efficiency of QT in a CN has been found to be
important for practical and comparative purposes. In this regard, Ref. [85] has recently
found bounds that allow for measuring the global transport efficiency of CN, defined by the
time-averaged return probability of the quantum walker. QT efficiency can undergo abrupt
changes, and can have transitions from localization (no QT) to delocalization (QT appears).
In this respect, the authors of [60] have studied localization–delocalization transition of
electron states in SW networks. The SW feature is interesting because it makes it easy to
navigate a network since SW networks exhibit a relatively short path between any pair
of nodes [86,87]: the mean topological distance or average path length ` is small when
compared to the total number of nodes N in the network (` = O(ln N) as N → ∞). The
usual technique of rewiring [86] or adding links [88] in macroscopic, non-quantum CN to
create SW networks have also been extended to quantum system [82,84] to enhance QT.
In [82], SW networks have been generated from a one-dimensional ring of N nodes by
randomly introducing B additional links between them. The quantum particle dynamics
has been modeled by CTQWs, computing the averaged transition probability to reach
any node of the network from the initially excited one. Finally, the strategy of adding
new links have been explored in star networks with the aim of enhancing the efficiency
of quantum walks to navigate the network [84]. Please note that all of these key works
have focused their research from the viewpoint of the topological properties. In particular,
the topological (geodesic) distance between two nodes i and j, d(i, j), is the length of the
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shortest path (geodesic path) between them, that is, the minimum number of links when
going from one node to the other [50]. The distance between two nodes i and j that are
directly linked is d(i, j) = 1, regardless of where they are located in physical space. We
propose in the next paragraph to use the Euclidean distance for reasons that will be clearer
later on.

3. The QD System

Let us consider a microscopic physical system, which is closed, and made of a set of N
QDs that are randomly distributed in a metric space as shown in Figure 2a. The position of
each nanostructure in the metric space R2 is determined by a position vector r. We consider
a single electron (walker) freely tunneling among QDs (when allowed). An example of
one-electron model is the tight-binding model [89], which has been used for both lattice
and random networks.

Aiming to later numerically illustrate the results of studying this system using CN
concepts, we are going to assume a set of hypotheses about the QCF that the QDs produce.
These hypotheses will allow us to tackle the problem by using some well known QM
results on each individual nanostructure, so that we will be able to then focus on exploring
the complete system as a RGG.

With this in mind, and for reasons that will be clearer later on, we first assume that
the single band effective mass equation of electrons in the envelope approximation [90]
is a proper description of the dot and barrier bulk materials. This is because a QD size of
10 to 20 nm is much larger than the lattice constant of the material involved and, thus, it
seems reasonable to consider that only the envelope part of the electron wave function
is affected by the confinement potential. For the sake of clarity, we also assume that the
QDs are identical (since in a closed system, energy is conserved, and the electron can only
make transitions between QDs that have the same energy, that is, between QDs that have
the same size [91]) and spherical with radius RQD. The center of any QD i is given by a
position vector ri in the metric space. We assume that its associated QCP is spherically
symmetric (depending only on the radial co-ordinate r), finite and “square”:

UC(r) = {−VC , if r < RQD
0 , if r > RQD

, (1)

as shown in Figure 4a.
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Figure 4. (a) Quantum confinement potential. VC is the depth of the potential well while RQCP is the
radius of the nanostructure producing UC. EQD is the energy of the bound state; (b) squared modulus
of the corresponding wave function, ∂yQD∂2, in Cartesian coordinates; (c) ∂yQD∂2 as a function of the
normalized radial coordinate, r/RQCP.

The reason why we have made use of UC is that the time-independent Schrödinger’s
equation, which allows for computing both the electron wavefunction (yQD) and its en-
ergy (EQD),
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Figure 4. (a) Quantum confinement potential. VC is the depth of the potential well while RQD is
the radius of the QD producing UC. EQD is the energy of the bound state; (b) squared modulus of
the corresponding wave function, ∣ψQD∣2, in Cartesian coordinates; (c) ∣ψQD∣2 as a function of the
normalized radial coordinate, r/RQD.

The reason why we have made use of UC is that the time-independent Schrödinger’s
equation, which allows for computing both the electron wavefunction (ψQD) and its en-
ergy (EQD),
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ĤψQD = EQD ⋅ ψQD, (2)

can be solved analytically [91–93]. Ĥ in Equation (2) is called the Hamiltonian operator
and corresponds to the total energy of the system,

Ĥ ≡ − h̄2

2m ▽2 +V̂ (3)

where h̄ is the reduced Planck constant, m the electron mass, ▽2 is the the Laplace opera-
tor [94], and V̂ is the energy potential operator.

Thus, according to QM, the electron energy in the QCF (1) is quantized: it can only take
discrete values [91]. The number of “bound states” in this QCF depends on VC ⋅ (2RQCP)2

(see [91]): there is a range of values of VC ⋅ (2RQCP)2 for which there is only one energy
level. Now, if we assume, for simplicity, that the QD size, 2RQCP, is so tiny that there is
only one energy level, EQD, its associated wavefunction is a 1 s–orbital [6,93]. We have
solved the problem for a single, isolated QD with RQCP = 10 nm and VC = 0.47 eV, typical
in III-V semiconductors. There is only one bound state, whose energy is EQD = 0.4 eV. Its
associated wave function ψQD is a spherical 1s−orbital. We have represented its squared
modulus, ∣ψQD∣2, in both Cartesian (Figure 4b) and radial coordinates (Figure 4c). The
latter shows how ∣ψQD(r)∣2 decreases very quickly as a function of the normalized radial
coordinate, r/RQCP.

With this idea in mind, the potential in the complete system is a function that varies
from one QD to another, taking the −VC value inside each QD and zero in the space
among QDs:

V ≡ V(r) = {−VC , inside a QD at r
0 , outside a QD , (4)

where r is the position vector locating each QD.

4. Modeling the QD System as a Spatial Network: The Proposed Model

Aiming at generating the network associated with the proposed system, we represent
any QD i by means of a node, and we label this node using its ket ∣i⟩, as shown in Figure 5a.
Our next step is to generate the links in a way that makes physical sense according to QM,
and also takes into account that the nodes are spatially embedded. As outlined in Section 1
when introducing our approach, we generate a link between two nodes (sites, kets), ∣i⟩ and∣j⟩, located at ri and rj, respectively, by computing to what extent their respective wave
functions overlap. We compute the overlap between the wave functions ψQDi and ψQDj as
the overlap integral [94] over all the physical space S

∫
S

ψ
∗
QDj ψQDi dr = ⟨j∣i⟩ = wij. (5)

Note that, because of symmetry, ⟨j∣i⟩ = ⟨i∣j⟩.
Using Expression (5), we have computed the overlap integral for nodes whose

centers are separated by a normalized Euclidean distance dE/RQCP. The result appears
in Figure 6, where we have represented the overlap integral as a function of dE/RQCP.
We have highlighted two situations in Figure 6 for illustrative purposes.
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Figure 5. (a) System with three QDs. Vector r is the position vector in the metric space. We represent
each QD as a node, and we label it with the ket notation ∣i⟩; (b) methodology to form weighted links
according to QMs. Each weight wij is the overlap integral between ψQDi and ψQDj (or, equivalently,⟨i∣j⟩ in Dirac’s notation).
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(between dot centers) normalized by the radius of the QD, dE/RQD. The insets aim to graphi-
cally illustrate how increasing the separation between the nodes implies a longer link with much
less weight.

The first one corresponds to the inset in which the centers of the nodes (sites) i and j
are separated by a distance dE(i, j) = 3 ⋅RQD for which ⟨i∣j⟩ = wij ≈ 0.65. Thus, we generate
a link between nodes i and j whose weight is wij = 0.65. The second inset corresponds to
two nodes whose centers are at a dE(g, h) = 15 ⋅ RQD for which wgh = ⟨g∣h⟩ = wg f ≈ 0.05.
A link is generated, but has a very small weight wgh ≈ 0.05. Note that the overlap integral
wij → 0 when dE(i, j) > 25 ⋅ RQD, and is wij = 0 for dE(i, j) ≥ 30 ⋅ RQD. That is, in our system,
all those nodes whose centers are separated by a distance dE ≥ 30 ⋅ RQD = dE,Lim (or limit
distance) are not allowed to be linked. This is the case of nodes ∣1⟩ and ∣3⟩ in Figure 5, where⟨1∣3⟩ = w13 = 0.

Although it does not seem clear yet at this point,

dE,Lim ≡ dS, (6)

defines a new scale in the system, dS. Note that our approach is a modified version of
a RGG. As mentioned, an RGG is the simplest spatial network, consisting of randomly
placing N nodes in some metric space and connecting two nodes by a link if and only if
their Euclidean distance is smaller than a given neighborhood radius, r. In our case, this is
distance is dE,Lim. The novelty of our approach is that any link between nodes i and j is
characterized by a weight that involves the overlap integral between kets ∣i⟩ and ∣j⟩.

To advance in our model, it is necessary to introduce some essential concepts. The
first one arises from the very interaction between nodes. When two nodes are directly
connected by a link, they are then said to be “adjacent” or neighboring. The adjacency
matrix A encodes the topology of a network, that is, whether or not there is a link (aij = 1
or aij = 0) between any two pairs of nodes i and j. Sometimes, this binary information
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encoding whether or not a node is connected to another is not enough, and it is necessary
to quantify the “importance” of any link (the strength of a tie between two users in a
social network, or the flow of electricity between two nodes in a power grid [35]) by
assigning to each link a “weight”. In that case, the matrix that encodes the connections is
called weighted adjacency matrix W [41]. With our method, the weighted adjacency matrix
corresponding to the network represented in Figure 5b is

⎛⎜⎜⎝
0 ⟨1∣2⟩ ⟨1∣3⟩⟨2∣1⟩ 0 ⟨2∣3⟩⟨3∣1⟩ ⟨3∣2⟩ 0

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0 ⟨1∣2⟩ 0⟨2∣1⟩ 0 ⟨2∣3⟩
0 ⟨3∣2⟩ 0

⎞⎟⎟⎠, (7)

which is symmetric (since ⟨i∣j⟩ = ⟨j∣i⟩ in this quantum systems), off-diagonal and non-
negative. In particular, ⟨1∣3⟩ = ⟨3∣1⟩ = 0 since there is no overlap between the electron
wave functions in kets ∣1⟩ and ∣3⟩.

An interesting point in Expression (7) is that its matrix elements have in QM the
meaning of probability amplitude, ⟨i∣j⟩, which is related to the probability for an electron to be
in ∣i⟩ and ∣j⟩, Pi↝j, as follows:

⟨j∣i⟩∗ ⟨j∣i⟩ = ∣ ⟨j∣i⟩ ∣2. (8)

We can now generalize the idea from the toy system in Figure 5 to the complete,
complex, quantum system composed of N QDs that are independently and uniformly
distributed in the metric space R2. The corresponding adjacency matrix is thus an N × N
weighted adjacency matrix WPA whose matrix elements, ⟨i∣j⟩, are the probability amplitude for
an electron in kets ∣i⟩ and ∣j⟩,

(WPA)ij = { 0 , if i = i⟨i∣j⟩ , if i ≠ j (9)

Once we have defined our weighted adjacency matrix, WPA in (9) and interpreted its
meaning in QM, we now have enough knowledge to represent the system as a network
by using the undirected, weighted graph G ≡ G(N ,L, WPA), where N is the set of nodes
(card(N ) = N) and L is the set of links. We have specified the matrix WPA in the triplet
G ≡ G(N ,L, WPA) to emphasize the fact that the connections between the nodes are made
using the WPA matrix and not, for example, a conventional adjacency matrix A (aij = 1 if i
and j are directly linked; 0 otherwise), which would result in different results.

Note that, because of the way we have generated the links, the weighted adjacency
matrix WPA quantifies connections that have physical meaning according to QM, and
explicitly includes the spatial structure of the system (remember Figure 6 and its associated,
previous discussion). This is the key point that allows us to apply to WPA techniques that
are well known in network science. For instance, in addition to the weighted adjacency
matrix, it is common to use the diagonal degree matrix D, whose elements Di are the sum
of weights of all links directly connecting node i with others. In our particular system,
D has physical meaning: using (9), Di = ∑i≠j(WPA)i = ∑i≠j ⟨i∣j⟩ ≡ sAPi is the sum of the
probability amplitudes on ket ∣i⟩. We label it sAPi to stress this physical meaning.

WPA helps us obtain Laplacian matrices that will assist us in studying electron dy-
namics using CTQW, quantum walks that are continuous in time and discrete on space.
See [64] for a very illustrative discussion on CTQW and their use in the simulation of
quantum systems. The first type of Laplacian matrix, the (combinatorial) Laplacian, or
simply, Laplacian matrix,

L = D−WPA. (10)

Note that the Laplacian matrix L computed using the weighted adjacency matrix WPA
is different from the one used in other works [72,84,95]. In these approaches, the matrix
elements of L are assumed to be equal γij ≡ γ = 1. In our approach, the matrix elements
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take different values since they depend on the involved overlap integrals (or probability
amplitudes, 0 ≤ wij < 1) and, as shown throughout the paper, they play a natural role
in the probability for an electron to tunnel from one node to another. The Laplacian acts
as a node to node transition matrix. The Hamiltonian of the CTQW can be written as
H = L [68,75,77,82,84,85,96–101].

The second one is the normalized Laplacian matrix [96], LN = D−1/2LD−1/2, an Hermi-
tian operator that, according to the way we have defined WPA in (9), has matrix elements
in the form

(LN)ij = { 1 , if i = j
− ⟨i∣j⟩√

sAPi⋅
√

sAPj
, if i ≠ j (11)

LN allows for generating the corresponding unitary CTQW [96] of an electron on our
graph G ≡ G(N ,L, WPA) as

ÛLN(t) = e−iLN ⋅t (12)

Note that, in the time evolution operator generated by LN in (12), the imaginary unit
makes ÛLN be unitary [75]. As in other CN approaches [74,76,102,103], we assume h̄ ≡ 1
so that time and energy can be treated as dimensionless. We will use ÛLN(t) to study the
temporal evolution of our quantum system.

5. Experimental Work: Simulations

5.1. Network Parameters

The spatial constraints stated by the overlap integral have effects on CN parameters
such as degree distribution, clustering, and average shortest path, defined as:

• The degree distribution of a network captures the probability P(k) that a randomly
chosen node exhibits “degree” k (= number of links). P(k) and its mean value ⟨k⟩
(mean degree) are very useful since it quantifies to what extent nodes are heteroge-
neous with respect to their connectivity. In fact, many real-world networks exhibit
broad, heterogeneous degree distributions. In a degree-heterogeneous network, the
probability to find a node with k > ⟨k⟩ decreases slower than exponentially, leading
to the existence of a non-negligible number of nodes with very high degrees. A key
feature of such degree distributions is the so-called scale-free behavior [32], charac-
terized by a degree distribution P(k) ∼ k−γ. This means that most of the nodes have
very few links, while only a few nodes have a large percentage of all links. These most
connected nodes are called “hubs”.

• The clustering or transitivity [32] quantify the probability that two neighbors of a
given node i are connected. This concept is clear in social networks: the fact that
usually “the friend of a friend is a friend” leads to high clustering coefficient. The
“clustering coefficient” is a local property capturing “the density” of triangles in the
graph, that is, two nodes that both are connected to a third node are also directly
connected to each other. A node i in the network has ki links that connects it to ki other
nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that actually exist between these ki nodes and the maximum possible
number of links, that is, Ci = 2Mi/ki(ki − 1). The clustering coefficient of the whole
network is: ⟨C⟩ = 1

N ∑
i

Ci. (13)

• The average shortest path length, `, quantifies the extent to which a node is accessible
from any other [32]. The average path length of a network is the average value of
distances between any pair of nodes in the network:

` = 1
N(N − 1) ∑

i≠j
dij (14)
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where dij is the distance between node i and node j. The length of the shortest path
between two nodes i and j in a network is the minimum number of links for going
from node i to j. Its average is computed over all possible pairs of nodes. When ` is
small when compared to the “network size” (number of nodes, N), the small-world
property arises. Intuitively, this means that any pair of nodes are relatively “close”.
Mathematically, this means that the average shortest path scales logarithmically with
the network size [32]: ` ∼ ln N.

The fact that an electron cannot tunnel from one QD to another that is at a distance
longer than dE,Lim leads to inhibiting the existence of long-range links to connect hubs
(that is, shortcuts are not allowed). The increasing tendency to establish connections in the
neighborhood (d < dE,Lim) leads to a high clustering coefficient (⟨C⟩ ≈ 0.57).

5.2. The Network Has a Percolation Transition as the Dot Density Increases

Consider the density of QDs as ρQD = N/A, where A = 1 is the area of a unit square.
When ρQD is very small (and, so does ⟨k⟩, k being the number of links per node), the nodes
are so far apart that there is no overlap between the wave functions and, as a consequence,
there is no links: ⟨k⟩→ 0 and there are N isolated nodes.

As ρQD increases (and, so does ⟨k⟩), the QDs are closer and closer and electron
wavefunctions in some of them start to overlap, causing the formation of links among
some of them. As a consequence, small clusters begin to appear. They are disconnected
from each other. These isolated subnetworks are called components and all of them have
similar size.

However, there is a value of ⟨k⟩ for which one of the clusters becomes dominant and
begins to grow to the detriment of the others. This cluster is called a giant component (GC).
The fraction or normalized size of the giant component with respect to the total number of
nodes is quantified as SGC = NGC/N. Figure 7 shows SGC of our network as a function of
the average node degree ⟨k⟩. Note that, for ⟨k⟩ < 3.4, there is no giant component. There are
several disconnected networks, many of then being trees. The point ⟨k⟩ = 3.4 in Figure 7
seems to be a critical point at which SGC has an abrupt transition. For 3.4 < ⟨k⟩ < 10, there
is a single giant component with small clusters. For ⟨k⟩ ≥ 10, there is only a single giant
component, that is, the network is connected.

This formation of a GC on a macroscopic scale is an example of percolation transi-
tion [104]. The fraction of nodes belonging to the giant cluster becomes the order parameter
of the percolation transition. Following [104], we have denoted it as m(⟨k⟩). Ref. [104]
explores the most recent advances of percolation theory in CN, and studies the order
parameter m for continuous, explosive, discontinuous, and hybrid percolation transitions.
According to [104], our network exhibits a Hybrid Percolation Transition (HPT) since it has
properties of both second-order (critical phenomena) and first-order (abrupt jump of the
order parameter) phase transitions at the same transition point, ⟨k⟩C, in our case.

In our case, m(⟨k⟩) ≡ SGC(⟨k⟩) fulfills

m(⟨k⟩) = { 0 , if ⟨k⟩ < ⟨k⟩C

m0 + r ⋅ (⟨k⟩− ⟨k⟩C)βm , if ⟨k⟩ ≥ ⟨k⟩C
(15)

where m0 and r are constants, and βm is the critical exponent of the order parameter. For⟨k⟩C ≥ 3.4, m(⟨k⟩) = 0.0492937+ 0.788699(⟨k⟩− 3.4)0.099.
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Figure 7. Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree ⟨k⟩. See the main text for further details.

5.3. Studying the Emergence of Electron Transport

We characterize the network’s transport efficiency by using the average return probability
α(t), defined as [85]

α(t) = 1
N

N

∑
j=1

∣ ⟨j∣ Û,LN (t) ∣j⟩ ∣2, (16)

where the operator ÛLN(t), stated in Equation (12), is the unitary time evolution operator
governing the evolution of the probability amplitudes. Please note that, as shown in a num-
ber of papers [68,75,77,82,84,85,96–101], the Hamiltonian of the network is the Laplacian
matrix (also called Connectivity matrix in some contexts).

High values of α(t) suggest inefficient transport since the quantum particle tends to
remain at the initial node [85]. On the contrary, α(t)≪ 1 means that the electron, localized
at the initial node in t = 0, tends to be delocalized, with different probability components
on each node.

With this concepts in mind, we define the quantum transport efficiency as

ηQT(t) = 1− α(t). (17)

Figure 8 shows the quantum transport efficiency ηQT stated by (17) as a function of
the average node degree ⟨k⟩, k being the number of links per node. Note that ηQT = 0 for⟨k⟩ < 10 while there is and abrupt transition at ⟨k⟩ = 10 so that ηQT ≈ 1 for ⟨k⟩ > 10.



Nanomaterials 2021, 11, 375 13 of 22

hki

Qu
an

tu
m

 T
ra

ns
po

rt
 E

ffi
ci

en
cy

� � �� �� ��
���

���

���

���

���

���

SGC = 1.0

hki = 5.0hki = 2.7

SGC = 0.20 SGC = 0.88

hki = 10

inset 1 inset 2 inset 3

(1)

(2)

Figure 8. Quantum transport efficiency as a function of ⟨k⟩. Insets “1”, “2” and “3” shows net-
work connectivity at different values of ⟨k⟩. SGC = NGC/N is the fraction (normalized size) of the
giant component.

The results shown in Figure 8 has been computed with t = 500. Note that time
and energy can be treated as dimensionless when assuming h̄ ≡ 1, as mentioned
before [74,76,102,103].

To explain this result, we have studied what happens to the connectivity of the
network when the density of QDs per unit area (A), ρQD = N/A, increases. When ρQD is
very small (and, so does ⟨k⟩), the nodes are so far apart that there is no overlap between
wavefunctions and, as a consequence, there is no links: ⟨k⟩→ 0, and there are N isolated
nodes. As ρQD increases (and so does ⟨k⟩), the QDs are closer and closer and the electron
wavefunctions in some of them start to overlap, causing the formation of links among some
of them. This is the case of the two nodes labeled “(1)” in Figure 8. Small clusters begin to
appear too (cluster labeled “(2)”). Note that they are disconnected from each other. These
isolated subnetworks are called components and many of them have a similar size. In any
component, the electron can tunnel among the involved QDs. This is just the situation in
the below, leftmost inset, called “inset 1”.

However, as ⟨k⟩ continues to grow, one of the clusters becomes dominant and begins
to grow more and more as forming links to other smaller clusters. This cluster is called a
giant component (GC). The fraction or normalized size of the giant component with respect
to the total number of nodes is quantified as SGC = NGC/N. In “inset 2”, with ⟨k⟩ = 5, we
can see that there are small clusters along with a single GC whose size is SGC = 0.88.

Just when ⟨k⟩ increases up to ⟨k⟩ = 10, one single GC (SGC = 1) appears, which
has captured all the other small components, making the complete network be connected.
The electron can thus tunnel from any node to any other node. When the network is
connected, an electron always has at least one path to pass from any node j to another. As
a consequence, α(t) = 0 in Equation (16) since the electron is no longer confined at node
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j, and can now behave as an extended wave function whose components are distributed
(although with different probability components) between different nodes (see Figure 9).
As α(t) ≈ 0, then the quantum transport efficiency (17) is ηQT(t) = 1− α(t) ≈ 1.

Figure 9 is an example of the electron probability components, ∣ ⟨n∣ψ⟩ ∣2, on each of
the kets ∣n⟩ of a network with N = 100 nodes. In this example, the electron was localized
in node ∣7⟩ at t = 0 (initial state), and after applying the unitary evolution operator (12)
for t = 500, it has evolved to a extended wave function whose probability components∣ ⟨n∣ψ⟩ ∣2 are distributed over the N = 100 nodes.
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Figure 9. Electron probability components, ∣ ⟨n∣ψ⟩ ∣2, on each of the kets ∣n⟩ of a connected network
with N = 100 nodes.

For the sake of clarity, Table 1 lists the corresponding numerical values represented in
Figure 9. Please note that the sum of the probability components in the whole system is
∑N=100

n=1 ∣ ⟨n∣ψ⟩ ∣2 = 1.

Table 1. List of the electron probability components, ∣ ⟨n∣ψ⟩ ∣2, on each of the kets ∣n⟩ of a connected
network with N = 100 nodes. The sum of the probability components in the whole system is
∑N=100

n=1 ∣ ⟨n∣ψ⟩ ∣2 = 1.

0.000172176 0.00582029 0.00387988 0.00106017 0.000970012
0.0000719148 0.00413783 0.000454207 0.0768675 0.00242522

0.0298138 0.00921407 0.0000565646 0.000102786 0.0000761972
0.0938865 0.00010824 0.0027705 0.0000545876 0.000735455

0.000247052 0.000190905 0.00274959 0.0000908889 0.00886395
0.00197876 0.00202883 0.003812 0.0197223 0.0300932

0.000148517 0.000360844 0.00247567 0.0193588 0.0000203756
0.0000281 0.0172012 0.00814919 0.0147341 0.00103512

0.000150275 0.0000862307 0.0294795 0.0203633 0.00025177
0.0000518012 0.00469129 0.0000315912 0.00847614 0.00144027
0.000285581 0.000261477 0.000582733 0.00371945 0.0336232

0.0032206 0.00980407 0.000807111 0.000121867 0.0459497
0.0105552 0.00168941 0.00534086 0.000115002 0.0447992
0.0001218 0.00431284 8.72451× 10−6 0.000201637 0.0188286

0.000133976 0.0156714 0.0137177 0.0022036 0.000168711
0.000250133 0.0166772 0.00114926 0.0344186 0.00393284
0.000493777 0.0928017 0.00341317 0.00876622 0.000893781

0.0451846 0.0901622 0.0000291204 0.0000476467 0.0000574528
0.0117769 0.0178166 0.0034605 0.000244178 0.000142244
0.00037752 0.000129045 0.00373535 0.00499453 0.0118115
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6. Potential Applications, Strengths, and Weaknesses of the Proposed Method

6.1. Prospective Applications

To the best of our knowledge, there are two possible groups of applications: interme-
diate band (IB) materials and light-harvesting materials.

6.1.1. Intermediate Band Materials

The first potential application of the proposed method could be found within the field
of IB materials to put into practice the concept of intermediate band solar cell (IBSC) [105].
This solar cell has an isolated IB within what, otherwise, would be the semiconductor
gap, EG. The IBSC was proposed by Luque and Martí in [106] and exhibits a limiting
efficiency of 63.2%, much higher than the Shockley–Queisser (SQ) limit [107] of the single-
gap solar cell (40.7%). Unlike other sub-bandgap absorbing proposals, the IBSC concept
surpasses the SQ limit by means of: (1) increasing the photogenerated current via
the two-step absorption of sub-bangap photons via an IB located within the gap EG ;
and (2) without degrading the cell output voltage. Several technological approaches
have been proposed aiming to obtain IB materials. The first one, the QD approach has
led to the quantum dot intermediate band solar cell (QD-IBSC) [108], the first device
on which it has been possible to experimentally prove the two concepts the IBSC is
based on [109–112]. A sufficiently dense array of QDs with a single bound state leads
to an IB material. Regarding this, a possible future application of our method could
consist in exploring the electron conductivity in the IB that arises from the bound
states within the QDs. A second feasible strategy for obtaining IB materials is based on
semiconductor bulk materials containing a high density of adequate deep-level impu-
rities and those corresponding to materials that “naturally” have an IB (theoretically
predicted by ab-initio methods) [113–119]. Regarding the use of deep-level impurities,
the proposed method could potentially be used to study when a sufficiently large
density of impurities produces a transition from localized states (in the impurities)
to states that are extended to the whole volume of the host semiconductor. It could
be interesting to compare with experimental data [120,121] and theoretical models [122].
Putting it simply, deep centers transform into a band when their density is sufficiently high
(Mott transition) [123,124], and, as a consequence, the electron wave-function becomes
extended instead of localized. Regarding this, the experimental test of the theoretical model
stated in [122] have been recently proved in silicon implanted with Ti [120] and in silicon
supersaturated with sulfur [121].

6.1.2. Light-Harvesting Materials

In the field of light-harvesting materials [125], QDs have been found to be promising
light-harvesting materials because of their size-, shape-, and composition-dependent elec-
tronic properties, and exciton generation after photoexcitation [126]. The key challenge
is to model and design nanoscale materials with tailored properties for light harvesting
work. Regarding this, our proposal could be used to explore the transport of energy (ex-
citons) in light-harvesting QDs [126], light-harvesting molecules [125,127,128], polymer
nanoparticles [129], dimers, and networks [130].

6.2. Strengths and Weaknesses

The proposed method has a set of strengths and weaknesses. Among the strengths, the
method allows for obtaining more realistic simulations of nanostructures than others found
in the literature, where the fact that the tunneling probability decreases exponentially with
the distance is not considered. The method is also generalizable to nanostructures other
than QDs, such as impurities in semiconductors, light-harvesting molecules, etc. Another
advantage is that it allows obtaining an approximation of the electron behavior in systems
with a high number of components per area unit (whether they are QDs or impurities).
The main weakness of the proposed method is that it is a first approach in the sense that
identical quantum dots have been assumed. However, self-assembled quantum dot growth
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methods produce ensembles of quantum dots that have size dispersion, which leads to a
dispersion in bound levels from one QD to another. The probability of electron hopping
from a QD to another with the same energy level must be considered when computing the
weight of links. Additionally, it is necessary to consider not only the electron system but
also the phonon system, which provides/absorbs the energy when an electron hops from
one bound state in a QD to another with different energy. Because of its complexity, we
leave this refinement for future work.

7. Summary and Conclusions

This paper has proposed the use of a special class of Random Geometric Graphs (RGG)
to model systems formed by N disordered quantum dots (QDs). While discerning what a
node is seems easy (QD ≡ node), what requires a bit more care and physical intuition is
determining how the links between QDs are formed in such a way that they have meaning.
Specifically, in the network model that we have proposed, the most novel aspect is the
link formation mechanism between nodes (≡ QDs): any link between two nodes i and
j is formed if and only if the corresponding electron wave function at such nodes have
non-zero overlap. Any link has thus a weight wij that is the real number (0 ≤ wij < 1)
corresponding to the electron overlap integral (also called probability amplitude (PA)).

The aforementioned link formation mechanism leads to a N × N weighted adjacency
matrix WPA whose matrix elements are the probability amplitudes for a single electron in
the involved nodes. The corresponding Laplacian matrix L, which assists in computing
continuous time quantum walks (CTQW) on the associated network, is different from the
one used in other works [72,84,95]. In these approaches, the matrix elements of L are
assumed to be equal γij ≡ γ = 1. In our approach, the matrix elements take different
values since they depend on the involved overlap integrals (or probability amplitudes,
0 ≤ wij < 1) and, as shown throughout the paper, they play a natural role in the probability
for an electron to tunnel from one node to another.

Regarding this, our main results point out:

1. The spatial network generated by the proposed model prohibits the existence of
shortcuts between distant nodes because of the impossibility of the electron tunneling
between two very distant QDs. This leads, as expected, to high clustering coefficient
and makes it impossible for the network to be small-world.

2. The proposed network is also able to capture the inner properties of the QD system: it
predicts the system quantum state, its time evolution, and the emergence of quantum
transport (QT) as the mean node degree increases (or, equivalently, when the QD
increases). In fact, QT efficiency exhibits an abrupt change, from electron localization
(no QT) to delocalization (QT emerges), which has also been observed in [60], although
with a different approach.
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Abbreviations
The following abbreviations are used in this manuscript:

0D Zero-dimensional
1D One-dimensional
2D Two-dimensional
CN Complex Networks
CTQW Continuous-Time Quantum Walks
GC Giant Component
IB Intermediate Band
IBSC Intermediate Band Solar Cell
QCP Quantum Confinement Potential
QD Quantum Dot
QD-IBSC Quantum Dot Intermediate Band Solar Cell
QM Quantum Mechanics
QT Quantum Transport
RGG Random Geometric Graph
RN Random Network
SAQDs Self-Assembled Quantum Dots
SML-QDs Sub-monolayer Quantum Dots
SN Spatial Network
SK Stranski–Krastanow
SW Small-world
VW Volmer–Weber
WL Wetting layer

Appendix A

A Adjacency matrix of a graph G.
aij Element of the adjacency matrix A
α(t) Average return probability⟨C⟩ Mean clustering coefficient of a network.
D Node degree matrix: diag(k1,⋯, kN). It is the diagonal matrix formed from

the nodes degrees.
dE(i, j) Euclidean distance between any pair of nodes i and j in a network.
dij Distance between two nodes i and j. It is the length of the shortest path

(geodesic path) between them, that is, the minimum number of links when
going from one node to the other.

dE,Lim dE,Lim ≡ dS Euclidean distance limit beyond which there is no link formation.
EQD Discrete electron energy in a quantum dot (QD).
ηQT Quantum transport efficiency.
G Graph G ≡ G(N ,L, WPA), where N is the set of nodes (card(N ) = N), L is

the set of links, and WPA is weighted adjacency matrix that emerges from our
method to link formation.

Ĥ Hamiltonian operator corresponding to the total energy of a quantum system.
H Hamiltonian in matrix form.
h Planck constant.
h̄ Reduced Planck constant.∣i⟩ Ket vector in the Hilbert space H. It corresponds to the electron wave function

in nanostructure (≡ site ≡ node ≡ ket) i.⟨i∣ Bra vector in the dual space corresponding to the ket ∣i⟩ ∈ H⟨k⟩ Average node degree.
ki Degree of a node i. It is the number of links connecting i to any other node.
` Average path length of a network. It is the mean value of distances between

any pair of nodes in the network.
L Set of links (edges) of a network (graph).
L Laplacian matrix of a graph G.
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LN Normalized Laplacian matrix, LN = D−1/2LD−1/2.
m Electron mass.
M Size of a graph G. It is the number of links in the set L.
N Order of a graph G = (N ,L). It is the number of nodes in set N , that is, the

cardinality of set N : N = ∣N ∣ ≡ card(N ).
N Set of nodes (or vertices) of a graph.
▽2 Laplace operator.
Pj↝k Probability for an electron to evolve between kets ∣j⟩ and ∣k⟩ in the time

interval t.
P(k) Probability density function giving the probability that a randomly selected

node has k links.∣ψ⟩ Ket or vector state in Dirac notation corresponding to the wave function ψ.
RQD Radius of the quantum dot.
ψQD Electron wavefunction in a quantum dot.
SGC SGC = NGC/N normalized size of the giant component (GC) with respect to

the total number of nodes N.
sAPi Sum of the probability amplitudes on ket ∣i⟩, sAPi ≡∑i≠j(WPA)i = ∑i≠j ⟨i∣j⟩.
V̂ Potential energy operator.
−VC Depth of confinement potential.
UC(r) Confining, spherical (depending only on the radial co-ordinate r), finite, and

“square” potential energy.
ÛLN(t) Time evolution operator generated by the normalized Laplacian matrix LN .
wij Weight of the link between node i and j. We define it as the overlap inte-

gral between the electron wave functions in kets i and j or the probability
amplitude ⟨i∣j⟩.

WPA weighted adjacency matrix whose elements are quantum probability ampli-
tudes.
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