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Abstract: The use of Ta/TaN barrier bilayer systems in electronic applications has been ubiquitous
over the last decade. Alternative materials such as Co-W or Ru-W alloys have gathered interest as
possible replacements due to their conjugation of favourable electrical properties and barrier layer
efficiency at reduced thicknesses while enabling seedless Cu electroplating. The microstructure,
morphology, and electrical properties of Cu films directly electrodeposited onto Co-W or Ru-W are
important to assess, concomitant with their ability to withstand the electroplating baths/conditions.
This work investigates the effects of the current application method and pH value of the electroplating
solution on the electrocrystallisation behaviour of Cu deposited onto a Co-W barrier layer. The film
structure, morphology, and chemical composition were studied by X-ray diffraction, scanning electron
microscopy and atomic force microscopy, as well as photoelectron spectroscopy. The results show
that the electrolyte solution at pH 1.8 is incapable of creating a compact Cu film over the Co-W layer
in either pulsed or direct-current modes. At higher pH, a continuous film is formed. A mechanism is
proposed for the nucleation and growth of Cu on Co-W, where a balance between Cu nucleation,
growth, and preferential Co dissolution dictates the substrate area coverage and compactness of the
electrodeposited films.

Keywords: seedless electroplating; Cu; Co-W; interconnect; acidic

1. Introduction

Following the trend established by Moore’s Law, more transistors are being packed
in a single chip as the dimensions continue to downscale. As of 2020, the transistor count
is on the order of several tens of billions in CPU and GPU systems. This continuous
miniaturisation makes the massive spread of electronic devices, computers, smartphones,
and wearables possible, which is also followed by great manufacturing challenges, where
conventional processes and materials are reaching their usability limits and thus requiring
either an improvement or replacement. In this regard, copper interconnects, which act as
electrical paths in integrated circuits, have also been downscaled, thereby experiencing a
reduction in width and thickness. Yet, the process of metallisation of these copper intercon-
nects requires a diffusion barrier layer on the sidewalls/bottoms of vias and lines to prevent
Cu atoms from diffusing into the surrounding dielectrics. Currently, a TaN diffusion barrier
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layer and a Ta adhesion layer are employed to improve the bonding between Cu and
TaN. Although Ta/TaN is effective as a diffusion barrier system, it increases the global
interconnect resistivity as the miniaturisation progresses further, ultimately limiting the
performance of the integrated circuits. Furthermore, Cu dewetting and electromigration—
phenomena related to the adhesion strength between Cu and Ta [1,2]—are becoming more
prominent, hence limiting the interconnect reliability [3,4]. In addition, Ta/TaN requires
a Cu seed layer on top before the electrolytic deposition process is initiated in order to
enable adequate via and line filling. Uniform Cu-seed/Ta/TaN layers have thus become
increasingly more difficult to deposit over increasingly narrow vias using conventional
fabrication techniques.

Alternative barrier layers have been considered to replace Ta/TaN, such as Ru- and
Co-based binary systems—e.g., Ru-W, Ru-Mn, and Co-W [5–7]. The Co-W system is an
interesting candidate as a novel barrier material due to its electrical and thermal properties.
Co exhibits a relatively low electrical resistivity in a wide range of thicknesses [8–10],
whereas W enhances the diffusion barrier properties [11], preventing Cu from diffusing
into the dielectrics. In [11], it was shown that CVD-Co-W (with 20 at% W) displays
equivalent diffusion barrier properties to PVD-TaN. Additionally, the interface adhesion
strength in Cu/Co-W is higher than in Cu/Ta [12,13], favouring lower Cu diffusion along
the interface Cu/barrier and subsequently improving the electromigration lifetime [14].
From a manufacturing point of view, Co-W is an interesting alternative to Ta/TaN as
well, because it can be synthesised by electrochemical routes that produce a high film
uniformity and step coverage in narrow vias and lines. Additionally, Co-W can function as
both a diffusion barrier and seed layer, whereupon Cu can be directly electroplated [15].
Electroless methods used for the synthesis of Co-W-based thin films have been reported in
the literature [16–18], but the direct electroplating of Cu on Co-W-based thin films is frankly
unaddressed. The feasibility of Co-W as a directly electroplatable diffusion barrier layer to
interconnect metallisation depends on its capability to grow a Cu film on top, with adequate
morphological and microstructural characteristics and equivalent or superior electronic
performance to conventional barrier layer systems. This work proposes a method for Cu
electrocrystallisation on top of Co-W thin films using conventional acidic electroplating
baths, focusing on the initial stages of Cu film formation.

2. Experimental
2.1. Co-W Thin Film Deposition

A ≈ 100 nm layer of SiO2 was deposited on top of a p-type boron-doped Si (100) wafer
(Silicon Valley Microelectronics, Santa Clara, CA, USA) by plasma-enhanced chemical
vapour deposition (PECVD) with a high radio frequency in a CVD MPX chamber (SPTS
Technologies Ltd., Newport, UK). The wafer was diced into 15 mm × 15 mm substrates,
whereupon Co-W films were deposited by DC magnetron sputtering in a confocal ultra-
high vacuum sputtering system (Kenosistec, Binasco, Italy). Co and W were simultaneously
sputtered from their respective targets (99.95%, Testbourne Ltd., Basingstoke, UK) for 600 s.
Films with different W contents were deposited by applying a power bias between 40 and
100 W on the W target while keeping the Co target fixed at 40 W. The base and working
pressures were 6.4 × 10−5 and 6.9 × 10−1 Pa, respectively, maintaining an Ar flux of
20 sccm into the sputtering chamber. Co-W film thickness was measured using a contact
profilometry instrument (KLA-Tencor, Milpitas, CA, USA).

2.2. Cu Electroplating

Cu was directly electroplated on Co-W/SiO2/Si substrates using an acidic electrolyte
of 0.05 M CuSO4·5H2O (99.995%, Sigma-Aldrich, St. Louis, MO, USA), 0.05 M H2SO4
(Honeywell/Fluka, Charlotte, NC, USA), 1 mM NaCl (Honeywell/Fluka, Charlotte, NC,
USA), and 300 ppm polyethylene glycol (PEG) 600 (Fluka Chemie GmbH, Buchs, Switzer-
land) in double-distilled water. Electrolyte acidity was measured with a FiveEasy™ F20
digital pH meter (Mettler Toledo, Greifensee, Switzerland). Galvanostatic direct current
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(DC) and pulsed current (PC) plating routines were employed using a Gamry potentio-
stat/galvanostat Interface 1000E (Gamry Instruments, Warminster, PA, USA) with a simple
two-electrode cell configuration, removing the need for the use of reference electrodes.
The plating was carried out at room temperature in a 200 cm3 poly(methyl methacrylate)
container without electrolyte stirring using a >99.9% pure Cu coil as the counter-electrode
(anode) fixed at a ≈15 mm distance from the substrate (cathode). Prior to each plating
routine, the substrates were pre-treated in a 1:20 H2SO4 solution for 60 s to remove possible
oxidation present on the Co-W film surface, followed by rinsing in double-distilled water
for another 60 s, both under ultrasonic agitation. The substrates were then dried by Ar
blowing and masked with a polymeric film, limiting the exposed area to a circle of 0.20 cm2.
After deposition, substrates were immediately removed from the electrolyte, rinsed in
double-distilled water, and dried with soft Ar blowing.

2.3. Structural and Chemical Characterisation of Substrate and Cu Films

The as-sputtered Co-W film surfaces were observed by scanning electron microscopy,
SEM (Thermo Fisher Scientific Quanta 400FEG ESEM, Thermo Fisher Scientific, Hillsboro,
OR, USA), and their composition was estimated by energy-dispersive X-ray spectroscopy,
EDS (EDAX Genesis X4M, AMETEK, Berwyn, PA, USA). The compositional analysis was
complemented by X-ray photoelectron spectroscopy, XPS (ESCALAB™ 250 Xi, Thermo
Fisher Scientific, Waltham, MA, USA), and the film structure was determined by grazing in-
cidence X-ray diffraction (GIXRD) at an angle of 1.5◦ using Cu Kα radiation (λ = 1.54060 Å)
and a step size of 0.02 ◦·s−1. The surfaces of the Cu/Co-W films were also observed by
SEM and optical microscopy (Leica DM4000 M, Leica Microsystems GmbH, Wetzlar, Ger-
many), where the substrate–film interface cross-section was prepared by focused ion-beam
milling (Thermo Fisher Scientific Helios 450S, Thermo Fisher Scientific, Waltham, MA,
USA). Surface roughness changes in response to the chemical pre-treatment were measured
by atomic force microscopy, AFM (Veeco Metrology Multimode, Veeco Instruments Inc.,
Oyster Bay, NY, USA), with a Bruker TESPA-V2 tip. Quantitative image analysis was
employed on SEM images using the ImageJ software version 1.51p, National Institutes of
Health, Bethesda, MD, USA.

3. Results and Discussion

The sputtering conditions required to produce Co-W thin films with the desired
chemical compositions were first investigated. As mentioned above, the power applied to
the Co target was fixed at 40 W, while the one applied to the W target varied between 40
and 100 W. Sputtered films with 25 nm in thickness (measured by contact profilometry)
display a uniform smooth surface (Figure 1a). Estimating the chemical composition of such
Co-W thin films using EDS at 15 keV requires special attention due to the large interaction
volume, in the range of micrometres, picking up a strong X-ray signal from the SiO2/Si
underneath. EDS spectra were obtained with a 15 keV electron beam to excite Co K and
W L spectral lines, which do not overlap with Si and O emission lines, and were used for
elemental semi-quantification after 200 s of acquisition time to improve the signal-to-noise
ratio. Higher Co/W atomic ratios were obtained as the power on the W target decreased
(Figure 1b), but due to the inherent limitations mentioned before, these values should be
considered more as a qualitative assessment. Co-W films near equimolar composition were
selected in this work for subsequent Cu electrodeposition. Su et al. [15] demonstrated
that equimolar Co-W films display the best plating behaviour while being effective as
a diffusion barrier. GIXRD confirms the amorphous structure of the film, allowing it to
adequately function as a diffusion barrier layer (Figure 1c).
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Figure 1. SEM image of Co-W thin film surface (a), Co/W atomic ratio as a function of W target power determined by EDS 
(b), and film grazing incidence X-ray diffractogram (c). 
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surface roughness (Sa) of a 500 nm × 500 nm area was determined to be 1.01 nm for the 
untreated surface, and 1.05 nm after pre-treatment, using the NanoScope software 6.13R1 
(Veeco Instruments Inc., Oyster Bay, NY, USA). Cu electrodeposition was conducted un-
der a strict procedure to reduce the contact time between the substrate and the electrolyte 
to the minimum necessary for deposition, and to ensure maximum reproducibility be-
tween plating events. A comparison of the results of different plating conditions was un-
dertaken using the central regions of the films. PC electrodeposition was employed as an 
alternative to DC for its added capability to not only control the applied current density, 
but also its on (ton) and off (toff) times. PC Cu films have been reported to display better 
electrical, thermal, and mechanical properties when compared to its DC counterparts [19–
21]. A comparison between PC and DC electrodeposition modes can also provide further 
insight into the Cu nucleation and growth on Co-W thin films. 
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Figure 2. AFM images of the surface of the Co-W film before (a) and after (b) the sulphuric acid 
pre-treatment. 

To isolate the effect of pulsed current density, jp, on Cu nucleation and growth, dep-
osition times were decreased from 208 to 26 s with an increase in jp from 5 to 40 mA∙cm−2, 
maintaining the total electrical charge supplied to the substrate unchanged. According to 
expression 1, 

Figure 1. SEM image of Co-W thin film surface (a), Co/W atomic ratio as a function of W target power determined by EDS
(b), and film grazing incidence X-ray diffractogram (c).

The effect of the sulphuric acid pre-treatment before electroplating was evaluated by
AFM in tapping mode. By comparison fo the images in Figure 2, it can be seen that the
pre-treatment etched the surface, leaving a slightly more sharpened profile. The average
surface roughness (Sa) of a 500 nm × 500 nm area was determined to be 1.01 nm for the
untreated surface, and 1.05 nm after pre-treatment, using the NanoScope software 6.13R1
(Veeco Instruments Inc., Oyster Bay, NY, USA). Cu electrodeposition was conducted under
a strict procedure to reduce the contact time between the substrate and the electrolyte to
the minimum necessary for deposition, and to ensure maximum reproducibility between
plating events. A comparison of the results of different plating conditions was undertaken
using the central regions of the films. PC electrodeposition was employed as an alternative
to DC for its added capability to not only control the applied current density, but also its on
(ton) and off (toff) times. PC Cu films have been reported to display better electrical, thermal,
and mechanical properties when compared to its DC counterparts [19–21]. A comparison
between PC and DC electrodeposition modes can also provide further insight into the Cu
nucleation and growth on Co-W thin films.
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Figure 2. AFM images of the surface of the Co-W film before (a) and after (b) the sulphuric acid pre-treatment.

To isolate the effect of pulsed current density, jp, on Cu nucleation and growth, deposi-
tion times were decreased from 208 to 26 s with an increase in jp from 5 to 40 mA·cm−2,
maintaining the total electrical charge supplied to the substrate unchanged. According to
expression (1),

Q = jpηt, (1)
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where Q is the total charge supplied in C, η the duty cycle given by Equation (2) and t the
total deposition time in s.

η =
ton

ton + to f f
. (2)

The Cu particles form on Co-W by instantaneous nucleation, whereby the nuclei
density is higher when jp rises to 20 mA·cm−2 (Figure 3). The number of active sites for
nucleation reaches saturation around this current density, since it does not increase for
higher jp. Nucleation seems to occur during the first pulses of current, followed by nuclei
growth, as soon as it becomes more energetically favourable, as indicated by the drop in
cathodic potentials seen in the chronopotentiometric curves obtained for each deposition
(Figure 4a). Only a relatively small number of nuclei grow, whereas the remaining preserve
what appears to be an embryonic-state, with sizes of less than 20 nm, resulting in a
bimodal particle size distribution. It is noteworthy that the number of growing particles
is approximately the same, regardless of jp. PC deposition is reported to promote a faster
growth of specific crystallographic orientations [22,23], which could in part explain the
preferential growth of a few nuclei, due to their more favourable orientation. However,
this does not explain why the number of growing particles at 20 mA·cm−2 is near the same
as the one observed at 5 mA·cm−2. Such an effect results in particles reaching a similar
average size and identical distribution profiles regardless of nuclei density (Figure 4b). This
indicates that higher current densities increase particle growth rates but fail to promote
better substrate coverage, which was confirmed by measuring the substrate area occupied
by Cu particles, ACu. The growth rate, gr, refers to the average velocity of 2D expansion of
the particles given by Equation (3), where ∆d is the increase in average particle size and ∆t
the time required for growth. Values of d represent particle diameter and were determined
from the 2D projected area, a, on the substrate according to Equation (4). A minimum of
200 coarse particles were measured per condition. Very small particles were not considered
in the calculation of d.

gr =
∆d
∆t

, (3)

d = 2
√

a
π

. (4)
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Figure 3. SEM images of Cu particles on Co-W substrate electrodeposited by PC at 5 (a), 20 (b) and 40 mA·cm−2 (c) for
periods of 208, 52, and 26 s, respectively (constant Q = 40 mC, ton = 50 ms, and toff = 500 ms).

Longer deposition times (at constant jp) promote further growth at lower rates
(Figure 5). Particles increase in volume through a preferential crystallographic growth
mechanism, leading to more polygonal/faceted shapes (Figure 5a–c). The embryonic-state
nuclei that did not grow after 52 s of deposition (Figure 5d), remained mostly unaltered
after 208 s, becoming undetectable in SEM imaging after 832 s (Figure 5e). These nuclei
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disappear either by direct dissolution into the electrolyte or by dissolution of the substrate
underneath them. The acidic nature of the electrolyte herein used (pH ≈ 1.8) can dissolve
Cu but is particularly aggressive to the Co-W substrate [15,24]. The nucleation and growth
mechanism for Cu and the effects of the substrate dissolution are illustrated in Figure 6.
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The incorporation of W in the Co film reduces the substrate dissolution rate but
does not prevent it. After 832 s of deposition, the SiO2 layer becomes visible in optical
microscopy, confirming the dissolution/recession of the Co-W substrate (Figure 7a). EDS
analysis reveals a decrease in the Co/W atomic ratio with increasing immersion times
(Figure 7b), indicating that substrate recession is mediated by a quicker dissolution of
Co. XPS analysis detects the presence of W and Co in both metallic and oxidised form,
before and after pre-treatment (Figure 8). The peaks at 781 and 797 eV correspond to Co2+,
whereas the peaks at 793 and 778 eV correspond to metallic Co; the peaks at 37.5 and
35.3 eV correspond to W6+, whereas 33.2 and 31.2 represent metallic W [25]. After acidic
pre-treatment, the relative intensity of Co peaks decreases, whereas W peaks increase,
confirming that exposure of the substrate to acidic solution dissolves Co quicker than W.

After 2 s of DC deposition, the nuclei density seems equivalent to that observed
in PC after 52 s, which comprises the same amount of transferred charge according to
Equation (1) (for DC, η = 1). The nuclei continue to increase in number and in size up
to 8 s (DC), contrasting with what happens in PC for equivalent Q, where the number
of nuclei and growing particles remain practically unchanged (Figure 9). The off time
between pulses in PC deposition enhances the preferential growth of a few nuclei, resulting
in a strong bimodal particle size (Figure 10). During toff, the current measured in the
instrument is negligible and the corresponding cathodic potential applied is in the order
of only a few mV. The dissolution rate is, thus, likely to be higher during toff than during
ton, which may be controlling nuclei density by the dissolution of the less attached Cu
particles or by dissolving the Co-W substrate directly underneath them. Another possible
explanation for a lower nuclei density in PC deposition is that the number of active sites
for nucleation decreases with the immersion time. It has been reported that the number
of electrodeposited Cu nuclei decreases with increasing W content in Co-W and Ru-W
substrates [15,26]. Accordingly, in this case, the selective dissolution of Co leads to substrate
enrichment in W, rendering it difficult to nucleate further as the immersion time increases.
In DC, there is no interval time and the total amount of charge is transferred continuously
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within only a few seconds. The average current density, J, which can be calculated dividing
Equation (1) by t, is much higher in DC, J = 20 mA·cm−2, than in PC, J = 0.77 mA·cm−2.
A similar J value was reported using a similar electrolyte in DC mode (1 mA·cm−2) [15],
resulting in incomplete substrate coverage, similar to Figure 5a, suggesting that higher
values of J are required to achieve better substrate coverage. Exposure time to the electrolyte
is also substantially shorter in DC than in PC for the same transferred charge, reducing the
extent of nuclei and substrate dissolution. Therefore, DC facilitates a denser nucleation and
weakens the development of preferential orientation, leading to a more uniform growth of
the nuclei (Figure 11). Longer DC deposition times of up to 32 s do not seem to increase the
nuclei density but result mainly in particle growth, especially in the direction perpendicular
to the substrate. Although substrate coverage improves, the method used for measuring
this coverage fails to give an accurate result in this particular case. Higher values of ACu
obtained after 32 s of DC deposition are largely due to the protuberant particles that grow
outwards and overlap the substrate, without effectively covering it. These substrate areas
left uncovered will eventually undergo complete dissolution, whereas further particle
growth will result in a discontinuous branched-like structure, mechanically inconsistent
and poorly adhered to the substrate, as can be seen after 900 s of deposition in Figure 11a.
Lowering the current density to 10 mA·cm−2 yields a similar result after 225 s of deposition.
Although handled with care, these films are easily torn apart after deposition during rinsing
and drying. The film consists of a discontinuous aggregate of Cu particles that detaches
from the substrate (Figure 11b).
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Figure 5. SEM images of Cu particles on Co-W substrate electrodeposited by PC at 20 mA·cm−2 for periods of 52 (a), 208
(b), and 832 s (c) (ton = 50 ms and toff = 500 ms). Higher magnifications of (a,c) in (d,e), respectively.
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A method that could quickly coat the substrate with Cu is required to isolate the
Co-W layer from the electrolyte and prevent its dissolution, which cannot be achieved
by simply increasing the current density, since hydrogen reduction at the solid–liquid
interface becomes a major problem, even with stirring. Although hydrogen bubbling
was not observed during the first few seconds of deposition even at current densities
higher than 5 mA·cm−2, for longer times small bubbles were seen forming at the border
of the substrate, reducing the overall deposition efficiency. Alternatively, a decrease in
substrate dissolution rate would likely allow a higher nucleation and a more uniform
particle growth, resulting in improved substrate coverage. Therefore, we prepared a
less aggressive version of the electrolyte by pouring a portion of the original electrolyte
(pH 1.8) in a beaker, progressively adding a few drops of concentrated NaOH solution
until pH 3.5 was reached. The addition of NaOH readily precipitates copper hydroxide
that dissolves by stirring the solution for approximately 30 min. The modified electrolyte
was used to electrodeposit Cu films with a DC density of 10 mA·cm−2 with very different
results. The outcome is a compact surface structure, covering the whole substrate area,
as depicted in Figure 12a. Cross-section imaging reveals a dense Cu film with thickness
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around 0.8–0.9 µm, with an average deposition rate of 3.5–4 nm/s and structural continuity
across the Cu/Co-W/SiO2/Si interfaces (Figure 12b). Using Equation (5), a theoretical
value of thickness, h, can be calculated, where M and ρ are the molecular mass and the
density of Cu, respectively; e is the charge of the electron; O is the oxidation state for
Cu ions; and N Avogadro’s number. The value of h obtained with 225 s of deposition at
10 mA·cm−2 is 0.84 µm, corresponding very closely to the measured Cu cross-sectional
thickness, indicating a deposition efficiency near 100%.

h =
JMt

ρeON
(5)
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Although the Co-W film thickness is not possible to resolve in SEM, the region between
SiO2 and Cu displays a continuous morphology, suggesting a good Cu film adhesion to
Co-W. Evidently, higher resolution imaging is required to fully characterise the Cu/Co-W
interface, supplemented by adhesion tests to evaluate its strength. Nevertheless, it is very
clear that an increase in electrolyte pH from 1.8 to 3.5 yields a remarkable improvement
in substrate coverage and film morphology. Substrate dissolution is likely to be much
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slower in pH 3.5, resulting in a slower decrease in the number of active sites for nucle-
ation due to W enrichment, allowing a higher nuclei density to be formed and a more
homogeneous particle growth. A prior study [24] demonstrated that a continuous Cu
film can be effectively deposited onto Co using a neutral pH electrolyte containing copper
sulphate and potassium sodium tartrate, where the dissolution of Co substrate is mitigated.
However, the authors used a carbon-based activation pre-treatment on the Co surface to
enhance deposition. In the present study, an increase in pH from 1.8 to 3.5 seems to be
sufficient to prevent significant substrate dissolution, allowing a complete coverage and a
sound interface. It is a much simpler and less disruptive approach from the current Cu
interconnect technology standpoint.
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4. Conclusions

Seedless Cu electroplating was performed on top of near equimolar Co-W thin films,
as candidates for diffusion barrier layers for advanced Cu interconnect metallisation, using
conventional copper sulphate acidic electrolytes of pH 1.8 and a modified version with
pH 3.5. The main conclusions derived from this study are:

• The two main factors affecting Co-W substrate coverage and Cu film morphology are
(1) the average current density and (2) the electrolyte aggressiveness to the substrate
(indirectly, substrate corrosion rate).

• An adequate balance between these two factors is key for achieving good substrate
coverage and Cu film compactness.

• Differences observed between pulsed- and direct-current modes are due to the fact
that effective nucleation density is higher in the latter, where substrate dissolution is
less extensive.

• The number of active sites for nucleation decreases over time as the substrate is exposed
to the electrolyte, dissolving Co quicker than W, rendering incomplete/discontinuous
substrate coverage with Cu.
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• A less aggressive/acidic electrolyte with pH 3.5 is successful in slowing down sub-
strate dissolution, yielding a dense direct-current electrodeposited Cu film displaying
interfacial continuity with the substrate.
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