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Abstract: Synthetic data are of increasing importance in nanometrology. They can be used for devel-
opment of data processing methods, analysis of uncertainties and estimation of various measurement
artefacts. In this paper we review methods used for their generation and the applications of synthetic
data in scanning probe microscopy, focusing on their principles, performance, and applicability.
We illustrate the benefits of using synthetic data on different tasks related to development of bet-
ter scanning approaches and related to estimation of reliability of data processing methods. We
demonstrate how the synthetic data can be used to analyse systematic errors that are common to
scanning probe microscopy methods, either related to the measurement principle or to the typical
data processing paths.

Keywords: nanometrology; data synthesis; scanning probe microscopy

1. Introduction

Scanning probe microscopy (SPM) is one of the key techniques in nanometrology [1–3].
It records the sample topography—possibly together with other physical or chemical
surface properties—using forces between the sharp probe and sample as the feedback
source. SPM has an exceptional position among nanometrological measurement methods
when it comes to topography characterisation. Apart of versatility and minimum sample
preparation needs its main benefit in nanometrology is the simple metrological traceability
compared to some other microscopic techniques. Achieving a very high spatial resolution is,
however, a demanding task and instruments are prone to many different systematic errors
and imaging artefacts. The goal of nanometrology is to provide metrological traceability, i.e.,
an unbroken chain of calibrations starting from top level etalons, down to the microscopes.
An important part of this task is expressing the measurement uncertainty, which means
understanding these systematic errors and artefacts and which is one of the crucial aspects
of transition from qualitative to quantitative measurements.

Measurement uncertainty in microscopy consists of many sources and to evaluate
them we usually need to combine both theoretical and experimental steps. This includes
measurements of known reference samples, estimation of different influences related to the
environment (thermal drift, mechanical, and electrical noise), but also estimation of impact
of data processing as the raw topography (or other physical quantity) signal is rarely the
desired quantity. One of the approaches to analyse the uncertainty is to model the imaging
process and data evaluation steps on the basis of known, ideal, data. Such an approach
can be used at different levels of uncertainty analysis —at whole device level this is related
to the virtual SPM construction [4,5], trying to incorporate all instrumentation errors into
a large Monte Carlo (MC) model for uncertainty propagation. There are, however, many
finer levels where ideal, synthesised, data can be used and which are becoming more
popular. As one of the software tools that can be used for both SPM data synthesis and
analysis, the open source software Gwyddion [6,7], was developed by us and is being used
already by different authors for artificial data synthesis tasks, we would like to review the
state of artificial data use in SPM.
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Artificial data can be used for a multitude of purposes in the SPM world. Starting
with the measurement aspects, they can be used to advance scanning methodology, for
example adaptive scanning, like in Gwyscan library [8] focusing on sampling data for
optimal collection of statistical information about roughness. Similarly, generated data
can be used for development of even more advanced sampling techniques, e.g., based
on compressed sensing [9,10]. In contrast to measured data, generated datasets allow
estimating the impact of different error sources on the algorithm performance in a more
systematic manner. Similarly, generated data were used for analysis of uncertainties related
to the instrumentation, like better understanding of effects related to the feedback loop [11]
in tapping mode measurements.

Going even further in the instrumentation direction, generated data can be used to
create novel and advanced samples or devices for metrology purposes. Generated data
were used for driving a calibration platform that is mimicking the sample surface by
moving up and down without lateral movement, either for creating a virtual step height or
defined roughness sample [12,13]. Such approach is one way how to provide traceability to
commercial microscopes that have no built-in interferometers or other high level metrology
sensors. Synthetic surface model was also used to create real samples with know statistical
properties, e.g., self-affine surfaces designed for cell interaction studies using two-photon
polymerisation [14] or isotropic roughness designed for calibration purposes using by a
focused ion beam [15,16].

The largest use of artificial data is, nonetheless, in the analysis of data processing
methods, where they can serve for validation and debugging of the methods and to es-
timate their sensitivity and reliability. They were used to test data processing methods
and to determine uncertainties related to the imaging process, namely tip convolution and
its impact on different quantities. The impact of tip convolution on statistic properties
of columnar thin films [17,18], fractal properties of self-affine surfaces [19,20], and size
distribution of nanoparticles [21] were studied using entirely synthetic data. Novel ap-
proaches for tip estimation using neural networks were developed using artificial rough
data [22] and methods for using neural networks for surface reconstruction to remove such
tip convolution errors were developed using simulated patterned surfaces [23]. Algorithms
for double tip identification and correction in AFM data were tested using synthetic data
with deposited particles of different coverage factors [24]. Simple patterns combined with
Gaussian roughness were used for development of non-local means denoising for more
accurate dimensional measurements [25]. Combined with real measurements, synthetic
data were used to establish methodology for spectral properties evaluation on rough sur-
faces [26] and spectral properties determination from irregular regions [27]. Synthetic
data were used to help with results interpretation and for finding relationship between
mound growth and roughening of sputtered films [28]. Combination of real and synthetic
datasets was used for determination of impact of levelling on roughness measurements [29]
and for development of methods for splitting instrument background and real data in
analysis of mono atomic silicon steps [30]. They were used to develop methods for grating
pitch determination [31] and reliability measures for SPM data [32]. In the area of data
fusion, they were used for construction of methods for low and high density data fusion
in roughness measurements [33]. Even more general work was related to the impact of
human users in the SPM data processing chain on measurement uncertainty [34].

Artificial data can also be used to estimate the impact of topography on other SPM
channels. Most of the techniques used for measuring other physical quantities than length
are influenced by local topography, creating so called ‘topography artefacts’. To study
them one can create a synthetic surface, run a numerical calculation of the probe–sample
interaction and simulate what would be the impact of a particular topography on other
data sources. This approach was used for simulation of C-AFM on organic photovoltaics
on realistic morphologies similar to experiment [35], for simulation of topography artefacts
in scanning thermal microscopy [36] and for simulation of impact on lateral forces in
mechanical data acquisition [37].
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In this work we review the methods used for generation of synthetic data suitable for
different SPM related tasks and give examples how these methods can be run in Gwyddion
open source software. Many of the presented methods are more general and can be applied
also to the analysis of other experimental techniques based on interaction with surface
topography, for example to study the impact of line edge roughness in scatterometry of
periodic structures [38].

2. Artificial SPM Data

Artificial SPM data can be produced by many different procedures. Some of them
attempt to capture details of the physical and chemical processes leading to the surface
topography formation. Others are designed to mimic the final shape of the structures
without any regard to the underlying processes. Frequently the algorithms lie between
these two extrema, trying to preserve a physical basis while being fast enough for practical
purposes. In the following we group the methods to several broad classes, more or less
corresponding to the character of the generated data and types of phenomena simulated.
We give particular attention to models implemented as Gwyddion modules—this is noted
by giving the module name in italics.

Results of the data synthesis algorithms presented below are usually height fields—
regular arrays of height data in which for each coordinates (x, y) there is only one z value.
This is different from general 3D data, but it is also the standard SPM measurement output.

2.1. Geometrical Shapes and Patterns

Well-defined geometrical objects are frequent in nanotechnological samples, whether
coming from microelectronics, MEMS or other fields. They need to be measured and recon-
structed in SPM simulations. Both can be done within a single framework. Fitting shapes
to measured topographical data is the inverse (i.e., harder) problem to their construction
from given parameters. Therefore, construction comes more or less free with shape fitting.
This is also the approach taken in Gwyddion, where the fit shape module can be also used
directly to create artificial AFM data representing the ideal topographies.

Modelling of ideal shapes like steps, trenches, pyramids or cylinders usually only
involves elementary geometry and the model is just z = f (x, y), where f is an explicit func-
tion such as z = (x2 + y2)1/2 for a cone (cones with other parameters are then created by
coordinate transformations, such as rotation, scaling, or folding). Overlapping neighbour
features and faceted shapes can be modelled using f = mini fi or f = maxi fi, where fi are
simpler functions (i = 1, 2, . . . ). Still, some geometrical models can become rather involved,
for example for rounded indentation tips [39].

The microscope tip is an extremely important geometrical shape in SPM. Widely used
models include cylinder with cone and spherical cap [40], pyramid with spherical cap [41],
hyperboloid [42,43], and paraboloid [44]. Parametrisable tip models are needed namely
when mechanical properties are evaluated from force-distance curve measurements; models
such as linearly interpolated tip or n-quadratic sigmoidal are then used [45]. Different
tip models can be created using Gwyddion model tip module. More irregular tips can be
produced by using any other synthesis module, e.g., particle deposition and cutting a
suitable part of generated surface. Although true geometrical shapes are used in detailed
simulations [46], commonly the tip shape is discretised, i.e., approximated as a height field,
in particular when subsequent operations are defined in the pixel representation [47–49].

Furthermore, most SPM calibration samples are regular geometrical patterns. Some of
these patterns may not be common in applications—however, they are obviously important
in nanometrology itself. These patterns include various types of one-dimensional gratings
(present in HS-20MG, HS-100MG, HS-500MG, TG series, 301BE, 292UTC, MRS-3, MRS-4,
MRS-6, TGZ1, TGZ2, TGZ3, TGG1, TGF11, TGX series, 70-1D, 150-1D, 300-1D, 700-1D,
145TC, SGN01, SHS, ANT, MetroChip), two-dimensional arrays of rectangular or circular
holes (HS-20MG, HS-100MG, HS-500MG, TGX series, MRS-3, MRS-4, MRS-6, SHS, ANT,
MetroChip), two-dimensional pillar arrays (HS-20MG, HS-100MG, HS-500MG, TGQ1,
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flexCG120, TGX series, 300-2D, 150-2D, 700-2D, MetroChip, SNG01), concentric squares,
L-shapes or rings (ANT, MRS-3, MRS-4, MRS-6, SHS, MetroChip), staircases (Sic/0.75,
SiC/1.5, STEPP), chessboard (TGX1, MetroChip, UMG01, UMG02), Morse code/compact
disc-like (750-HD), or the Siemens star pattern (ANT). Recently the silicon lattice step was
adopted as a secondary realisation of the metre, in particular for nanometrology [50,51].
The corresponding calibration structures have the form of amphitheatres formed by single
atom steps [30,51].

The patterns often have certain dimensions which are precise and intended for cal-
ibration, whereas other dimensions are not guaranteed. For instance usually the period
of a grating (or its inverse, the pitch) is specified. Its other parameters, such as fill ratio,
height, or side slopes are unspecified. Artificial data generation methods need to reflect
this. Gwyddion’s pattern module creates regular patterns with exactly specified periods.
Other parameters, such as width, height, slope, or placement of features can be also per-
fectly regular—or varied, but the variation is local, not disturbing the pitch. A subset of
patterns corresponding to common calibration samples is illustrated in Figure 1. Realistic
shapes require adding defects such as surface and line roughness. These will be discussed
in Section 2.4.
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Figure 1. Selected examples of regular geometrical shapes generated by the pattern module. The top
row (Ideal) depicts the ideal models. The middle row (Realistic) shows slightly non-ideal shapes
exhibiting variability, line roughness or deformation. The last row (Extreme) illustrates the expressive
power of the models using extreme variability and odd settings.

Finally, it is useful to generate regular lattices, for instance to represent atomic lattices.
Of course, a lattice alone is not sufficient to simulate a technique such as STM. Solid state
physical computations are necessary (generally DFT-based) [52–54] together with Tersoff–
Hamann approximation for the STM signal [55]. However, the investigation of a data
processing method behaviour may not require ab initio results as input data and lattices
can be useful in other contexts. Artificial data can be then produced by first generating
points corresponding to a regular and semi-regular tilings, Penrose tilings [56], the Si
7× 7 surface reconstruction or any other interesting two-dimensional pattern. The point
locations can be randomly or systematically disturbed. The actual neighbourhood relations
are then obtained using Delaunay triangulation [57,58] and Voronoi tessellation [58,59] and
quantities, such as distance from the nearest point or nearest boundary are used to render
the image (lattice, Figure 2).
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Lattice DLA Objects (pyramids) Particle aggregates Tiles

Figure 2. A slightly disordered snub square lattice (lattice), diffusion-limited aggregation (diffusion);
random pyramidal surface (objects); settling of particles on surface (particles); and random smooth
tiles (tiles).

2.2. Deposition and Roughening

Random roughness and nearly-stochastic surface textures are ubiquitous in material
science as they can arise from almost any processing—for instance deposition, etching,
mechanical contact, or crystallisation. The influence of roughness increases at nanoscale
where its characteristic dimensions can be comparable to the dimensions of the objects and
it can even become the dominant effect influencing surface properties [60–64]. Frequently
it is crucial to include it in simulations.

The importance of surface roughness is reflected by the extensive literature published
on this topic, including many approaches and algorithms for simulation of roughening
processes [65,66]. Models of growth of rough surfaces during depositions are among
the most studied. At nanoscale, deposition is probably the most common roughening
process (whereas at macroscale subtractive processes such as machining are more common).
Roughness growth models are also of significant theoretical interest as the scaling exponents
are related to the underlying physical processes [65].

Most practical growth models are discrete, i.e., realised in a grid, usually one matching
image pixels, and formulated in terms of individual pixel values —some can even be
considered cellular automata. The height dimension can be treated differently with respect
to discretisation, value scale, etc. The distinction between 3D and 2+1-dimensional models
is not always clear in this case. Still, they generate topographical images, i.e., height fields.
The second major difference from the previous section is that most models considered
in this and the following sections are inherently random. This can mean growth and
roughening simulation using stochastic partial differential equations (PDE), such as the
Kardar–Parisi–Zhang (KPZ) equation [65,67–69] ∂tz = ν∆z + (λ/2)(∇z)2 + η. Parameter ν
and λ characterise the surface tension and lateral growth; η is uncorrelated white Gaussian
noise. A KPZ modification known as the Kessler–Levine–Tu (KLT) model [70] has been
used for simulation of the etching process producing rough light-trapping surfaces [71].
However, even more commonly the model is an MC simulation of some kind of process, at
least in a loose sense. Both approaches produce random instances of surfaces by sampling
a probability space.

The simplest MC deposition model is random deposition [65,72], in which small
particles fall independently onto the surface at random positions, increasing the height
at that position. It produces uncorrelated noise with Gaussian distribution, which can be
easily generated directly (see also noise models in Section 2.4). When the particles are
allowed to relax to the lowest neighbour position, lateral correlations appear—nevertheless
with scaling exponents α = β = 0 in 2D (the scaling is logarithmic). The simplest classical
model with an interesting behaviour is thus ballistic deposition (Ballistic) [65,73,74], in
which the particles immediately stick to the surface at the first contact—see Figure 3a for
an illustration. The particle positions are generated randomly with a uniform distribution
over the area. Although ballistic deposition is simple, it produces self-similar surfaces
in the same universality class as the KPZ equation and has been used for modelling
of colloidal aggregates [75]. It can also be seen as the base for other models. Models
considering additional particle behaviour after it touches the surface have successfully
reproduced a number of real phenomena. A variety of models have been proposed for
molecular beam epitaxy, with different relaxation rules, taking into account diffusion and
possibly desorption [65,76,77]. The growth of columnar films can be reproduced if the
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incident particles do not fall vertically, but at random oblique angles, creating a shadowing
effect (columnar) [65,74,78]. After hitting the surface the particle relaxes locally to a lower,
energetically preferably position (Figure 3b, see also Figure 7 for an example).

A

A'

B B'

A A'

A B

A

C

Ballistic deposition Columnar film growth Diffusion limited aggregation

(a) (b) (c)

shadow

Figure 3. Deposition models: (a) In ballistic deposition the falling particles A and B stick to the
highest points of contact (A’ and B’), possibly creating voids (however, the only the top surface, shown
as dotted line, defines the simulation state). (b) Oblique incidence in columnar film growth creates as
shadowing effect as the incoming particle encounters the tallest column (at A’); it then relaxes to an
energetically preferable site; (c) In the top view of diffusion limited aggregation simulation, particle
A has to break one bond to move in indicated direction while B has to break two—particle C has to
pass the Schwoebel barrier to move to second layer.

On the other hand, if particles can travel long distances across the surface to find
an energetically preferable site, this correspond to the DDA type of models (deposition,
diffusion, and aggregation), which reproduce structures seen in sub-monolayer deposition,
as well as other structures formed by particle aggregation [65,67,74]. In the diffusion-
limited aggregation (DLA) model simulated particles can hop between surface sites, facing
a barrier E0. Neighbour particles increase the barrier by additional energy EN, making
dimers and larger clusters unlikely to break (Figure 3c). Using a Metropolis–Hastings type
algorithm [79,80], the effect of energy barriers is the reduction in hopping probabilities
by factor exp(−∆E/kBT) for a barrier ∆E > 0; kB and T being the Boltzmann constant
and temperature. The atomistic simulation can also include a non-zero probability of
passing the Schwoebel barrier, allowing particles to move between layers [81,82] (diffusion,
Figure 2). Even models mentioned in the previous paragraph often exhibit different sub-
monolayer and multilayer growth regimes, with a transition between them. The spectrum
of phenomena observed in sub-monolayer and few-layer film growth is surprisingly rich
and a variety models have been used to study specific processes, such as island ripening
processes and roughening transitions. [65,83–86].

The deposition models have inspired several other random surface texture generation
methods. A texture formed by random protrusions of given shape is generated by the
following method (objects, Figure 2). A shape with finite support, for instance a pyra-
mid, is generated at a random location. Surface minimum m over its support Ω is found:
m = mini∈Ω{zi}, where i indexes the pixels with current heights zi. The surface is then
modified zi → max(zi, m + hi), where hi is the pyramid height at pixel i. The procedure
is repeated until given coverage by the shapes is reached. This model has been used for
instance for the modelling of pyramidal solar cell surfaces and can be used to reproduce
the textures of TG1 or PA series tip sharpness calibration samples. For single-pixel features
the model is equivalent to random deposition, but larger features give raise to lateral corre-
lations. Numerical simulations in 2+1 dimensions suggest scaling exponents α = 1/2 and
z = 2 which differ from both random deposition with relaxation and KPZ. Nevertheless, in
practice the model is used in the sub-monolayer regime up to a few layers.

Several other models follow the same scheme of choosing a random object and location.
The surface is modified by the placed object according to a local rule—usually the height
increases, but holes can be created instead for ‘etching’. A slightly more sophisticated
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version, which places real 3D shapes instead of 2D functions, for instance ellipsoids or rods,
but still simply sticking to the place they touch, has been implemented in Gwyddion (pile
up, Figure 7).

An actual physical simulation of interacting 3D objects is used to reproduce self-
organised conglomerates formed by the settling of larger particles on the surface [21]. In
this case the 3D objects are relaxed using an integration of Newton equations similar to a
molecular dynamics simulation [87]. Interactions between particles and between a particle
and substrate are modelled using the Lennard–Jones potential. An Anderson thermostat
is used to simulate the Brownian motion of the particles; in addition the nanoparticle
velocities are damped during the computation to simulate the decreasing mobility. The
Verlet algorithm is used to integrate the Newton equations. By stopping the algorithm
before convergence it is possible to simulate a partial relaxation, often observed in practice.
This model is used in particles and rods modules in Gwyddion (Figure 2 and also Figure 7).
In the case of rods relaxation, each rod is represented as a rigid configuration of three
spheres, using the Settle algorithm [88], which is sufficient for simulation of behaviour of
rods of small aspect ratio.

2.3. Order and Disorder

A different family of models is used to represent contrast patterns in non-equilibrium
systems with spontaneous symmetry breaking and long-range organisation. Typical exam-
ples include waves in excitable media [89] which produce characteristic patterns found in
diverse systems such as chemical reactions [90,91], vegetation patterns [92], propagating
flame fronts [93] or cardiac tissue [94] (Figure 4); or static Turing patterns that play role
in developmental biology [95–97] (Figure 4). More directly relevant for nanometrology
are the patterns of magnetic domains in multilayers used as reference samples in mag-
netic force microscopy [98–101] or the morphology of phase separation [35]. We consider
all models related to self-organisation, order–disorder transitions, phase separation and
related phenomena to be part of this family.

Hybrid Ising Coupled PDEs Phase separation Direct – ordered Direct – disordered

Figure 4. Self-organisation models: spiral waves, generated by hybrid Ising model (domains); Pap-
illary lines type Turing pattern, produced by coupled PDEs (coupled PDEs); quenched disorder in
phase separation obtained by simulated annealing (annealing); two patterns created by direct spectral
synthesis and morphological post-processing (phases), with low and high disorder.

A distinct feature of this class is that the data fields are non-topographical. Whether
the values represent chemical concentrations or spin orientations, the computations occur
in the xy plane with no notion of the third dimension.

An important classical model is quenched disorder in a regular solid solution, known
also under many other names, such as Ising or lattice gas model [102–107]. It can reproduce
patterns forming due to separation of phases or domains (a similar approach is also used
to simulate the morphology of chains in a polymer-blend films [108]). Cooling from a
high temperature, in which the system is in a disordered state, long-range correlations
starts to appear as it nears the critical temperature Tc. A phase transition to ordered
domains would occur at Tc (in dimensions D > 1, whereas for D = 1 a gradual change
is typical [105]). However, if the cooling is fast, the energy barriers can become large
compared to kBT before the transition finishes and the system is frozen in an intermediate
state. The patterns can be generated using simulated annealing, a Metropolis–Hastings
type algorithm [79,80,109] (annealing, Figure 4). Each image pixel is in one of two (or
possibly more) states. Random transitions, such as swapping two neighbour pixel states,
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can occur with probability min
(
1, exp(−∆E/kBT)

)
if the configuration energy increases by

∆E. The slow convergence for low T motivated the search of alternative algorithms (some
of which are mentioned below).

For the formation of the eponymous patterns, Turing originally proposed a reaction–
diffusion model [95]. However, since systems with local activation and long-range inhi-
bition (LALI) are in general capable of forming such patterns [97,110,111], many other
models have been presented over the years which exhibit similar behaviours. The standard
modelling approach is coupled PDEs that for the reaction–diffusion model can be written
∂tc = D∇c + f(c), where c is the vector of component concentrations, D is a diagonal
matrix of diffusion coefficients and f is a non-linear function describing the reaction kinetics
(coupled PDEs, Figure 4). Two components are sufficient to reproduce a wide variety of
interesting phenomena, although some types of behaviour require three or more com-
ponents [112]. Alternative methods for patterns production have been proposed, often
aiming to improve the efficiency of the long-range inhibition simulation. A so-called kernel
based Turing model replaces the PDE with an explicit shape of activation–inhibition kernel
convolved with the concentration variable [97].

Hybrid LALI models employ combinations of differential equations and cellular
automata or other local discrete rules [113–115]. A hybrid non-equilibrium Ising model can
be constructed by combining a discrete short-scale Ising model for two-state variable u with
continuous slow inhibitor v described by a differential equation [113]. Variable u is updated
using the standard scheme, with flipping probability min

(
1, exp(−∆E/kBT)/2

)
. The state

energies E are computed from the number of different neighbours n but also biased using
u as E = Buv + Jn, where B determines the bias and J the interaction strength. Depending
on the effective inhibitor diffusivity, v can be described either by a linear reaction-diffusion
partial differential equation with macrogrid averaging (fast diffusion), or a local ordinary
differential equation (non-diffusing inhibitor). In the second type (domains, Figure 4), v
follows τv̇ = −v − ν + µu, where ν and µ are bias and inhibitor strength, and τ is the
characteristic time. This defines the relative timescales of u and v as they are alternately
updated. The model has several regimes and can reproduce both the spiral waves and
phase separation-like patterns.

Extensive simulations require generating large amounts of artificial data and models
involving any kind of time evolution may be too time-consuming. Depending on the
application, fast models which abandon the simulation path and just directly reproduce the
basic features of the patterns may be preferable. An example is the model mimicking Turing
pattern type textures of MFM calibration samples [100]. It is based on the peculiar frequency
spectra in which one spatial frequency strongly dominates due to Turing instability [95].
The construction has two steps. Synthesis in the frequency domain provides data with
the narrow frequency spectrum. Morphological post-processing then refines the local
morphology to resemble more closely the real patterns (phases, Figure 4).

2.4. Instrument Influence

A special class of data synthesis methods models the various artefacts related to the
measurement principle and measurement process. In the SPM world the most prominent
type of modification is so called tip convolution, a distortion of measured morphology
related to the fact that the SPM probe is not infinitely sharp. The resulting dataset is
a convolution (mathematically, a dilation) of the probe and sample [47]. For a known
probe the effect can be simulated using algorithms presented in Reference [47], producing
simulated AFM result from true (ideal) topographical data.

Thermal drifts are present in nearly all the SPMs [116]. They are related to thermal
expansion of different microscope components before the thermal equilibrium is reached
after instrument start or when the temperature in the laboratory is not sufficiently stable.
They can be simulated by adding some x, y and z components to the simulated data.
Another source of distortion are scanning system imperfections. In open loop systems SPM
scanners are subject to systematic errors related to the piezoelectric actuators hysteresis,
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non-linearity, and creep [117]. In closed loop systems errors arise from non-linearity of
sensors and inaccuracy and linear guidance system imperfections [118].

A quite general technique for distortions in the xy plane is displacement field (displace-
ment Field, Figure 5). Consider a vector field v(r) defined as a function of planar coordinates
r = (x, y). The distorted image z′ is created from original image z using z′(r) = z

(
r + v(r)

)
with suitable handling of z(r) for r falling outside the image (periodic, border value extrap-
olation or mirroring). A slowly varying v represents drift and similar systematic effects, for
instance in xy plane by putting v = R(−φ)(r− r0 − b)− (r− r0), where b and φ are shift
and rotation with respect to centre r0 (R denotes rotation matrix). The time dependencies of
b and φ define the drift—in the simplest case of linear drift they can be taken proportional
to c · r, where c is a constant vector formed by inverse scanning speeds. On the other hand,
v varying on short scales can model non-instrumental effects, such as line and surface
roughness [119]. Both are illustrated in Figure 5. There are many possible useful choices
for v: explicit functions (polynomials), random Gaussian fields or other correlated noise,
or even other images. We formulated the distortion for images and this is how it usually
applied. Nevertheless, for explicit functions like those in Section 2.1 the displacement can
be applied directly to the coordinates, without intermediate pixelisation.

Displacement Line roughness Simple noise Scars/strokes Random tilt

Figure 5. Simulated defects and scanning artefacts: slowly varying displacement field; quickly
varying displacement field (simulating line roughness); simple pixel noise; scars/strokes; random tilt
of scan lines. The undisturbed surface is always the same system of concentric super-ellipses.

Noise is ubiquitous and is related to different effects—noise in the electronic circuits,
mechanical vibrations and feedback loop effects. The spectral properties of noise depend
on its source, like 1/ f noise being related to light fluctuation [120] or shot noise to detection
of light beam reflected from cantilever that is frequency independent. Often it has some
dominant frequencies, either related to the electrical sources from the power line, character-
istic mechanical vibration frequencies of the tip-sample system, or acoustic noise from the
environment [121]. In artificial data preparation, noise can be generated independently and
added to the synthetic data in post-processing. For simple simulations independent noise
in each pixel can be sufficient (noise, Figure 5). Correlated noise with given power spectrum
is generated using spectral synthesis [74], i.e., constructing the Fourier coefficients with
given magnitudes and random phases and using the inverse fast Fourier transform (FFT)
to obtain the correlated noise (spectral, see Figure 9 for image examples). A special type of
noise related to the feedback loop effects are scars/strokes, short segments of the scanned
line that are not following the surface (line noise, Figure 5).

Another important type of noise related to the scanning process is the line noise, which
causes shifts between individual lines scanned in the fast scanning axis that form the image.
The source of this noise is not very well understood, but most probably it is a mixture
of low frequency noise, drift, impact of changing the tip motion direction, and impact of
tiny changes of the tip behaviour (contamination, tip wear, etc.). It can also be added to
synthetic data using line noise in Gwyddion (see Figure 10b in Section 3.2 for an example).

An important error source in optical detection based SPMs (i.e., nearly all commercial
systems) is the interference of light which misses cantilever and is reflected off the sample
surface towards the beam deflection detector [122,123]. It can be modelled using simple
geometrical optics [122]. However, in practice also diffraction effects can play a role as
diffraction pattern can be often seen in the beam reflected from cantilever. The effect can
be visible namely on very flat sample measurements, creating a pattern in the topography
channel resembling interference fringes. This is usually a reason for re-aligning the laser
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position on the cantilever. However, residuals of this effect cannot be so easily noticed yet
they still affect the topography measurements. In the simplest approximation this error
source can be expressed as a harmonic function of the height and in Gwyddion can be
added using data arithmetic. The procedure includes taking the surface, separating details
and polynomial background out of it, calling the background b(x, y), adding A sin(4πb/λ)
to it and merging it again with the details.

Feedback loop effects are related to undershoots and overshoots of the proportional-
integral-derivative (PID) controller that is used to keep the probe–sample interaction
constant via z motion of the tip or sample. These can be simulated for synthetic data by
establishing a virtual feedback loop based on a model force-distance dependence and
calculating the cantilever response using a suitable model, e.g., damped harmonic oscilla-
tor for tapping mode measurements [124] combined with modelling the time evolution
of the feedback loop response. A simple feedback loop simulation is also included in
Gwyddion (PID).

2.5. Further Methods

Preceding sections introduced several classes of surface and texture generation meth-
ods which are natural candidates for artificial SPM data because of physical or metrological
reasons. However, the options are not limited to simply running them. Highly complex
artificial data can be obtained by chaining several algorithms. In particular, ideal patterns
are frequently combined with defect generators for realistic data. A generated precise
geometrical pattern can be modified in sequence by added particles, displacement field,
feedback loop effects, and line or point noise. Two such examples can be seen in Figure 6,
a slightly distorted and uneven Si 7× 7 surface reconstruction (with scanning artefacts
added) and sequential ‘deposition’ of large and small particles (again with artefacts).

Gwyddion makes chaining particularly easy as all synthetic data generators can
take an existing image as the starting point. An example is shown in Figure 6 where
simulated columnar film growth was seeded by a grating generated by another module.
This also allows using the same generator multiple times, for instance to create multi-
scale patterns. Furthermore, the generators can be combined with other standard image
and morphological processing methods—edge detection, opening, closing, or Euclidean
distance transform (EDT) [125]. The ‘Lichen’ image in Figure 6 was created using DLA,
post-processed with edge detection and correlated Gaussian noise. ‘Ridges’ originated as a
simple sum of sine waves, which was then thresholded and EDT was applied to the result.

Si 7×7 Two-size particles Seeded columnar Lichen (DLA) Ridges (wave+EDT)

Figure 6. Multi-step constructions: Si 7× 7 lattice with artefacts; ellipsoids of two different sizes;
seeded columnar film growth; morphologically post-processed DLA; and sum of sine waves, also
morphologically post-processed.

Combination of patterns generated at different scales is a standard technique in noise
synthesis—although here usually only simple linear summation is used. Noise generators
are an important classic category of which Section 2.4 listed a few but at least a few others
need to be mentioned. The Perlin noise generator (and its newer alternative the simplex
noise) [126,127] produce spline-based isotropic locally smooth noise. They are frequently
used as multi-scale, combining outputs at different lateral scales to obtain a somewhat
self-affine result. Stochastic midpoint displacement [74,127,128] (Brownian) is another a
direct-space construction, in this case top-down. The generation starts with at a coarse
scale with sparse grid. The grid is then progressively refined using midpoint interpolation
with random value variation obeying a scaling law. The result approximates, to some
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degree, fractional Brownian motion. As an alternative to FFT-based spectral synthesis the
Mandelbrot–Weierstrass method also sums a sine series, but with frequencies forming a
geometric progression ( fn ∼ cn) instead of an arithmetic one ( fn ∼ n) [74,129]. Other corre-
lated noise generation approaches include sparse convolutions or wavelet synthesis [127].

SPM techniques are naturally connected to surfaces and processes on them. Modelling
of processes occurring at material boundaries is a vast field. Many models have been
developed for simulations at different scales that are typical in nanoscience—such as
boundary front propagation in disordered media such as wetting, burning, or growth of
bacterial colonies [65,130], dendrite formation simulated using the phase field method [131],
ground surface topography by simulating material removal by active grains [132], pitting
corrosion texture using stochastic cellular automata [133], or dune formation by random
transportation of sand ‘slabs’ in a lattice [134]. Nevertheless, they may produce data
useful for testing and evaluation of SPM data processing algorithms. This applies to
pattern synthesis methods in general. Processes at different scales and with different
underlying physical or chemical details give raise to similar structures—as was already
noted in Sections 2.2 and 2.3. When one is looking for a generator producing test data with
particular spectral characteristics, connectivity, anisotropy or multi-scale properties, it can
sometimes be found in unexpected places.

This extends even to procedural textures developed originally for computer graphics.
Some do not have any basis in physics, such as maze generation using evolving cellular
automata [135]—even though the results share some characteristics with Turing patterns.
A round tile pattern can be created by recursively solving the mathematical three circle
touching problem and morphological post-processing (discs, Figure 2). However, many
apply simulation method from physics and engineering fields to create patterns resembling
natural phenomena. For instance, realistic crack patterns were generated using a mesh
simulation by iterative addition of new cracks (based on the highest priority material
failure) and relaxation of the stress tensor in the mesh [136]. Lichen growth was simulated
using a DLA-based model, including light and water flow simulation [137].

A very active related area of research in computer graphics is texture synthesis,
i.e., production of textures similar to a given example (in some statistical sense). The
generated image can then have useful properties the original lacks, such as being tileable
(periodic). Impressive results have already been achieved [138–140]. If we have a sample
of surface texture and wish to generate more samples, existing texture synthesis methods
allow to do this with relative ease. The downside is, of course, the absence of physical
interpretation of any texture properties. After all, these methods have been developed for
visual impression, not physical accuracy. In general it is not possible to control physically
interesting parameters of the surface (sticking coefficient, scaling exponent, etc.). However,
there are cases when these techniques can be still useful even in a simulation, for example to
render a much larger version of surface texture, which may be difficult to acquire otherwise.

A completely different approach to surface texture construction is the modification of
existing data to enforce values of specific parameters. The basic case is the adjustment of
value distribution to a prescribed one (coerce). It has been used for the creation of tunable
random roughness for simulations [141], but also in the production of physical roughness
standards [142]—in this case iteratively to ensure the produced standard conforms to the
design. More complex iterative procedures can generate textures with multiple prescribed
statistical parameters [143].

3. Synthetic Data Applications
3.1. Impact of Tip on SPM Results

Tip sharpness is a crucial factor of successful SPM measurements. Ideally, an infinitely
sharp tip would provide undistorted image. Finite tip size leads to distortion and the
resulting data are convolution (dilation) of the tip and surface shape [47]. Examples of
these distortions can be seen in Figures 7 and 8a (both simulated).
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Since the tip can evolve during scanning due to wear and its radius determined
previously or provided by the manufacturer is, therefore, no longer valid, it is necessary
to estimate its geometry from data. Without synthetic data, it would be very hard to
develop such estimation algorithms. By generating known data and known tip shape and
by performing convolutions and tip estimations under different conditions we can analyse
how the results are affected by influences like noise, feedback loop faults, or scan resolution.

As an example of such procedure, a radial basis neural network was trained using
simulated data and then applied on scanned gratings data to reduce the influence of tip
convolution [23]. It pointed out the problem of training the network, namely using suitable
tip for training and also to points on surface where the information is lost. In Reference [22]
neural networks were used to speed up the tip convolution impact analysis, namely to
obtain a certainty metric to quantify the quality of local tip-sample contact. For this, rough
surfaces with wide range of roughness parameters were generated. In Reference [24] the
impact of tips having two asperities instead of one was investigated, focusing on analysis
of fibril structures. The image blur related to tip convolution was estimated using Hough
transform. Bayesian blind deconvolution was then used to remove it from the measured
data. Synthetic data were used to demonstrate the versatility of the method for other types
of surfaces, namely particles on a flat substrate.

An illustration of utilisation of synthetic data in tip convolution and blind estima-
tion [47] is in Figure 7. Four synthetic topographies were generated, each with a different
type of surface features. They were dilated by the same known tip and the results were
used for blind tip estimation. The results are compared in the last row. The impact of
surface character on the reconstructed shape is dramatic and shows how the lack of certain
directions or slopes is reflected by the corresponding lack of tip geometry information in
the convolved data.

True surface

T
ip

 s
ha

pe

Rectangular holes Spherical particles Random nanorods Columnar film

Tip-convolved

True tip

Figure 7. Tip convolution effect on different synthetic structures—2D grating, spherical nanoparticles,
random nanorods and a columnar thin film. Top row: simulated data; middle row: data convolved
with tip; bottom row: tip used for simulation and tips obtained using the blind estimation algorithm
(enlarged; not in scale with the two upper rows).

Although the effect of tip convolution on direct dimensional measurements, like
the width of a particle, can be almost intuitively understood, statistical quantities, like
roughness parameters, are frequently impacted in a counter-intuitive way. Synthetic
surfaces are invaluable for addressing this problem. Columnar thin films were synthesised
in References [17,18] using ballistic deposition with limited particle relaxation. The goal of
this procedure in Reference [17] was to better understand the growth-related roughening
processes when conformal films are deposited on rough surfaces. Reference [18] studied
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the evolution of different statistical parameters of roughness when sample is convolved
with tips of different radius, showing that the impact of wrong measurements on pores
between individual columns using bigger tips has significant influence on both the height
and lateral statistical quantities. A similar analysis was done for fractal surfaces [19],
where limitations of fractal dimension analysis methods were identified, as well as large
discrepancies between different analysis methods. Multi-fractal properties turned out to be
even more complicated as tip convolution seems to add a sign of multi-fractal behaviour
also to surfaces that were originally of mono-fractal nature [144]. Such analysis could not
be done without using synthetic surfaces of known fractal properties. Synthetic particle
deposition was used to estimate the reliability of different automated particle analysis
methods in Reference [21], addressing the problems of analysis of nanoparticles on rough
surfaces, where many of the segmentation methods can fail. It was found that the most
critical are samples with medium particle coverage, where self-assembled arrays of particles
have not yet developed (that could be analysed using spectral methods), but particles can
no longer be treated as individual either.

Consider, now in more detail, the example of estimation of tip impact on statistical
quantities of rough surfaces. The distortion of measured morphology depends on the tip
radius r but also roughness character (in Figure 8a it is illustrated for synthetic columnar
film data). The influence of roughness character was explored using simulated convolution
with parabolic tips of varying radius for a standard Gaussian rough surface generated by
spectral synthesis and a columnar rough film simulated using the Columnar deposition
model. In both cases several 2400× 2400 pixel images were generated, with correlation
length T ≈ 19 px and rms roughness σ = 1.85 px. Tip convolution was simulated with tip
apex radii covering more than two orders of magnitude, from very sharp to quite blunt. For
all output images we evaluated the root mean square roughness (Sq), mean roughness (Sa),
root mean square surface slope (Sdq), surfaces area ratio (Sdr), skewness, excess kurtosis,
and correlation length (T), and averaged them over individual images.
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Figure 8. (a) Evolution of measured morphology of a columnar rough surface with increasing tip
radius r. (b) Dependencies of selected roughness parameters surfaces on tip radius for Gaussian and
columnar surfaces. (c) Ratios of measured values of σ and T to true values for Gaussian surfaces,
plotted as functions of the dimensionless parameter σr/T2. Point RGB colours represent combinations
of parameters σ, T, and r, as indicated.
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The resulting dependencies are plotted in Figure 8b. Since the parameter ranges differ
considerably and some are not even commensurable quantities, the curves were scaled
to comparable ranges (preserving the relation between Sq and Sa). A few observations
can be made. For the Gaussian surfaces, which are locally smooth, the parameters stay
more or less at the true values up to a certain radius, and then they all start to deviate.
In contrast, for the columnar film several quantities have noticeably non-zero derivatives
even for the sharpest tip used in the simulation. This is the result of deep ravines in the
topography, with bottoms inaccessible even by quite sharp tips. Some results are more
puzzling, for instance the peculiar non-monotonic behaviour of kurtosis for Gaussian
surface. We can also see that convolution with blunt tips makes the measured skewness
of Gaussian surfaces positive. However, for columnar films, which are positively skewed,
the measured skewness decreases and even becomes negative for blunt tips. Such effects
would be difficult to notice without simulations.

This is even more true for the results of a larger-scale simulation with Gaussian rough
surfaces, in which all r, σ and T were varied. Careful analysis revealed that the convolution
problem is in fact characterised by just a single dimensionless parameter σr/T2. This is
demonstrated in Figure 8c where the ratios of measured σ and T to true values are plotted
as functions of σr/T2. It is evident that even though all three parameters varied over
wide ranges the data form a single curve (for each σ and T). This result can be explained
by dimensional analysis. When we scale the lateral coordinates by b and height by c,
then r, σ and T scale by c/b2, 1/b and 1/c, respectively. The only dimensionless number
formed by r, σ and T which is preserved is σr/T2. However, the surface must scale like
the tip to preserve their mutual geometrical relation. Meaning it needs to also be locally
parabolic—which is satisfied by the locally smooth Gaussian surface (but not by other
self-affine surfaces).

3.2. Levelling, Preprocessing, and Background Removal

Raw SPM data are rarely the final result of the measurements. In most cases they are
evaluated to get a quantitative result, like size of nanoparticles, volume of grains, pitch
of the grating or surface roughness. Preprocessing steps are usually needed for this, to
correct the misalignment of the z-axis of the instrument to the sample normal, to correct
the impact of drift or to remove scanner background. Synthetic data can be used to both
develop the data processing methods and estimate their reliability or uncertainties.

An example of use of synthetic data for estimation of systematic errors in SPM data
processing is the study of levelling-induced bias in roughness measurements [29,141].
Levelling is done as a pre-processing step in nearly all SPM measurements in many
variations, from simple row mean value alignment up to polynomial background removal.
Since the data are altered by levelling, it has impact on the roughness measurement results.
Using synthetic data this impact was quantified, showing that in a large portion of SPM
related papers the reported roughness values might be biased in range of tens of percents
as the result of too small scan ranges. The problem is illustrated in Figure 9 for the
mean square roughness σ and scan line levelling by polynomials. The ratio σ2

meas/σ2

expresses how much the measured roughness is underestimated—ideally it should be 1.
The underestimation is of course worse for shorter lengths L. However, it is clear that
even for quite long scan lines (compared to the correlation length T), the roughness can be
considerably underestimated, especially for higher polynomial degrees. A procedure for
choosing a suitable scan range to prevent this problem already during the measurement is
provided in Reference [141].
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Figure 9. Ratio of measured roughness σ2
meas to true value σ2 depending on the ratio of profile

length L and correlation length T. The bias is plotted for Gaussian and exponential autocorrelation
and several common levelling types—subtraction of a few low-degree polynomials and the median.
Vertical slices through the images illustrate the corresponding ratio L/T (image height is L).

In Reference [26], methodology for using spectral density in the SPM data evaluation
was studied. Synthetic data allowed discussion of various influences on its accuracy,
including sampling, tip convolution, noise, and windowing in the Fourier transform. In
Reference [27] the spectral density evaluation was extended to irregular regions, allowing
the method to be used on grains or terraces covering only part of the SPM image. The
method was validated using data generated by spectral synthesis.

Synthetic data were also used to test novel algorithms for using mono atomic silicon
steps as a secondary realisation of the metre. Following the redefinition of the SI system
of units the increased knowledge about silicon lattice spacing led to acceptance of this
approach for SPM calibration [145]. To develop reliable methods for data levelling when
tiny steps are evaluated from SPM data measured on large areas, synthetic data were
used [30], namely to verify algorithms separating various scanning related errors like line
roughness and scanner background from the sample geometry.

In addition to the effect of concrete data pre-processing algorithms, there is also the
freedom in which of them to use. Several paths can lead to similar results (e.g., images with
aligned rows), but their impact on the data can be different. SPM users seldom choose based
on rigorous criteria—the choice is more often the result of availability, discoverability, and
habit. The impact of this user influence was studied in Reference [34] using combination of
multiple data synthesis methods to create complex, but known data as illustrated on the
step analysis example in Figure 10. A group of volunteers was then processing the data to
determine the specified parameters, resulting in a rather worrying spread of determined
values. Furthermore, data processing methods were classified on the basis of amount of
user influence on them. It was done using an MC setup somewhat atypical for SPM as it
included data processing steps carried out by human subjects. Batches of 100 synthetic
images were generated, with known parameters—but unknown to the users. The generated
images contained roughness, tilt, and defects, such as large particles. The users were then
asked to level them as best they could, using levelling methods from prescribed sets. It was
found that while humans are good at recognising defects (and marking them for exclusion
from the processing), giving them more direct control over the levelling is questionable.
The popular 3-point levelling method did not fare particularly well and humans also
tended to over-correct random variations (although all levelling methods are guilty of this,
even without user input [29,141,146]).
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(b)(a) (c)

Figure 10. Study of user influence on SPM data evaluation: (a) The step to measure created using
pattern—with smooth and somewhat wobbly edge, but otherwise ideal. (b) The image users actually
received, with tilt and scanning artefacts added. (c) Distribution of user submitted evaluated step
heights as a stripchart with jitter (the vertical offsets do not carry information; they only help to
disperse the points) and a boxplot overlay.

3.3. Non-Topographical SPM Quantities

So far the examples involved simulated topography. It is perhaps the most common
case, but not a fundamental limitation. Any physical quantity measurable by SPM can
be addressed given a physical model of the sample and a model of the probe-sample
interaction, which can have different level of complexity.

As an example of use of simple tools applied to non-topographical data, magnetic
domain data were simulated during development of methodology for tip transfer function
reconstruction in magnetic force microscopy (MFM) [100] using the phases module. Since
the purpose of the procedure was the estimation of an unknown function from non-ideal
data, verification and quantification of systematic errors related to data processing using
artificial data with added defects were key steps. Another major benefit of synthetic data
was that virtual MFM data of any size and resolution could be used, even beyond what is
feasible to measure.

Reference [100] used simulations to study and optimise several aspect of the re-
construction. The performance of different FFT window functions was compared using
artificial data—with somewhat surprising results. Although FFT windows had been exten-
sively studied for spectral analysis, their behaviour in transfer function estimation was not
well known. The study found that beyond C0 window smoothness and even shape did not
play much role and the key parameter was the L2 norm of window coefficients (and simple
C0 windows, such as Welch and Lanczos, are thus preferred). Simulations were also used
to evaluate the influence of different regularisation parameter choices and to improve a
procedure used to estimate the true magnetic domain structure from the measured image.

A very frequent use of synthetic data in non-topographical SPM measurements in-
terpretation is related to understanding of topography artefacts in the other quantities
channels. Artefacts related to sample topography can be found in all the regimes (electric,
magnetic, thermal, mechanical, and optical) and belong among the largest uncertainty
sources when other quantities are evaluated.

Synthetic topographical data are only the first step. A physical model of the interaction
has to be formulated and we must simulate the signal generation process. This can be for
example finite element method (FEM) modelling which was used for simple topographic
structures to simulate their impact on Kelvin Force Probe microscopy in Reference [147].
Here it was found that the topography impact on surface potential measurements is rela-
tively small. This, however, is not the case in many other SPM techniques and topography
artefacts can dominate the signal. Simple 1D synthetic structures were used to simulate
topography artefacts in aperture-based scanning near field optical microscopy [148], where
a model based on calculating the real distance of the fibre aperture from surface was used.
Even if the probe follows trajectory preserving a constant distance to the surface, this keeps
constant the shortest distance from any point on the probe to the surface. However, the
distance between surface and the aperture that is in the centre of the probe apex varies
when scanning across topographic features (e.g., when following a step). Combined with
the fast decay of the evanescent field, it produces topography artefacts in the optical signal.
More complex analysis was done using 2D synthetic patterns in Reference [149], where
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Green’s tensor technique was used to calculate the field distribution in the probe-sample
region, showing that it is easy to misinterpret topographical contrast as dielectric contrast
(which is the target measurand). Topography artefacts were also modelled in the scattering
type scanning near field optical microscopy, which is an even higher resolution optical
SPM technique [150]. For this, a simple synthesised topographic structure representing a
nanopillar array was combined with an idealised scattering tip and the interaction was
handled using a dipole–dipole theoretical model. This allowed examination of different
aspects of far-field suppression using higher harmonic signals.

Additionally, in scanning thermal microscopy (SThM), the topography artefacts can
dominate the signal and methods for their simulation are needed [36]. In Figure 11, the
typical behaviour of the thermal signal on a step edge is shown, together with the result of a
finite difference model (FDM) solving the Poisson equation. Synthetic data were used here
to create the simulation geometry, taking the simulated surface and probe from Gwyddion,
converting it to a rectangular mesh, and calculating the heat flow between probe and
sample. The process was repeated for every tip position, producing a virtual profile (or
virtual image in the 2D case). Synthetic data were used to create simple structures that
could be compared to experimental data, as shown in the figure, and were an important step
in validation of the method and moving towards simulations of more realistic structures.

Figure 11. Topography artefacts in SThM: (A,B) topography and thermal signal on a step height
structure, (C) experimental data and result of the FDM calculation using simulated step height
structure [36], simulating a single profile. Simulated signal is scaled to match the raw SThM signal
coming from the probe and the Wheatstone bridge.

Finally, numerical analysis can be used for the non-topographical data interpretation,
modelling the probe-sample interaction using a structural model of the sample and creating
virtual images that are compared to real measurements. During development and testing of
the numerical models used for these purposes various synthetic datasets are also frequently
used. As an example, spectral analysis of measured surface irregularities was studied
in Reference [151], where STM signal was simulated for synthetic nanoparticle topogra-
phies. The results were used to assist in the interpretation of data coming from different
laboratories and affected by different imperfections, like noise and feedback loop effects.

More complex examples include models for addressing mechanical response in nano-
mechanical SPM regimes were developed using synthetic data. Such methods have po-
tential of sub-surface imaging on soft samples, which however needs advanced data
interpretation methods. Numerical calculations based on a synthetic structural model and
FEM was used to interpret data measured on living cells [152] when responding to external
mechanical stimuli.

In general, physical models of probe-sample interaction can be quite complex and sim-
ulation of SPM data can be a scientific area on its own. For example, quantum-mechanical
phenomena need to be taken into account when very high resolution ultra-high vacuum
measurements are interpreted, which has been done using a virtual non-contact AFM [153].
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Simulations at this level are however beyond the scope of this paper which focuses on
synthetic data that can be easily generated, e.g., using Gwyddion open source software
and then used for various routine tasks related to SPM data processing.

3.4. Use of Synthetic Data for Better Sampling

Synthetic data can also be used for development of better sampling techniques or
techniques that allow fusion of datasets sampled differently. Traditionally SPM data are
sampled regularly, forming a rectangle filled by equally spaced data points lying on a
grid. However, the relevant information is usually not distributed homogeneously on
the sample. Some areas are more important than others for the quantities that we would
like to obtain from the measurement. Development of better sampling can focus on better
treatment of steep edges on the surface [154], reduction in the number of data points via
compressed sensing [155], or better statistical coverage of roughness [8].

As an example of synthetic data use in this area, in Reference [33] randomly rough sur-
faces with exponential autocorrelation function were generated to simulate measurements
with low and high density sampling. Gaussian process based data fusion was then used
and tested on these data. Using this method, the simulated datasets could be merged, when
the accuracy of the low and high density measurements was different, which is often en-
countered in practice. Data fusion results were then compared with synthetic data that were
used to create the input sets, making the analysis of method performance straightforward.

Synthetic data were also used for the development of methods for generation of
non-raster scan paths in the open source library Gwyscan [8], focusing on scan paths that
would better represent the statistical nature of samples, e.g., by addressing larger span
of spatial frequencies while measuring the same number of points as in regularly spaced
scan. Use of general XYZ data instead of regularly spaced samples allows creation of more
advanced scan paths, measuring only relevant parts of the sample. An example of scan
path refinement is shown in Figure 12. Here, data similar to flakes of a 2D material were
generated and the simulated scans were covering an area of 5× 5µm. The coarsest image
(see Figure 12A) with only 50× 50 points laterally spaced by 100 nm was used to create
the next refined path, based on the local sample topography variance. The refined path
points were laterally spaced by 10 nm and were used to create a next refinement, laterally
spaced by 1 nm. At the end, all the XYZ points were merged and image corresponding to
the desired pixel size of 1 nm was obtained, in total measuring only about 25 % of points
compared to a full scan.

Figure 12. Scan path refinement while simulating measurement on 2D material flakes: (A) coarse
topographical measurement; (B) refinement paths—colour indicates measurement point density (in
the dark regions individual points can be seen as dots); (C) XYZ data from all three measurements
merged together.

4. Discussion

In the previous section we recapitulated various styles and strategies for use of
synthetic data. It can be seen that the methodology varies from task to task. The unifying
idea is to simulate how an effect related to SPM measurement or data processing alters
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the data, which can be done best using known data. Generation of the data involves
randomness in most cases and resembles the use of Monte Carlo (MC) in uncertainty
estimation. The MC approach is used in metrology when measurement results cannot be
formulated analytically, using an equation (which would be differentiated for the error
propagation rule to get the uncertainty contributions of different input quantities). MC
is an alternative in which input quantities are generated with appropriate probability
distributions and the result is computed for many of their combinations, forming the
probability distribution of the results. More guidance is provided in the guide to the
expression of uncertainty in measurement (GUM) [156]. The method then provides both
the result and its uncertainty.

Sometimes the procedure applied to synthetic data can differ quite a lot from how we
imagine the typical MC, but still be built using the same principles. For instance, in a part
of the user influence study [34], large amounts of data were generated and then processed
by experienced Gwyddion users manually. The goal was to see how the user’s choice of
algorithms and their parameters influences the results (see also Section 3.2). Therefore, a
human was the ‘instrument’ here. However, for the rest the MC approach was followed.

It should be noted that even in a classical uncertainty estimation MC may not be the
most efficient computational procedure. If there are only a handful of uncertain or variable
input parameters, non-sampling methods based on polynomial chaos expansion [157] can
be vastly more efficient. Their basic idea is the expansion of output parameters as functions
of input parameters in a polynomial basis, with unknown coefficients. Determining the
coefficients then establishes a relation between input and output parameters and their
distributions [158]. In so-called arbitrary polynomial chaos the technique is formulated
only in terms of moments of the distributions, avoiding the necessity of postulating specific
distributions and allowing data-driven calculations [159]. However, huge numbers of
random input parameters—quite common in the SPM simulations—present a challenge
for polynomial chaos and using MC can have significant benefits.

More importantly, standard uncertainty analysis may be exactly what we are doing
and GUM exactly the appropriate methodology to follow, though it also may not be. We
need a more nuanced view on procedures described collectively as ‘generate pseudoran-
dom inputs and obtain distributions of outputs’. Consider what would be the result of
running the simulation with infinitely large data. There are two basic outcomes: an in-
finitely precise value and nothing. An example of the former is the study of tip convolution
in Section 3.1. In the limit of infinite image, tip convolution changes the surface area of a
columnar film (for instance) by a precise amount, independent on the sequence of random
numbers used in the simulation, under an ergodicity assumption. In fact, the images used
in Section 3.1 were already quote close to infinite from a practical standpoint. The relative
standard deviations of the parameters in Figure 8b were around 10−3 or smaller, i.e., a
single MC run would suffice to plot the curves.

This gives context to the large number of MC runs suggested by GUM (e.g., 106). For
the surface part, more sampling of the probability space can be done either by generating
more surfaces—or by generating larger ones. The second is usually more efficient and also
reduces the influence of boundary regions that can cause artefacts. Large images do not
help if tip radius is uncertain (although here polynomial chaos could be utilised). Therefore,
we should use the adaptive approach, also suggested in GUM, increasing surface size up
to the moment when statistical parameters of the result converge.

How is the hypothetical sharp value we would obtain from an infinite-image simu-
lation related to uncertainties? It may be the uncertainty (more precisely, its systematic
part) if we simulate an unwanted effect which may be left uncorrected and we attempt
to estimate the corresponding bias. The hypothetical sharp value may also be simply
our result—and then we would like to know its uncertainty. This brings us to the sec-
ond possible outcome of infinite-image simulation, nothing. An example, polynomial
background subtraction, was discussed in Section 3.2. Subtraction of polynomials has no
effect in the limit of infinitely large flat rough surfaces for any fixed polynomial degree.
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Similarly, the MFM transfer function could be reconstructed exactly given infinite data,
more or less no matter how we do it (Section 3.3). In this case we study the data processing
method itself and its behaviour for finite measurements. It is essential to use image sizes,
noise, and other parameters corresponding to real experiments. The distribution of results
is tied to image size. Scaling results to different conditions may be possible, but is not
generally reliable especially if boundary effects are significant. Both biases and variances
frequently scale with T2/A, where A is image area and T correlation length or a similar
characteristic length—not as 1/N with the number of image pixels N— and size effects
can be considerable even for relatively large images [29,141,146].

Several practical points deserve attention when using artificial data. Running simu-
lation and data processing procedures manually and interactively is instructive and can
lead to eye-opening observations. Proper large-scale MC usually still follows, involving
the generation of many different surfaces, SPM tips, and other objects. This would be very
tedious if done manually. Most Gwyddion functionality is being developed as a set of
software libraries [6], with C and Python interfaces. This allows scripting the procedures,
or even writing highly efficient C programs utilising Gwyddion functions. This is also how
most of the examples were obtained.

The same input parameters must produce identical artificial surfaces across runs—
but also operating systems and software versions. For geometrical parameters this is a
requirement for using the models with non-intrusive polynomial chaos methods. Most
models have random aspects, ranging from simple deformations and variations among
individual features to stochastic simulations consuming a stream of random numbers. The
sequence of numbers produced by a concrete pseudorandom generator is deterministic
and given by the seed (initial state).

However, reproducing a number sequence is not always sufficient. A stronger re-
quirement is that a small change of model parameter results in a small change of the
output, at least where feasible (it is not possible for simulations in the chaotic regime, for
instance). In other words, the random synthetic data evolve continuously if we change
parameters continuously. This is achieved by a combination several techniques, in most
cases by (a) using multiple independent random sequences for independent random in-
puts; (b) if necessary, throwing away unused random numbers that would be used in other
circumstances; and (c) filling random parameters using a stable scheme, for instance from
image centre outwards. Examples of continuous change of output with parameters can
be seen in Figure 9. Each column of the simulated roughness image came from a different
image (all generated by spectral synthesis). They could be joined to one continuous image
thanks to the generator stability.

Theoretical modelling of SPM data is an active field. Much more is going on which lies
out of the focus of this work. For example detailed atomistic models are now common in
STM [52–54] or interaction with biomolecules and biological samples [160]. Every sample
and each SPM technique has its own quirks and specific modelling approaches [3]. The
methods discussed here do not substitute the models that are related to physical mecha-
nisms of the data acquisition in SPM. However, they can be used to feed them with suitable
datasets like in our SThM work [36] where Gwyddion data were directly used to create the
mesh for FDM calculations.

5. Conclusions

Use of synthetic data can not only significantly save time when evaluating uncertain-
ties in quantitative SPM, but can also allow analysis of individual uncertainty components
that would be otherwise jumbled together if only experimental data were used. This
helps with improvement of the quantitative SPM technique from all points of view: data
collection (e.g., compressed sensing), processing of measured data (e.g., impact of lev-
elling and other preprocessing) and even basic understanding of phenomena related to
the method (e.g., tip convolution). In all these areas the generation of reliable and well
understood synthetic datasets representing wide range of potential surface geometries is
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useful, as demonstrated in this paper. The data reliability here means that the synthetic
data should be deterministic and predictable (at least in the statistical sense) and should be
open for chaining them to simulate multiple effects. The demonstrated implementations of
discussed algorithms in Gwyddion have these properties.

Another benefit of using synthetic data is its suitability for testing and comparing
different algorithms performance during the data processing software development. This
is often done on basis of real SPM data in the literature as authors want to demonstrate
practical applicability of the algorithms on realistic data. However, as is discussed in this
paper, the data synthesis methods are already so mature that known data that are very
similar to real measurements can be generated and different SPM error sources can be
added to them in a deterministic way. This can make the software validation much easier
than in the case of experimental data with all influences fused together. Even further, whole
software packages can be compared and validated on basis of synthetic data.
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6. Nečas, D.; Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188.
[CrossRef]

7. Gwyddion Developers. Gwyddion. Available online: http://gwyddion.net/ (accessed on 1 July 2021).
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