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Abstract: Thanks to the advanced technologies for energy generation such as solar cells and thermo-
or piezo-generators the amount of electricity transformed from light, heat or mechanical pressure
sources can be significantly enhanced. However, there is still a demand for effective storage devices
to conserve electrical energy which addresses the wide range of large stationary applications from
electric vehicles to small portable devices. Among the large variety of energy-storage systems
available today, electrochemical energy sources and, in particular, supercapacitors (SC), are rather
promising in terms of cost, scaling, power management, life cycle and safety. Therefore, this review
surveys recent achievements in the development of SC based on composites of such carbon-derived
materials as graphene (G) and reduced graphene oxide (rGO) with carbon nanotubes (CNT). Various
factors influencing the specific capacitance are discussed, while specific energy and power as well as
cycling stability of SC with G/rGO-CNT composite electrode materials are overviewed.

Keywords: energy storage; multifunctional materials; composites; graphene; nanostructures

1. Introduction

Besides the energy transformation, energy storage is one of the most important topics
of scientific research today. Similar to the existing commercial batteries, electrochemical
capacitors (often called supercapacitors (SC)) are widely studied for their commercial
application in electrical cars, portable electronics, etc. The most famous capacitive materials
are carbon-based compounds, particularly activated carbon (AC) that is already used for
energy storage due to its large surface area and low cost [1]. However, many carbon atoms
in AC cannot be accessed by electrolyte ions, thus being wasted in terms of activating their
electrochemical functions, due to a very irregular shape of AC, shown in Figure 1a [2].
That decreases the capacitance of the AC electrodes as well as reducing their electrical
conductivity (see Table 1).

In addition to AC, a graphene (G), being 2D sp2-hybridized carbon sheet, also has a
large surface area as shown in Table 1. However, its electrical conductivity is significantly
higher, making graphene-related materials very promising for energy storage [3–9]. How-
ever, from G it is easy to form aggregates due to intensive π–π interaction or to restacking
forming graphite through van der Waals interactions. If G sheets are stacked together, the
electrolyte ions have difficulties gaining access to the inner layers to form electrochemical
double layers. Thus, the ions could be accumulated only on the top and bottom surfaces
of the sheet agglomerates that can lead to a lower specific capacitance. The problem of
graphene sheet agglomerations during the preparation process is valid also for multilayer
reduced graphene oxide (rGO) despite lower surface area compared to that of monolayer
G. However, the lower price and properties tunable by oxidation degree as well as high
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electrical conductivity and synergistic effects in composite materials also make rGO useful
for electrode development.

Table 1. Comparison of theoretical (theor.) and/or experimental (exp.) values of specific surface area
(SSA), electrical conductivity (σ) and specific capacitance (Csp) of different carbonaceous materials
such as activated carbon, graphene and single-wall carbon nanotubes (SWCNT).

Activated Carbon Graphene SWCNT

SSA, m2/g ~3000 (theor. [3]) ∼2600 (theor. [5]) 1315 (theor. [5])

σ, S/m 4.6 × 10−6 (exp. [4])
~108 (theor. [6])

~106 (exp. [8])
~103 (exp. [6])

Csp, F/g 200 (exp. [3]) ~550 (theor. [7]) 180 (exp. [9])
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1D material like carbon nanotubes (CNT) as a spacer (see Figure 1b) [10]. CNT have a 
readily accessible surface area as well as high conductivity (see Table 1). Since the surface 
area is known to increase with decrease of the CNT diameter, single-wall carbon nano-
tubes (SWCNT) are expected to have higher specific capacitance compared to multiwall 
carbon nanotubes (MWCNT) [5]. However, CNT often stack in bundles and only the 
outermost portion of CNT can function for ion absorption, whereas the inner carbon at-
oms are not involved in the process. From another side, pristine CNT with preserved elec-
tronic structures can be easily dispersed in graphene oxide (GO) solution without any 
additives and generate clean, electrically addressable carbon–carbon interfaces. Thus, GO 
is a “surfactant” to directly disperse CNT, while CNT can prevent the aggregation of gra-
phene sheets as a spacer, and has high conductivity, high surface area, and prospective 
mechanical properties. Moreover, non-conductive GO without any thermal or chemical 
reduction was found to be a promising material for SC based on a simulation, which 
claimed its capacitance decreases with increasing oxidation state [11]. Currently, there are 
a number of publications on G/rGO-CNT composites with different final parameters as 
promising electrode materials for energy storage applications, many of which are re-
viewed and analysed in this work. 

2. General Information on Energy-Storage Materials 
Capacitors and batteries as well as supercapacitors (electrochemical capacitors) can 

store a charge, possessing, however, different charge storage mechanisms. The dielectric 

Figure 1. Model of activated carbon based on fullerene-like elements (a) (Reproduced with permission
of [2]. Copyright Royal Society of Chemistry, 2007) and schematic model of reduced graphene oxide
(rGO)/carbon nanotubes (CNT) hybrid structure (b) with blue and yellow spheres corresponding to
carbon atoms of rGO and CNT, respectively, as well as white and red spheres representing hydroxyl
group hydrogen and oxygen atoms, respectively (Reproduced with permission of [10]. Copyright
Elsevier, 2015).

As one of the possible ways to prevent the sheets from sticking together is a use of 1D
material like carbon nanotubes (CNT) as a spacer (see Figure 1b) [10]. CNT have a readily
accessible surface area as well as high conductivity (see Table 1). Since the surface area
is known to increase with decrease of the CNT diameter, single-wall carbon nanotubes
(SWCNT) are expected to have higher specific capacitance compared to multiwall carbon
nanotubes (MWCNT) [5]. However, CNT often stack in bundles and only the outermost
portion of CNT can function for ion absorption, whereas the inner carbon atoms are
not involved in the process. From another side, pristine CNT with preserved electronic
structures can be easily dispersed in graphene oxide (GO) solution without any additives
and generate clean, electrically addressable carbon–carbon interfaces. Thus, GO is a
“surfactant” to directly disperse CNT, while CNT can prevent the aggregation of graphene
sheets as a spacer, and has high conductivity, high surface area, and prospective mechanical
properties. Moreover, non-conductive GO without any thermal or chemical reduction
was found to be a promising material for SC based on a simulation, which claimed its
capacitance decreases with increasing oxidation state [11]. Currently, there are a number
of publications on G/rGO-CNT composites with different final parameters as promising
electrode materials for energy storage applications, many of which are reviewed and
analysed in this work.

2. General Information on Energy-Storage Materials

Capacitors and batteries as well as supercapacitors (electrochemical capacitors) can
store a charge, possessing, however, different charge storage mechanisms. The dielectric
capacitor has electrostatic storage, whereas a battery can be characterized by diffusion
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mechanism of storage based on reduction-oxidation (redox) processes from used faradaic
materials. Moreover, there are clear differences in cyclic voltammograms (CV), providing
the current response to a linearly cycled potential sweep, and galvanostatic charge and
discharge (GCD) curves, defining how fast a cell is charged or discharged, for these
electrodes. Typically, both battery electrodes, anode and cathode, include faradaic materials
that result in strong redox peaks in CV, which are clearly visible both for a single electrode
and in the full cell (battery) measurements. Moreover, the GCD process of such electrodes
as well as devices has long and wide plateaus that can be clearly observed. By contrast
with a battery, a dielectric capacitor that stores energy by means of a static charge presents
an ideal rectangular shape of CV, the area of which increases with the potential scan rate,
and triangular shape of GCD. Moreover, in dielectric capacitors, the current (i) flowing
through a cell is proportional to the linear variation rate of the voltage (v) as i~v [12].

At the same time, existing supercapacitors, which can store the energy by electrochem-
ical reactions, include electric double-layer capacitors (EDLC) and pseudocapacitors as
can be seen in Figure 2. In EDLC, pure electrostatic charge storage occurs at the electrode–
electrolyte interface (see Figure 2a) [13] and their almost rectangular CV increases linearly
with the scan rate and has symmetric triangular GCD (see Figure 3, left). In pseudocapaci-
tors, which can involve faradaic materials such as metal oxides or conductive polymers,
fast and reversible surface faradaic process such as electron charge-transfer between elec-
trolyte and electrode occurs on/near to the electrode surface (see Figure 2b) that can lead
to visible small bulges in CV and small deviations in GCD (see Figure 3, middle). More-
over, pseudocapacitive electrodes show higher capacitance value than EDLC thanks to
the faradaic-electron transfer known as reversible surface redox reactions in addition to
the non-faradaic charge storage on the surface observed in EDLC. However, the excessive
increase of the faradaic contribution (deep intercalation in electrode material (see Figure 2c)
can not only increase the capacitance but also dominate diffusion kinetics in the electrodes
that is manifested as redox peaks shifted with scan rate in CV patterns, as plateaus in GCD
curves (see Figure 3, right), and in longer charge/discharge time [14].
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Figure 3. Schematic view of typically reported cyclic voltammograms (CV) and galvanostatic charge
and discharge (GCD) curves and applicable information for the G/rGO-CNT electrodes.

Thus, according to Figure 3, the shape of CV can be rectangular-like for EDLC or can
show small redox peaks for pseudocapacitive composites including faradaic materials but
with dominant EDLC charge storage. Faradaic capacitance electrodes, being also compos-
ites of capacitive materials with faradaic material similar to that of battery electrodes, are
characterized by distinct and widely separated peaks in CV with an increase of scan rate.
GCD curves of single battery-type electrodes are profoundly non-linear and characterized
by plateaus of nearly constant potential corresponding to the potentials, at which the
faradaic reduction or oxidation of the metal centres, etc. is occurring in contrast to GCD of
pseudocapacitor with slight surface redox on the top of the electrode.

The total current of CV measurements under a potential sweep rate (i(v)) for com-
posites with faradaic materials consists of two parts [15]. One part is a current related
to the double-layer charge at the electrolyte interface or to initial fast faradaic reactions
on the exposed electrode surface (icap). Another part is the current related to the slow
diffusion-controlled process (idif). The capacitive contribution and the diffusion-controlled
contribution can be calculated following a power-law relationship with the sweep rate (v)
according to Equation (1):

i(v) = icap + idif = a × vb, (1)

where a and b are variable parameters. b values can be estimated from the slope of log(i) vs.
log(v) plot. The value b = 1 corresponds to the presence of the fast surface redox reaction
and charge/discharge process inherent to EDLC when diffusion contribution is absent
and CV show linear current response dependency on the scan rate (i~v) [14]. At the same
time, the peak current response of a battery-type electrode with strong redox peaks will be
proportional to the square root of the scan rate (i~v1/2) and in this case b = 0.5.

Thus, the number of the electrodes combining capacitive and faradaic materials reveals
0.5 < b < 1, exhibiting either strong capacitive or battery-type behaviour. Moreover, as
also seen from Figure 3, electrodes with 0.8 < b < 1 are considered as pseudocapacitive
materials having predominantly capacitive storage [16,17] in contrast to the electrodes with
0.5 < b < 0.8 with dominant faradaic (battery-type) behaviour. Thus, to understand the
dominant storage mechanism in composite electrode (capacitive or faradaic/battery-type),
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the parameter b needs to be calculated in addition to correct and deep analysis of CV
at different scan rates, GCD curves, as well as electrochemical impedance spectra (EIS)
including the slope of Nyquist plot, etc.

Moreover, since the energy storage cell consists of two electrodes, different combi-
nation of electrodes can give a device with different charge storage mechanism as can be
seen in Figure 4. According to Figure 4, the combination of two EDLC electrodes or two
pseudocapacitive electrodes results in a symmetric capacitive device. At the same time, an
asymmetric design of storage device, consisting of the EDLC electrode together with the
pseudocapacitive one, can gain from the enlarged voltage window covering the windows
of two different electrodes, still keeping the capacitive mechanism of charge storage as a
dominant one [18]. However, in the case of combining two electrodes with different storage
mechanism (EDLC and battery-type or pseudocapacitor and battery-type) this mechanism
cannot be kept and the final hybrid device will store energy in a different way to capacitive
materials. Based on that, energy and power densities of hybrid devices must be compared
directly with that reported for batteries, since their electrochemical performance must be
higher in advance compared to that of symmetric and asymmetric supercapacitors because
of faradaic materials, which are dominant in the battery-type electrodes. Thus, the charge
storage mechanism of single electrode needs to be clarified before fabrication of the energy
storage device. The best way to understand it is the detailed analysis of their characteristics,
particularly CV, b parameter, GCD, Nyquist plot.
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3. Composite Capacitive Electrodes Based on Graphene/Reduced Graphene
Oxide-Carbon Nanotubes (G/rGO-CNT)

Both G/rGO and CNT are capacitive materials and their composite electrodes also
present EDLC type of energy storage with specific capacitance values varying up to
375 F/g [19] as shown in Table S1 in Supplementary Materials. Typically, rGO-CNT-based
electrodes show not an ideal but almost a rectangular shape of CV with slight deviation
due to an electrode resistance contribution, including ion transfer resistance or electrode
material resistance, or even some surface redox associated with oxygen functional groups
especially at high scan rate.

Enhancement of the electrochemical performance G/rGO-CNT electrodes and, respec-
tively, a final device, can be undertaken not only by addition of external components, but
also by modification/functionalization of G/rGO and/or CNT. Thus, the properties of
graphene-based materials are known to depend on the synthesis method and reduction
process. In particular, for the preparation of mixed G/rGO-CNT-based composites, carbon
nanotubes were combined with:

• commercially available graphene or graphene grown previously or directly in
the process;

• rGO obtained after reduction of GO by high temperature, or by hydrazine hydrate
(H6N2O), ammonium solution (NH4OH), vitamin C, acids, etc.

Moreover, rGO-CNT-based electrodes were fabricated both on substrates, such as
glassy carbon electrode (GCE), Ni foams, metal foils, stainless steel; carbon-based supports
as carbon cloth/carbon paper, or graphite substrates; polyvinylidene fluoride (PVDF)-
treated paper; Si; plastic; indium tin oxide, etc. and without support as freestanding, i.e., by
vacuum filtration, frying or as fibres by injections, etc. Besides such important parameters
as the annealing temperature or chemicals used to control the oxygen functional groups
content, a ratio between G/rGO and CNT as well as their typology and electrolyte type
are also very important. Their influence will be overviewed in the subchapters below. In
addition, most of the studies involved not only G/rGO and CNT but also some conductive
additives and polymer binders in the similar to commercial battery fabrication process
(typically, in the 80:10:10 weight ratio between active material (AM), conductive carbon-
family-material and polymer).

3.1. Temperature Effect on G/rGO-CNT-Based Composite Electrodes

The freeze-dried GO aerogels reduced at 180 and at 700 ◦C were used together with
SWCNT for the fabrication and comparative study of rGO-CNT composite electrodes with
PVDF binder on carbon cloth by Okhay et al. [20]. X-ray photoelectron spectroscopy (XPS)
data of the rGO aerogels shown in Figure 5a present a strongly reduced oxygen functional
group after heat treatment at 700 ◦C that is supported by the almost ideal rectangular CV
curves for the high temperature-reduced aerogel (see Figure 5b) by contrast with that of
rGO aerogel annealed at 180 ◦C that still show a bulge of surface redox on EDLC (see
Figure 5c). Moreover, the specific capacitance of 129 F/g reported for the electrodes made
of 180 ◦C rGO is much higher than that of 41 F/g at 0.1 A/g for 700 ◦C rGO [20].

A systematic study of temperature influence on functionalized graphene nanosheets/
carbon nanotubes networks (G/CNT) synthesized through chemical oxidation of CNT
followed by thermal reduction according to schematic illustration in Figure 6a was reported
by Ding et al. [21]. The external walls of CNT in the G/CNT structure annealed at 200 ◦C
were observed as unzipped and transformed into functionalized graphene nanosheets,
while the inner walls were not unzipped and kept the tubular structure. Freeze-dried
G/CNT mixture was heat treated at 200, 300, 600 and 800 ◦C for 2 h under N2 flow and
mixed with carbon black (CB) and poly (tetrafluoroethylene) (PTFE) before the covering on
Ni foam.
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Figure 5. Carbon (C1s) (a,c) and oxygen (O1s) (b,d) spectra obtained by X-ray photoelectron spectroscopy (XPS) on graphene
oxide (GO) aerogel reduced at 180 ◦C in vacuum (a,b) and at 700 ◦C in Ar (c,d). Cyclic voltammetry profiles at different
scan rates for the rGO-CNT-based composite electrodes on carbon cloth with 180 ◦C (e) and at 700 ◦C (f) rGO (Reproduced
with permission of [20]. Copyright Elsevier, 2020).

Based on Raman spectra, shown in Figure 6b, the ID/IG ratio was found to increase af-
ter chemical oxidation from 0.93 to 1.26, revealing that a large number of oxygen functional
groups were introduced during the unzipping process. However, after thermal reduction
at 200 ◦C partially unstable oxygen functional groups were removed as can be also seen
in Figure 6b, leading to an increase of the integrated area of CV in comparison with as-
prepared material (see Figure 6c). The fact that after thermal reduction of G/CNT at 200 ◦C
conjugated carbon networks were restored was also mentioned. However, after thermal
reduction at T > 200 ◦C (see Figure 6b) the integrated area of CV was also suppressed
(see Figure 6d) despite the fact that unstable oxygen functional groups were progressively
reduced. Therefore, the highest specific capacitance of 202 F/g at 0.5 A/g was reported
for electrodes with G/CNT after heat treatment at 200 ◦C (see Figure 6e). Moreover, CV
curves of G/CNTs and G/CNTs-200 electrodes show obvious redox humps in Figure 6c,
meaning that the capacitances come both from EDLC and pseudocapacitance due to the
reversible redox reactions among the surface oxygen functional groups [21].
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Figure 6. Schematic illustration of the synthetic route of reduced graphene oxide with carbon nanotubes (mentioned here as
G/CNTs) after annealing at 200 ◦C (G/CNTs-200) (a). Raman spectra of studied electrodes (b). CV curves measured at
50 mV/s on rGO, CNT, G/CNT and G/CNTs-200 (c), as well as G/CNT annealed at 300, 600 and 800 ◦C (G/CNTs-300,
G/CNTs-600, and G/CNTs-800, respectively) (d). Specific capacitance of rGO, CNTs, G/CNTs, G/CNTs-200, G/CNTs-
300, G/CNTs-600 and G/CNTs-800 as a function of current density (e) (Reproduced with permission of [21]. Copyright
Elsevier, 2018).

3.2. Effect of CNT Length

The size of CNT can change the value of specific capacitance at least 3 times as was
reported by Zeng et al. [22]. To increase the utilization of closed pore volumes of CNT
and prevent the stacking of rGO, multiwall CNT (MWCNT) are tailored into super short
CNT (SSCNT) with aspect ratio of less than 5 by an ultrasonic oxidation-cut method (see
Figure 7a). After mixing SSCNT with rGO and PVDF, it was coated onto titanium plate.
The morphologies of the composite with MWCNTs and SSCNT were found very different
by scanning electron microscopy (SEM) as shown in Figure 7b,c. The length reduction from
5–15 µm to 10–300 nm led to rich structural features, such as nanoscale length, open ends,
abundant carbon atoms on the edge, quasi-0D characteristic and so on [22]. Moreover, the
introduction of SSCNT increased the specific surface area of rGO to 370 m2/g that was
higher than 171 m2/g after addition of MWCNT (see Figure 7d). Thus, shorter CNT can be
more uniformly distributed on the surface of rGO and form 3D multilayer architecture that
leads to an increase of specific capacitance from 88 F/g to 251 F/g at 50 mV/s [22].
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Figure 7. Schematic illustration of the formation steps of the multilayer rGO/super short CNT (SSCNT) architecture (a).
Scanning electron microscope (SEM) images of raw multiwall CNT (MWCNT) (b) and SSCNT (c). Nitrogen sorption
isotherms obtained at 77 K (d) (Reproduced with permission of [22]. Copyright Elsevier, 2013).

3.3. CNT Concentration in G/rGO-CNT-Based Composite Electrodes

Based on results reported by Lu et al. 16 wt.% CNT was the optimal concentration
in the range 0 ÷ 50 wt.% for rGO-CNT freestanding electrodes to obtain the highest
capacitance of 265 F/g at 0.1 A/g [23]. A lower content of 10 wt.% CNT was chosen by
Kumar et al. for dried composite pressed into Ni foam as the optimal concentration of CNT
to obtain the rectangular-like CV (see Figure 8a) and the highest specific capacitance (see
Figure 8b) [24]. Among the studied CNT concentrations from 0 to 66.7 wt.%, 12.5 wt.% CNT
was used to get the highest capacitance for rGO-CNT obtained by vacuum filtration (VF)
and pressed into Ni foam [25]. Specific capacitance of 132 F/g was reported by Lee et al. for
rGO-CNT with 11 wt.% CNT prepared on glassy carbon electrode among other composites
with CNT concentration varied from 6 to 50 wt.% [26]. Thus, the optimal amount of CNT
for rGO-CNT mixed composites was found to be from 10 to 16 wt.%. However, in the
case of preparation of a CNT layered structure onto graphite paper by electrophoretic
deposition, significantly higher content of 40 wt.% CNT in suspension was used to obtain
the highest capacitance in that work of 87 F/g at 5 mV/s [27].
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from GCD curves (b) for rGO and rGO-CNT composites with 5, 10 and 15 wt.% of CNT electrodes (designated as GP5C,
GP10C, and GP15C) in KOH electrolyte [24].

3.4. Influence of Electrolyte Type and Potential Window

Based on the published research data, G/rGO-CNT-based electrodes were studied in
both aqueous and non-aqueous electrolytes as well as in liquid and solid states. Aqueous
electrolytes are less expensive, not flammable, and not/less toxic in contrast to e.g., organic
electrolytes used in commercially available batteries/SC [28]. Many researchers used
aqueous liquid and solid electrolytes: acids such as H2SO4 or H3PO4 or alkaline KOH
or neutral Na2SO4, KCl, LiClO4, Li2SO4. Non-aqueous electrolytes were reported in the
several publications as organic electrolytes TEABF4 (tetraethylammonium tetrafluorobo-
rate) and Et4NBF4-AN (tetraethylammonium tetrafluoroborate—acetonitrile), and as ionic
liquids EMIM-BF4 (1-ethyl-3-methylimidazolium tetrafluoroborate) and EMI-TFSI (1-ethyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)imide). However, the results obtained,
particularly CV form and size, indicate different behaviour of G/rGO-CNT in different
electrolytes. Cheng et al. studied supercapacitor fabricated on freestanding rGO-CNT in
neutral electrolyte KCl, organic electrolyte TEABF4 in propylene carbonate (PC) and ionic
liquid EMI-TFSI [29]. CV curve in the organic electrolyte TEABF4/PC does not exhibit
rectangular geometry due to the larger resistance in the organic electrolyte, redox groups
such as hydroxide group and carboxyl (see Figure 9b) by contrast with CV in KCl (see
Figure 9a) and in EMI-TFSI. This corresponds to GCD curves that have shown irregular
shape in organic electrolyte (see Figure 9d) but triangular form in KCl (see Figure 9c) [29].
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rectangular CV and triangular GCD curves was explained by the occurrence of some far-
adaic reaction at the surface ascribed to the oxygen-containing functional groups attached 
to rGO sheets and functionalized CNT. As shown in Figure 10a, the highest integral area 
and more rectangular CV curves were observed during the test of electrodes in KOH that 
can be associated with a smaller hydrated ionic radius and higher ionic conductivity of K+ 
ion in comparison to that of Na+ and Li+ ions [24]. On the other hand, the ionic mobility 
enhanced by a lower hydrated ionic radius of K+ ion gains access to the electrode surface, 
resulting in an improved electrochemical performance of rGO-CNT electrode [24]. 

Figure 9. Electrochemical properties of various electrodes made of CNTs, graphene, and graphene/CNT composite.
(a) Cyclic voltammetry curves in the aqueous KCl electrolyte at a scan rate of 10 mV/s. (b) Cyclic voltammetry curves in
1 M TEABF4/PC electrolyte at the same scan rate of 10 mV/s. (c) Galvanostatic charge/discharge curves in the aqueous
electrolyte at a charging current of 500 mA/g. (d) Galvanostatic charge/discharge curves in the organic electrolyte at the
same charging current of 500 mA/g (Reproduced with permission of [29]. Copyright Royal Society of Chemistry, 2011).

A near rectangular shape of CV and slight asymmetry in GCD curves was observed by
Kumar et al. for filtered out rGO-CNT pressed into Ni foam and studied in such electrolytes
as KOH, NaOH and LiOH (see Figure 10) [24]. Small deviation from the ideal rectangular
CV and triangular GCD curves was explained by the occurrence of some faradaic reaction
at the surface ascribed to the oxygen-containing functional groups attached to rGO sheets
and functionalized CNT. As shown in Figure 10a, the highest integral area and more
rectangular CV curves were observed during the test of electrodes in KOH that can be
associated with a smaller hydrated ionic radius and higher ionic conductivity of K+ ion
in comparison to that of Na+ and Li+ ions [24]. On the other hand, the ionic mobility
enhanced by a lower hydrated ionic radius of K+ ion gains access to the electrode surface,
resulting in an improved electrochemical performance of rGO-CNT electrode [24].
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Figure 10. CV curves at 50 mV/s (a) and GCD curves at 3 A/g (b) of rGO-CNT film with 10 wt.% of CNT (GP10C) in
aqueous KOH, LiOH, and NaOH electrolytes [24].

Cui et al. reported that the CV shape of rGO-CNT composite studied in a positive po-
tential window is different from that tested in a negative potential window (see Figure 11).
CV curves of rGO-CNT coated on Ti foil with irregular shape observed from 0 to +0.8 V as
well as from −0.4 V to +0.4 V both in Na2SO4 (see Figure 11a) and NaCl electrolyte (see
Figure 11b) indicated the existence of EDLC and pseudocapacitance in opposite to almost
rectangular CV in potential window from 0 to −0.8 V [10]. Moreover, integrated areas
of CV in Na2SO4 were obviously higher than that in NaCl. Correspondingly, the specific
capacitance was also different and the highest value was obtained for the composite tested
in a negative potential window from 0 to −0.8 V in Na2SO4. Thus, according to Cui et al.
the rGO-CNT electrode has shown great potential to be used as a negative electrode for
energy-storage devices [10].
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4. Modified G/rGO-CNT Electrodes with Faradaic Contribution
4.1. Nitrogen Doping

One of the popular directions today is modification of G/rGO-CNT by nitrogen (N)
due to its atomic size and strong valence bonds, which are similar to those characteristics
of carbon atoms [30,31]. Pyrolysis of GO with a low-cost N source is a versatile method
for large-scale production of N-doped graphene with flexible control over the N-bonding
configurations. N-doped G/rGO-CNT structures on different substrates were reported
as high-performance supercapacitor electrode materials. Different nitrogen-containing
materials such as polyacrylonitrile, acetonitrile, melamine, etc. are commonly used as the
nitrogen precursor.

Significant enhancement of the specific capacitance of rGO-CNT composites on GCE
after N-doping was reported by Lin et al., when initial value of 10 F/g obtained for rGO-
CNT has grown to 168 F/g at 0.5 A/g for N-doped rGO-CNT (designated as NGC) after
addition of urea and low-cost lignosulfonate (LS) (see Figure 12) [32]. Adding only LS to
the mixture of GO and CNTs (designated as LGC), the obtained graphene sheets in LGC
composite were very thick (see Figure 12b).
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details). During the annealing process, excess urea molecules decompose abundant gases, 
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ing tightly. Furthermore, after the addition of LS and urea into the mixture of GO and 
CNTs, many pores on the surface of thin graphene sheets in PNGC are observed, as shown 
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Figure 12. Schematic representation of preparation procedure of porous N-doped rGO-CNT (PNGC) composite (a). SEM
images of lignosulfonate (LS) modified rGO-CNT (b) and of that after the addition of urea and heat treatment at 800 ◦C
(c) (Reproduced with permission of [32]. Copyright Elsevier, 2015).

The result may be attributed to the three-dimensional structure of macromolecular
LS. However, after the addition of urea into the mixture of N-doped GO and CNTs, the
graphene sheets in NGC were found to be thinner and looser. Moreover, more porous
N-doped rGO-CNT (PNGC) obtained after addition of both LS and urea with further heat
treatment at 800 ◦C have shown CV with the highest integrated area that corresponds to
the highest capacitance of 246 F/g at 0.5 A/g (see Table S2 in Supplementary Materials
for details). During the annealing process, excess urea molecules decompose abundant
gases, which open the space between graphene sheets and prevent graphene sheets from
stacking tightly. Furthermore, after the addition of LS and urea into the mixture of GO
and CNTs, many pores on the surface of thin graphene sheets in PNGC are observed, as
shown by arrows in Figure 12c. In addition, the CV curve of rGO-CNT shows a pair of
redox peaks, which may be attributed to the residual carboxyl and hydroxyl groups of
CNT via oxidation process. CV curves of NGC and PNGC can also be seen to exhibit
nearly rectangular shapes and have some peaks as well, ascribed to the combination of
electrical double-layer capacitance and faradic pseudocapacitance from nitrogen doping
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and residual carboxyl and hydroxyl groups [32]. Close capacitance value of 176 F/g at
0.5 A/g was reported for composite electrodes on Ni foam made of N-doped rGO-CNT by
addition of polydopamide (PDA), acetylene black (AB) and PVDF [33].

4.2. Addition of Conductive Polymers
4.2.1. G/rGO-CNT with Polypyrrole

Polypyrrole (PPy) has been extensively studied by many research groups due to its
particular advantages with regard to low cost, environmental friendliness, high capacitive
capability and easy processing. Typically G/rGO-CNT-PPy composite electrodes were
fabricated by the in situ polymerization method. Pseudocapacitive composites of rGO-
CNT with PPy were obtained by Wang et al. as fibre electrode [34] and by Lu et al. as
freestanding electrode [35] as well as a composite with PTFE onto graphite substrate [36].
In the work of Wang et al., GO-CNT fibres (see Figure 13a) reduced by vitamin C at 90 ◦C
have shown specific capacitance of 10.8 F/cm3 at 0.01 V/s in LiCl electrolyte that was
increased up to 25.9 F/cm3 after covering by PPy [34] (see Table S3 in Supplementary
Materials for details).
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with permission of [34]. Copyright American Chemical Society, 2017). Schematic representation of the microstructure and
energy storage characteristics of the rGO-CNT-polypyrrole (PPy) film (c) (Reproduced with permission of [35]. Copyright
Elsevier, 2011).

At the same time Lu et al. measured composite made of rGO, poly(sodium 4-sterene
sulfonate) (PSS) functionalized CNT and PPy prepared as freestanding electrode [35] and
as electrode on graphite substrate mixed with CB and PTFE (see Figure 13b) [36]. PSS
containing a hydrophilic group (–SO3) was demonstrated to be strongly and uniformly
adsorbed on the surface of rGO-CNT during the modified process that leads to high
stability and dispersion of the functionalized rGO-CNT within the aqueous solution.
Simultaneously, the sulfonic groups with negative charges extending in the solution provide
a number of coordinating sites onto rGO-CNT surface. Such coordinating sites can be
used to effectively tether and absorb more monomer PPy and facilitate the following
“homogeneous” deposition of PPy particles on the electrode surface. Corresponding rGO-
PSS-CNT-based composite electrodes presented capacitive behaviour with specific values
of 211 F/g and 361 F/g at 0.2 A/g for freestanding and graphite substrate supported
electrode, respectively (see Table S3 in Supplementary Materials for details). That could be
explained by an increasing amount of PPy from ~40 wt.% for the freestanding electrode
to more than 70 wt.% that on graphite substrate. In the case of further PPy concentration
increase the specific capacitance can continue to grow to 453 F/g at 5 mV/s as reported by
Aphale et al. for rGO-CNT-PPy electrode using more than 99 wt.% PPy [37].

4.2.2. G/rGO-CNT with Polyaniline

Polyaniline (PANI) is a main conductive polymer with high environmental stability,
redox reversibility, electroactivity and unusual doping/de-doping chemistry. PANI as a
component of rGO-CNT composite can initiate the pseudocapacitance from the faradaic
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contribution of its redox nature that, together with EDLC of rGO-CNT, leads to the electrode
capacitance enhancement. Typically, PANI can be obtained by an in situ polymerization
process using the dissolved aniline monomer [38–43]. By this method the total surface
of freestanding rGO-CNT paper [43] and fibre electrode [42] was covered by PANI that
resulted in the capacitance of 138 F/g at 0.2 A/g and 193 F/cm3 at 1 A/cm3, respectively
(see Table S4 in Supplementary Materials for details). Higher specific capacitance of 359 F/g
at 1 A/g was obtained by Huang et al. for electrodes prepared by mixing hydrazine-
reduced GO, CNT and aniline to obtain a composite with 80 wt.% PANI [38] and with
larger intercalation compared with PANI coating just mentioned above. Then slight surface
redox including response from PANI can be observed in CV curves but the corresponding
peaks are symmetrical and do not shift with the increasing scan rate (see Figure 14a). That
fact together with symmetric and triangular CGD curves (see Figure 14b) supported the
dominant capacitive behaviour in these electrodes [38]. In addition, according to our
estimation of the b parameter for these electrodes it was found to be ~0.9 that is close to
b = 1 associated with capacitor behaviour.
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(Reproduced with permission of [38]. Copyright Elsevier, 2018).

At the same time, similar mixture of hydrazine reduced GO (marked as GNS in
Figure 15), CNT and aniline, to obtain final composite including also CB and PTFE but
with fraction of PANI lowered to ~64 wt.%, was found to present significantly higher
capacitance of 1035 F/g at 1 mV/s [41]. However, the appearance of strong redox peaks
in CV, shifted with the increasing scan rate (see Figure 15a), and far from symmetrical
triangular GCD curve shapes, approaching that with plateau (see Figure 15b), are expected
not for materials with capacitive storage mechanism but rather for faradaic materials [41].

Moreover, also high specific capacitance of 987 F/g at 0.5 A/g was reported by Tran
et al. for rGO-CNT-PANI prepared by the hydrothermal (HT) method at 180 ◦C and mixed
with mesoporous carbon (MC) and Nafion (with PANI content lowered to ~26 wt.% in
final composite) before covering onto carbon paper [39], while value of 638 F/g at 0.5 A/g
was measured by Liu et al. for freestanding electrodes fabricated by mixing and filtration
of CNT with graphene nanosheets already covered by PANI in an autoclave at 250 ◦C to
form nanorods (with >50 wt.% PANI in composite) [40]. However, these rGO-CNT-PANI
composites with high specific capacitance have shown b value much lower than 1, being
thus not associated with capacitive behaviour in pseudocapacitive materials. In addition,
the slope of the EIS Nyquist plot presented by Tran et al. for rGO-CNT-PANI-MC-Nafion
electrode on carbon paper was closer to 45◦ than to 90◦ [39] which means a strong faradaic
contribution in the analysed electrodes. Thus, rGO-CNT-PANI electrodes reported by Liu
et al. [40], Tran et al. [39], and Yan et al. [41] (see Table S4 in Supplementary Materials for
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details) have shown a dominant diffusion-controlled mechanism of energy storage that
explains the obtained high value of specific capacitance.
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4.3. Influence of Metal Catalysts, Metal Oxides and Hydroxides
4.3.1. G/CNT Grown with Me-Catalysts

Co, Mo, Al/Fe2O3, Au and other metals were reported as catalysts used for G or CNT
growth for G/CNT electrodes [44–46]. Seo et al. formed vertical graphene nanosheets
(VGNS) by the plasma transformation of a commercially available natural precursor butter
as illustrated in Figure 16a [44]. The plasma was essential in the process to break down
the carbon-containing molecules in butter and reconstruct them into ordered and vertical
graphitic structures (see Figure 16c). The growth of CNT was then performed in a thermal
chemical vapour deposition (CVD) process after the deposition of a Co/Mo catalyst on
VGNS. The as-grown VGNS/CNTs hybrid structure on a flexible graphite substrate is
presented in Figure 16b. The SEM and transmission electron microscopy (TEM) images
of pure VGNS and the VGNS-CNTs obtained after the direct growth process are shown
in Figure 16d,f. An inherently open, 3D network with dense and uniform graphene
nanosheets was clearly observed to cover the entire surface of the graphite paper [44].
Measured VGNS-CNTs electrodes have shown a specific capacitance of 278 F/g at 10 mV/s
(see Table S5 in Supplementary Materials for details) and CV curves with typical shape
for EDLC material without redox peaks from Co and Mo used as catalysts. Moreover,
neither Co nor Mo was detected by XPS analysis of this structure. GCD curves and Nyquist
plot also indicated capacitive energy storage mechanism in the current electrode with the
negligible electrochemical contributions of Co and Mo nanoparticles [44].

At the same time, Fan et al. mixed GO with Co(NO3)2 before growing vertical CNT
by CVD at 750 ◦C with Fe/Al2O3 as catalyst (see Figure 17a) [45]. In this case the sandwich
structure was reported with vertical CNT grown between graphene sheets as can be seen in
Figure 17b,c. In opposite to work by Seo et al. where Co/Mo catalyst were not detected by
XPS or in an electrochemical study [44], Fan et al. have shown visible Co-based catalysts
resided at the top of CNT (see Figure 17e,f). Moreover, strong redox peaks in CV curves
shown in Figure 17d as well as nascent plateau in GCD shown in Figure 17e were visible
suggesting the high pseudocapacitance of cobalt hydroxide that resulted in measured
specific capacitance of 385 F/g at 10 mV/s [45].
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Figure 16. Schematic for the direct growth of CNT onto vertical graphene nanosheets (VGNS) (a). Photograph of the
as-grown VGNS/CNTs on a flexible graphite substrate (b). SEM micrograph of pristine VGNS prior to CNT growth (c).
SEM micrograph of the final hybrid VGNS/CNTs nanoarchitecture in which the graphene nanosheets were decorated with
a high density of CNT (d). Cross-sectional (e) and high-resolution (f) SEM images of the VGNS/CNT (Reproduced with
permission of [44]. Copyright Wiley, 2014).
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Figure 17. Illustration of the formation of hybrid materials with CNT grown in between graphene nanosheets, showing
stacked layers of graphene oxide with Co catalyst particles adhered onto the layer surface after deposition (white points)
and CNT in between graphene layers after growth (black tubes) (a). SEM images (b) and transmission electron microscopy
(TEM) image of Co-rGO-CNT (c). CV results measured at scan rates of 10, 20, 50, and 100 mV/s (d). GCD curves of
composite electrode at various current densities (5–50 mA/cm2) in KOH solution (e) (Reproduced with permission of [45].
Copyright Wiley, 2010).
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Very interesting results were obtained by Li et al. for electrodes made on the core-
shell structure of G grown on CNT preliminarily covered by Au nanoparticles as catalyst
(CNT@Au) [46]. Figure 18 shows a schematic diagram and obtained structures at various
stages during the formation of CNT@Au composite as a function of the deposition time.
Elemental Au originating from the catalyst nanoparticles was also detected by XPS [46].
CNT@G powder with graphene growth time of 5 min being pressed into Ni foam exhibited
the largest CV with redox peaks and, correspondingly, the highest specific capacitance in
comparison to other CNT@G. However, the reported value of the capacitance was strongly
dependent on at least two factors such as the mass load and the width of the used potential
window. Figure 19a illustrates that the integral area became significantly larger, but the
redox peaks associated with Au catalyst became inconspicuous with increasing mass
loading. Based on CV measured from −1 V to +1 V presented in Figure 19a the gravimetric
(Cm) and areal (Ca) capacitance values at different scanning rates for CNT@G electrodes
with different mass loadings were deduced (see Figure 19b). The highest gravimetric (or
specific) capacitance of 218 F/g was obtained for the electrode with the lowest G@CNT
mass loading of 0.5 mg/cm2 at 10 mV/s, but the highest areal capacitance of 281 mF/cm2

was obtained for the highest studied mass loading of 5–6 mg/cm2 also at 10 mV/s.
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Figure 18. Schematic diagram of formation of CNT@Au composite with Au catalyst (a) and its SEM images after growth
periods of about 3 min (b), 5 min (c), 6 min (d), 7 min (e) and 10 min (f) (Reproduced with permission of [46]. Copyright
Elsevier, 2019).
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Figure 19. CV curves of CNT@G with different mass loadings at 50 mV/s (a) and calculated capacitance of the CNT@G
electrode on Ni foam as a function of mass loading (b) (Reproduced with permission of [46]. Copyright Elsevier, 2019).

Regarding the potential window effect, Li et al. studied it on CNT@G electrodes
with mass loadings of 3 mg/cm2 and 5 mg/cm2. A CV curve example at a scanning rate
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of 20 mV/s for 3 mg/cm2 mass loading can be seen in Figure 20a. CV curves of both
electrodes show a pair of redox peaks in the negative potential range, and an additional
pair of redox peaks appears with an increasing potential window on the positive side.
These peaks are related to the trace amount of Au catalyst distributed on the graphene
sheets. In addition, both kinds of the specific capacitance increased with the potential
window width up to the maximum of 1.8 V corresponding to the range of −0.9 to 0.9 V
(see Figure 20b).

Nanomaterials 2021, 11, x FOR PEER REVIEW 19 of 31 
 

 

 
Figure 19. CV curves of CNT@G with different mass loadings at 50 mV/s (a) and calculated capac-
itance of the CNT@G electrode on Ni foam as a function of mass loading (b) (Reproduced with 
permission of [46]. Copyright Elsevier, 2019). 

Regarding the potential window effect, Li et al. studied it on CNT@G electrodes 
with mass loadings of 3 mg/cm2 and 5 mg/cm2. A CV curve example at a scanning rate of 
20 mV/s for 3 mg/cm2 mass loading can be seen in Figure 20a. CV curves of both elec-
trodes show a pair of redox peaks in the negative potential range, and an additional pair 
of redox peaks appears with an increasing potential window on the positive side. These 
peaks are related to the trace amount of Au catalyst distributed on the graphene sheets. 
In addition, both kinds of the specific capacitance increased with the potential window 
width up to the maximum of 1.8 V corresponding to the range of −0.9 to 0.9 V (see Fig-
ure 20b). 

 
Figure 20. CV curves at different potential windows measured for CNT@G electrodes with 3 
mg/cm2 mass loading at 20 mV/s (a) and relationship between the potential window and gravi-
metric (or specific) capacitance (Cm) and areal capacitance (Ca) for CNT@G electrodes with mass 
loading of 3 mg/cm2 and 5 mg/cm2 (b) (Reproduced with permission of [46]. Copyright Elsevier, 
2019). 

At the same time, the detailed study of CV curves recorded in the widest potential 
window covering the range of −0.9 V to +0.9 V (see Figure 21a), covered two smaller 
windows such as between 0 and +0.9 V (see Figure 21b) and between −0.9 V and 0 V (see 

Commented [M4]: Please try to provide sharper 
image of this figure. Both (a) and (b). 
These two images are quite fuzzy in PDF version. 

Commented [A5R4]: It was origianlly not very 
high quality image, so we just could adjust its 
brightness / constrast as it is now. 

Commented [M6]: Please try to provide sharper 
image of this figure. Both (a) and (b). 
These two images are quite fuzzy in PDF version. 

Commented [A7R6]: It was origianlly not very 
high quality image, so we just could adjust its 
brightness / constrast as it is now. 

Figure 20. CV curves at different potential windows measured for CNT@G electrodes with 3 mg/cm2 mass loading at
20 mV/s (a) and relationship between the potential window and gravimetric (or specific) capacitance (Cm) and areal
capacitance (Ca) for CNT@G electrodes with mass loading of 3 mg/cm2 and 5 mg/cm2 (b) (Reproduced with permission
of [46]. Copyright Elsevier, 2019).

At the same time, the detailed study of CV curves recorded in the widest potential
window covering the range of −0.9 V to +0.9 V (see Figure 21a), covered two smaller
windows such as between 0 and +0.9 V (see Figure 21b) and between −0.9 V and 0 V (see
Figure 21c) with completely different forms of CV. The negative potential window electrode
works obviously as EDLC (see Figure 21c) opposite to the positive range with a visible
Faradaic response (see Figure 21b). There is also a correlation with the calculated values of
the specific capacitance for CNT@G/Ni electrode with mass loading of 3 mg/cm2. This
value reaches only 51.3 F/g at 1 mV/s for EDLC in a potential window of −0.9 V ÷ 0 V,
achieving very high 620 F/g for battery-like behaviour in the range 0 V ÷ +0.9 V, and the
middle value of 373 F/g for EDLC with a Faradaic impact in the widest potential window
−0.9 V ÷ +0.9 V (see Figure 21d). In addition, the estimated b parameter was different
for each of all three diapasons and can be presented as 0.5 < b(0 ÷ +0.9 V) < b(−0.9 V÷ +0.9 V)
< b(−0.9 V ÷ 0) ~1. Moreover, as can be seen in Figure 21d, the faradaic impact to specific
capacitance seen at a low scan rate disappeared with the rate increase. Furthermore, at
a high scan rate >0.02 mV/s the value of the specific capacitance in all three measured
potential windows becomes the same and does not exceed the lowest capacity of 51.3 F/g
(see Figure 21d) [46].
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4.3.2. MnO2 Induced Pseudocapacitance

MnO2 is widely used for energy storage because of its high theoretical pseudocapaci-
tance, wide potential range, and low toxicity and cost (natural abundance). The fact that
MnO2-based composites are widely applied with neutral aqueous electrolytes being well
correlated with the current environmental requirements of “green electrolytes” in superca-
pacitors is also important. Indeed, all reported composite electrodes based on G/rGO-CNT
with MnO2 were tested in the Na2SO4 electrolyte as seen in Table S6 in Supplementary
Materials. Comparing the values for the composites prepared with and without MnO2
(also shown in Table S6) it can be seen that MnO2 as a redox oxide can significantly increase
the specific capacitance of rGO/CNT composite [47–51].

The highest enhancement was reported by Bi et al. for the layered structure of
graphene and CNT decorated by MnO2 on Cu foil [47]. The long and complicated prepa-
ration of layered G/CNT with MnO2 structure included CVD, immersion, a thermal
decomposition process, etc. However, it resulted in the specific capacitance increase from
42 F/g to 365 F/g at 1 A/g before and after MnO2 deposition, respectively [47].

A more popular and simple method is the use of KMnO4 to obtain MnO2 during the
processing. In this way Ramezani et al. obtained the capacitance of 367 F/g at 20 mV/s
for the composite of hydrazine reduced rGO, CNT, MnO2, graphite powder and PVDF
covering graphite paper and it was twice higher than 150 F/g mentioned in the same work
for rGO-CNT without MnO2 [48]. Electrodes on Ni foam with rGO, CNT, MnO2, AB, PTFE
were fabricated by Liu et al. [49] and Deng et al. [51]. However, Liu et al. reported the
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increase from 35 F/g at 5 mV/s for rGO-CNT-AB-PTFE to 133 F/g for rGO-CNT-MnO2-
AB-PTFE [49], using GO aerogel reduced at 800 ◦C. At the same time, Deng et al. used
hydrazine-reduced GO, CNT, MnO2 AB, PTFE and reported specific capacitance of 91 F/g
and 126 F/g at 0.25 A/g for electrodes without and with MnO2 [51]. Using urea for GO
reduction and poly(1,5-diaminoanthraquinone) (PDAA) for functionalization of MnO2-
CNT Lei et al. obtained 80 F/g and 193 F/g at 0.2 A/g for rGO, CNT, PDAA, CB, PTFE
and rGO, CNT, MnO2, PDAA, CB, PTFE composites, respectively [50]. Preparation of rGO-
CNT-MnO2 by the HT method at 150 ◦C was used by Li et al. for the fabrication of rGO,
CNT, MnO2, AB, PTFE composite electrode on Ni foam with the final specific capacitance
336 F/g at 0.5 A/g [52]. As can be seen, all the aforementioned composite electrodes with
MnO2 used additives and binders [48–52] otherwise resulting in fabrication difficulties [47].
However, Cheng et al. were able to prepare rGO-CNT-MnO2 freestanding electrode
by simple filtration [53]. Although for that electrode, GO was reduced by hydrazine
and ammonium solutions, the specific capacitance equal to 372 F/g at 10 mV/s was
measured [53].

It needs to be stressed here that CV and GCD curves of reported electrodes with MnO2
presented shapes typical for materials with dominant EDLC energy storage behaviour as
can be seen in Figure 22 for G/rGO-CNT-MnO2-AB-PTFE reported by Deng et al. [51].
There are no significant redox peaks appearing in CV curves even at a high scan rate
(see Figure 22a) and no plateau in GCD curves for these electrodes (see Figure 22b) [51].
Moreover, the b parameter for all aforementioned G/rGO-CNT-based composites with
MnO2 was estimated by us to be ~0.8 that also corresponds to dominant capacitive type of
storage in these electrode materials.

Nanomaterials 2021, 11, x FOR PEER REVIEW 21 of 30 
 

 

increase from 35 F/g at 5 mV/s for rGO-CNT-AB-PTFE to 133 F/g for rGO-CNT-MnO2-AB-
PTFE [49], using GO aerogel reduced at 800 °C. At the same time, Deng et al. used hydra-
zine-reduced GO, CNT, MnO2 AB, PTFE and reported specific capacitance of 91 F/g and 
126 F/g at 0.25 A/g for electrodes without and with MnO2 [51]. Using urea for GO reduc-
tion and poly(1,5-diaminoanthraquinone) (PDAA) for functionalization of MnO2-CNT Lei 
et al. obtained 80 F/g and 193 F/g at 0.2 A/g for rGO, CNT, PDAA, CB, PTFE and rGO, 
CNT, MnO2, PDAA, CB, PTFE composites, respectively [50]. Preparation of rGO-CNT-
MnO2 by the HT method at 150 °C was used by Li et al. for the fabrication of rGO, CNT, 
MnO2, AB, PTFE composite electrode on Ni foam with the final specific capacitance 336 
F/g at 0.5 A/g [52]. As can be seen, all the aforementioned composite electrodes with MnO2 
used additives and binders [48–52] otherwise resulting in fabrication difficulties [47]. 
However, Cheng et al. were able to prepare rGO-CNT-MnO2 freestanding electrode by 
simple filtration [53]. Although for that electrode, GO was reduced by hydrazine and am-
monium solutions, the specific capacitance equal to 372 F/g at 10 mV/s was measured [53]. 

It needs to be stressed here that CV and GCD curves of reported electrodes with 
MnO2 presented shapes typical for materials with dominant EDLC energy storage behav-
iour as can be seen in Figure 22 for G/rGO-CNT-MnO2-AB-PTFE reported by Deng et al. 
[51]. There are no significant redox peaks appearing in CV curves even at a high scan rate 
(see Figure 22a) and no plateau in GCD curves for these electrodes (see Figure 22b) [51]. 
Moreover, the b parameter for all aforementioned G/rGO-CNT-based composites with 
MnO2 was estimated by us to be ~0.8 that also corresponds to dominant capacitive type of 
storage in these electrode materials. 

 
Figure 22. CV curves of electrodes made of rGO (mentioned as GR), on multiwall CNT (here as MCNT), their combination 
GR/MCNT (a, left), and their composite with MnO2 (GR/MCNT/MnO2) as well as GR/MnO2 and MCNT/MnO2 at a scan 
rate of 5 mV/s (a). GCD curves of GR/MCNT/MnO2 at different current densities (b) (Reproduced with permission of [51]. 
Copyright Elsevier, 2012). 

4.3.3. Effect of Other Metal Oxides 
In addition to MnO2, the influence of other metal oxides on G/rGO-CNT-based com-

posites has been also reported [54–56] and summarized in Table S7 in the Supplementary 
Materials. Ramesh et al. mixed CNT, ammonium reduced GO, and cellulose fibres simul-
taneously with Co3O4 and SnO2, added AB, PTFE and covered Ni foam with it [54]. CV 
curves of such electrodes studied in KOH electrolyte presented strong redox peaks at −0.1 
V ÷ −0.2 V, which, as well as GCD curve shape, cannot be attributed to EDLC (see Figure 
23a) but correlated well with the faradaic impact from Co3O4 and SnO2 [54]. The reported 
specific capacitance of 215 F/g at 0.2 A/g was obtained for electrodes studied in a negative 
potential window from 0 to −1.0 V. 

Figure 22. CV curves of electrodes made of rGO (mentioned as GR), on multiwall CNT (here as MCNT), their combination
GR/MCNT (a, left), and their composite with MnO2 (GR/MCNT/MnO2) as well as GR/MnO2 and MCNT/MnO2 at a scan
rate of 5 mV/s (a). GCD curves of GR/MCNT/MnO2 at different current densities (b) (Reproduced with permission of [51].
Copyright Elsevier, 2012).

4.3.3. Effect of Other Metal Oxides

In addition to MnO2, the influence of other metal oxides on G/rGO-CNT-based com-
posites has been also reported [54–56] and summarized in Table S7 in the Supplementary
Materials. Ramesh et al. mixed CNT, ammonium reduced GO, and cellulose fibres si-
multaneously with Co3O4 and SnO2, added AB, PTFE and covered Ni foam with it [54].
CV curves of such electrodes studied in KOH electrolyte presented strong redox peaks at
−0.1 V ÷ −0.2 V, which, as well as GCD curve shape, cannot be attributed to EDLC (see
Figure 23a) but correlated well with the faradaic impact from Co3O4 and SnO2 [54]. The
reported specific capacitance of 215 F/g at 0.2 A/g was obtained for electrodes studied in a
negative potential window from 0 to −1.0 V.
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Elsevier, 2019).

A similar diffusion-dominated energy-storage mechanism can be observed in CV
curves reported by Trian et al. for electrodes on Ni foam made of rGO-CNT with Fe2O3
and mixed with CB and PTFE and supported by GCD curves (see Figure 23b) [55] or by
Chen et al. for rGO-CNT with LiMn2O4 and mixed with AB, PTFE [56]. In all the cases,
strong redox peaks in CV from metal oxides indicated the significant impact from faradaic
materials as can be seen in Figure 23a for LiMn2O4 [56]. Moreover, GCD curves (see
Figure 23b) as well as the EIS Nyquist plot with the slop close to 45◦ (see Figure 23c) was
reminiscent the battery-type electrodes. In addition Chen et al. calculated the parameter
b = 0.689 that is closer to b = 0.5 characteristic for battery-type energy storage, especially at
low scan rate that can be seen in Figure 23d [56].

4.3.4. G/rGO-CNT with Ni(OH)2

Nickel hydroxide is an attractive material for supercapacitor applications because of
its high theoretical specific capacitance, well-defined redox behaviour and low cost. The
available data for rGO-CNT before and after modification by Ni(OH)2 are presented in
Table S8 in Supplementary Materials. The reported specific capacitance of composites with
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Ni(OH)2 has significantly higher values in comparison with other electrodes described
above. Moreover, all the reported electrodes based on G/rGO-CNT with Ni(OH)2 were
tested in KOH electrolyte, showing rather close capacitance values independent of G/rGO
processing temperatures. According to Fan et al., simple mixing of Ni(NO)3·6H2O with
urea and with rGO-CNT aerogel reduced at 800 ◦C resulted in a stable electrode on Ni
foam with specific capacitance of 1208 F/g at 1 A/g, although a Ni-free rGO-CNT electrode
prepared in the same way showed only 149 F/g at 1 A/g [57]. A similar value of 1320 F/g
at 6 A/g was reported by Chen et al. for composite electrodes made of slurry including AB,
PTFE and rGO-CNT-Ni(OH)2 obtained in autoclave at 120 ◦C [58]. A more complicated
method was used by Du et al. for the preparation of vertically aligned CNT (VACNT)
structure from highly ordered pyrolytic graphite at 1200 ◦C and G growing by pyrolysis of
iron phthalocyanine (FePc) at 1000 ◦C (see Figure 24a) with the following Ni(OH)2 coating
by electrochemical deposition (see Figure 24b). Specific capacitance of 110 F/g at 10 mV/s
for G on a CNT structure and 1384 F/g at 5 mV/s for G on CNT and covered by Ni(OH)2
was measured [59].
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Figure 24. Typical SEM images of 3D pillared vertically aligned CNT (VACNT)-graphene architectures without (a,b) and
with Ni(OH)2 (c,d). Electrochemical impedance spectra (EIS) Nyquist plots of VACNT-graphene electrode before (e) and
after (f) modification by Ni(OH)2. CV at different scan rates (g) and GCD curves at various discharge current densities (h)
(Reproduced with permission of [59]. Copyright American Chemical Society, 2011).

However, all these electrodes with Ni(OH)2 presented CV and CGD curves very far
from those for typical pseudocapacitive and particularly for EDLC materials. As presented
in Figure 24c, CV curves with strong redox peaks increasing and shifting with the scan
rate, typical for all G/rGO-CNT electrodes with Ni(OH)2, were reported by Du et al.
Moreover, such electrodes have shown clearly visible plateaus typical for battery electrodes



Nanomaterials 2021, 11, 1240 24 of 30

(see Figure 24d). A significant impact of faradaic contribution to G/rGO-CNT electrodes
with Ni(OH)2 is easy to detect in EIS Nyquist plots of the G-CNT electrode before (see
Figure 24e) and after (see Figure 24f) Ni(OH)2 deposition [59]. The slope changes from
almost 90◦ for G-CNT with pure EDLC behaviour to almost 45◦ was associated with the
battery. In addition, b parameters estimated by us are close to 0.6 that means the diffusion
controlled mechanism (typical for battery-type electrodes) as the dominant one in these
composites. Based on that and according to requirements from many research papers (i.e.,
references [14,15], etc.), other units and calculations associated with batteries (i.e., mAh
instead F) need to be used for the characterization of such electrode materials. Moreover,
comparison of these high specific capacitance values for such hybrid materials as well as
other their parameters with that of really capacitive materials are incorrect and speculative.

5. Specific Energy and Power of Supercapacitors with Electrodes Based on
G/rGO-CNT and Their Cycling Stability

Energy density (in Wh/cm3) and power density (in W/cm3) are known to be among
the main characteristic parameters of SC for their commercial application. Therefore, the
goal of research is to achieve high energy density at high power density, although in the
case of the electrodes based on G/rGO-CNT these values are rarely presented, being always
substituted by specific energy and power. SC specific energy (E in Wh/kg) and specific
power (P in W/kg) can be calculated by using the following expressions:

E =
1

2 × 3.6
Ctotal∆V2 or E =

1
8 × 3.6

Csingle el.∆V2, (2)

P =
E
∆t

, (3)

where Ctotal and Csingle el. are the measured capacitance of full SC and that of single elec-
trode, respectively, ∆V is the operating voltage window, ∆t is the discharge time in hours.
Thus, although the values of capacitance are very important for the SC performance, the
electrolyte voltage window plays also a major role for the enhancement of specific energy
as well as specific power.

However, in the case of devices with strong redox peaks in CV and plateaus in GCD
curves (e.g., references [46,55–57]), the calculation of the specific energy cannot be done
using Equations (2) and (3) valid only for capacitive materials characterized by rectangular
CV and triangular GCD. That is mainly because of the non-triangular shaped GCD that is
used for the calculation of energy. Whereas the specific power and energy calculation in
capacitive materials is based on the area under the triangular GCD during charge discharge
time, the actual energy in the battery-type materials is the area under the curved lines
with plateaus. Thus, it appears that the charging energy is larger than the discharging one,
reflecting the electrode reaction being not fully reversible. Hence only a portion of the
energy used during the charging period was released during the discharging period. In
this case, the energy efficiency considered as the ratio of discharging energy to charging
energy is far smaller than 1, in contrast to that for capacitive energy storage.

Thus, the Ragone plot shown in Figure 25 presents only the available data of several
symmetric supercapacitors made of the capacitive materials (EDLC and pseudocapacitors)
and one asymmetric device that used rGO-CNT-AB-PTFE (EDLC electrode) and rGO-CNT-
MnO2-AB-PTFE (pseudocapacitive electrode). As a result, the highest value was calculated
for the asymmetric supercapacitor supporting the importance of the enlarged voltage
window according to Equations (2) and (3). However, if we consider only symmetric SC
with capacitive electrodes (open circle in Figure 25), a significant performance is evident
to be achieved by Ding et al. for EDLC without addition of faradaic materials [21]. It is a
surprise that a network of functionalized graphene nanosheets and CNT (fG/CNT) was
synthesized by chemical oxidation of KMnO4 simultaneously with CNT showing after
low temperature treatment specific energy of 11.7 Wh/kg. This value of energy density is
higher than that for devices using faradaic materials, i.e., MnO2 [51,53], Fe3O4 catalyst [60],
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PANI [38], PDA [33], and it is significantly higher than that for two other SCs with EDLC
electrodes [51,61]. Moreover, specific capacitance of 202 F/g at 0.5 A/g that was not too
high was reported for these single fG/CNT electrodes in three-electrode configuration
and the widest voltage window was not used for the electrochemical test. Thus, if Ding
et al. did not find in the analysed composite the traces of MnO2 [21], for the preparation of
which KMnO4 is usually used [49,50,52] and with which such an improvement could be
associated, this is the best result for the G/rGO-CNT-based electrodes reported to date.
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Another important characteristic for the practical application of the electrodes/full SC
is their stability after charging/discharging for a long time. The cycling stability can be
seen from Table 2 to be rather independent of the type of electrolyte or electrode substrate
for all the reported devices, although several of them reported some fluctuations during the
measurements [21,60]. While most of the values are close to 100%, there are also relatively
low values of 75% and 80.5% reported for rGO-CNT with MnO2, AB and PTFE [51] and
rGO-CNT with PANI [38], respectively. On the other hand, the cycle stability measurement
of energy storage devices has to begin only after stable operation has been demonstrated
and the abnormal results reported sometimes are not from the stabile cycling but rather
from conditioning. In this case, electrode stabilization must be performed before the cycle
stability measurements can be properly made.
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Table 2. Values of the initial specific capacitance (Cin) of G/rGO-CNT-based single electrodes measured in three-electrode
configuration before long-term test and capacitance retention after long cycling (ordered with number of cycles increase)
reported for G/rGO-CNT-based single electrodes as well as for full devices using them.

Electrode
Materials Sub-Strate Processing Details

Electrolyte,
Voltage
Window

Cin of Single
Electrode at Current
Density or Scan Rate

Number of
Cycles

Capacitance Retention
at Current Density or Scan

Rate Ref.

Single
Electrode Full Cell

rGO, CNT, - VF, H6N2O, NH4OH,
KMnO4

Na2SO4 275 F/g
1000

95% - [53]+MnO2 1 V 50 mV/s 50 mV/s

rGO, CNT,
C-cloth

GO freeze-drying,
180 ◦C Na2SO4 129 F/g

1000 - 90% [61]

+PVDF 80%rGO + 10%CNT +
10%PVDF 1.6 V 0.1 A/g 0.1 A/g

rGO, CNT,
GCE

H6N2O, 95 ◦C H2SO4 359 F/g
2000

80.5% - [38]+PANI in-situ polymerization 1 V 1 A/g 50 mV/s
rGO, CNT,

Ni foam H6N2O, 95 ◦C, KMnO4
Na2SO4 120 F/g

2500 - 75% [51]+MnO2, AB,
PTFE 2 V 1 A/g 1 A/g

rGO, CNT,
Ni foam

HT, 180 ◦C, coating KOH 165 F/g 10,000 - 98.9% [33]+PDA, AB,
PTFE

80%AM + 10%PVDF +
10%AB 0.8 V 1 A/g 1 A/g

CNT/G balls,
Ni foam

Fe3O4 on G by
aerosolization KOH - 10,000 - 107.7% [60]

+Fe3O4, PVDF CNT by CVD, 700 ◦C 0.9 V 3.25 A/g
rGO, CNT,

Ni foam chemical oxidation,
200 ◦C

Na2SO4 202 F/g 20,000 103% 102% [21]+CB, PTFE 1.6 V 0.5 A/g 200 mV/s 200 mV/s

6. Conclusions and Perspective of G/rGO-CNT-Based Composite Electrodes

The high-quality monolayer of graphene shows great potential for different applica-
tions such as miniaturized and precise micro/nano electronics, while chemically or/and
thermally reduced graphene oxide provides a practical route towards lower-cost produc-
tion of different rGO-based devices, particularly supercapacitors. Because GO is easily
dissolved in a variety of solvents and due to high solubility of CNT achieved in GO so-
lution, the combination of G/rGO and CNT is widely studied in SC as mixed or layered
electrode materials. An amount of around 10 wt.% of CNT is generally sufficient to obtain
the maximum value of the specific capacitance in case of the two-component rGO-CNT
electrodes. Therefore, both freestanding and substrate supported electrodes can show high
specific capacitance but only under certain/individual conditions such as the method of
fabrication, type of substrate, reduction temperature or chemicals, ratio between compo-
nents of the electrodes, etc. Thus, the addition of faradaic materials always increases the
capacitance. However, although the compatibility of G/rGO-CNT with different polymers,
metals, etc. opens up a route for a wide practical realization of functional composite
materials for SC fabricated using commercial, mainly slurry-based battery technology,
determining the mechanism of energy storage for each individual electrode immediately
before the manufacture of the final device is essential. At the same time, talking not about
electrodes only but about supercapacitors in general, high specific energy and power are
crucial parameters for commercialization as well as capacitance retention. Thus, until now
the highest energy and power densities were associated with hybrid devices. Based on the
information described above, combining G/rGO-CNT with different additives and binders,
a number of perspective composite electrodes both of capacitive and battery type can be
achieved. Therefore, particular requirements to the performance of electric storage devices
determine the need for detailed understanding of the relationship between the fabrication,
structure and final properties of composite electrodes. In turn, the understanding of the
importance of the results achieved through their comparison can be greatly facilitated if
the result presentation is unified/standardized. In addition, it is obvious that the future of
supercapacitors is in the asymmetric configuration, because the symmetric one has more
limited behaviour that does not correspond to future needs.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11051240/s1, Table S1: Published details of capacitive G/rGO-CNT-based single elec-
trodes measured in three-electrode configuration, Table S2: Published details of N-doped G/rGO-
CNT single electrodes measured in three-electrode configuration, Table S3: Published details of
single G/rGO-CNT electrodes modified by PPy measured in three-electrode configuration, Table S4:
Published details of G/rGO-CNT single electrodes modified by PANI measured in three-electrode
configuration, Table S5: Published details of G/rGO-CNT-based single electrodes prepared with
metal catalysts measured in three-electrode configuration, Table S6: Published details of G/rGO-
CNT-based single electrodes modified by MnO2 measured in three-electrode configuration, Table S7:
Published details of G/rGO-CNT-based single electrodes modified by other metal oxides measured
in three-electrode configuration, Table S8: Published details of G/rGO-CNT-based single electrodes
modified by Ni(OH)2 measured in three-electrode configuration.
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Glossary

AB acetylene black
AC active carbon
AM active material
CB carbon black
CNT carbon nanotubes
CV cyclic voltammogram
CVD chemical vapor deposition
EDLC electric double-layer capacitors
EMI-TFSI 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
fG functionalized graphene nanosheets
G graphene
GCD galvanostatic charge and discharge
GCE glassy carbon electrode
GO graphene oxide
HOPG highly ordered pyrolytic graphite
LS lignosulfonate
MC mesoporous carbon
MWCNT multiwall carbon nanotubes
NGC Nitrogen-doped reduced graphene oxide with carbon nanotubes
PANI polyaniline
PC propylene carbonate
PDA polydopamine
PDAA poly(1,5-diaminoanthraquinone)
PNGC porous nitrogen-doped reduced graphene oxide with carbon nanotubes
PPy polypyrrole
PSS poly(sodium 4-sterene sulfonate)
PTFE polytetrafluoroethylene
PVDF polyvinylidene fluoride
rGO reduced graphene oxide
SC supercapacitors
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SEM scanning electron microscopy
SSA specific surface area
SSCNT super short carbon nanotubes
SWCNT single-wall carbon nanotubes
TEABF4 tetraethylammonium tetrafluoroborate
TEM transmission electron microscopy
VA vertically aligned
VGNS vertical graphene nanosheets
VF vacuum filtration
XPS X-ray photoelectron spectroscopy
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