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Abstract: To improve the bone regeneration ability of pure polymer, varieties of bioactive components
were incorporated to a biomolecular scaffold with different structures. In this study, polysilsesquiox-
ane (POSS), pearl powder and dexamethasone loaded porous carbon nanofibers (DEX@PCNFs) were
incorporated into polylactic (PLA) nanofibrous scaffold via electrospinning for the application of
bone tissue regeneration. The morphology observation showed that the nanofibers were well formed
through electrospinning process. The mineralization test of incubation in simulated body fluid (SBF)
revealed that POSS incorporated scaffold obtained faster hydroxyapatite depositing ability than
pristine PLA nanofibers. Importantly, benefitting from the bioactive components of pearl powder
like bone morphogenetic protein (BMP), bone mesenchymal stem cells (BMSCs) cultured on the
composite scaffold presented higher proliferation rate. In addition, by further incorporating with
DEX@PCNFs, the alkaline phosphatase (ALP) level and calcium deposition were a little higher based
on pearl powder. Consequently, the novel POSS, pearl powder and DEX@PCNFs multi-incorporated
PLA nanofibrous scaffold can provide better ability to enhance the biocompatibility and accelerate
osteogenic differentiation of BMSCs, which has potential applications in bone tissue regeneration.

Keywords: bone tissue engineering; nanofibrous scaffold; polysilsesquioxane; pearl powder;
dexamethasone; porous carbon nanofibers

1. Introduction

Bone tissue engineering has developed to be an essential method for therapy of bone
defects caused by mechanical injury, osteoporosis and other diseases [1–3]. As a wildly ap-
plied strategy to overcome limitations including availability and potential disease transmis-
sion from current treating methods of autogenous and allogenous bone grafting, synthetic
scaffolds with different components and structures are proposed to provide the necessary
support for cell proliferation and mechanical function [4–6]. The scaffolds made from
biocompatible and biodegradable materials, such as synthetic polymers of polylactic (PLA)
and natural silk fiber (SF), are getting more attention by researchers for the benefit of leav-
ing room to the new bone tissue [7–10]. As a versatile technique, electrospinning is used to
prepare nanofibers based on varieties of materials for the application of water treatment,
filtration, drug loading and catalysis. In addition, the structure of nanofibers is able to
mimic the extracellular matrix (ECM) to support cell adhesion and proliferation, which
has been widely considered to be excellent in tissue regeneration including bone, vascular,
skin and nerve conduit [11–15]. However, due to the weak bioactivity of single component
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of pure polymer, some bioactive additives are attempted to incorporate with the polymer
scaffolds to enhance the corresponding capacity of accelerating tissue regeneration.

Some growth factors will attend the regulation of bone formation process, such as
bone morphogenetic protein (BMP), transforming growth factor β (TGF-β) and insulin like
growth factor (IGF) [16–18]. Particularly, as a recombinant bone morphogenetic protein,
BMP-2 is introduced to scaffolds by surface functionalization or direct incorporation to
stimulate bone regeneration, whereas due to the problems that dissociative BMP-2 will
be degraded rapidly by proteinases in the body and high dosage will bring some adverse
effects including immunological reaction and abnormal bone formation, BMP-2 immobi-
lization onto the scaffold is a suitable method to improve the activity and utilization [19–22].
Pearl powders have been found to be natural composites of inorganic CaCO3 and organic
matters including BMP-2, which makes it show better bone regeneration activity than
hydroxyapatite (HA), the main inorganic component of natural bone [23–27]. In addition,
compared to the method of chemical modification, a BMP-2 immobilization structure
is naturally constructed without any other process, which can be directly used in bone
regeneration avoiding the concerns mentioned above.

To further enhance the capacity of bone regeneration, some drugs have been intro-
duced with growth factors to perform a combined therapy, for instance, dexamethasone
(DEX) is proven to be an osteogenic inducer to bone marrow stromal cells (BMSCs) [28–31].
Similarly, a high dosage of DEX will also bring some adverse effects and flow away
quickly with body fluid. Thus, a drug carrier has been applied for DEX loading and
controlled release [28,32–34].

Moreover, except for the stimulation of cell activity, calcium deposition is another
crucial property to new bone formation. Generally, pure polymer cannot quickly deposit
calcium unless incorporated with some additives, which can play a role as nucleus or
obtain special groups to catch calcium. Silica based bioceramics have been proven to
chemically combine with bone tissue and promote new bone healing and growth [35–37].
Polyhedral oligosilsesquioxane (POSS), a well-designed cage structural molecule with
various functional groups outside, is proposed as a great candidate to improve HA
crystal formation [38–40].

In this study, a multi incorporated composite PLA nanofibrous scaffold was prepared
with POSS, DEX and pearl powder by electrospinning, and the controlled release of DEX
was realized by dexamethasone loaded porous carbon nanofibers (DEX@PCNFs). The
effects of these components on mineralization, cytotoxicity and osteogenic differentiation of
BMSCs were investigated to evaluate the potential application in bone tissue engineering.

2. Materials and Methods
2.1. Fabrication of Polysilsesquioxane-Blended PLA Nanofibers

The polysilsesquioxane (POSS, AM0275, Hybrid Plastics, Inc., Hattiesburg, MS, USA)
incorporated polylactic (PLA, WM = 2 × 106, Guanghua Weiye Co., Ltd., Shenzhen, China)
nanofibers were fabricated by electrospinning as reported in our previous work [41].
Briefly, a hybrid solution (N,N-dimethylformamide (DMF), dichloromethane (DCM) and
hexafluoroisopropanol (HFIP), the volume ratio is 1:3:3) was used to dissolve PLA (10 wt%)
and POSS (weight ratio to PLA is 0 wt%, 2 wt%, 4 wt% and 6 wt%), and the solution
was fed into plastic syringe for electrospinning under conditions including voltage of
18 kV, extrusion rate of 0.9 mL/h and collecting distance of 18 cm between needle tip and
aluminum foil. The obtained samples were placed in 60 ◦C vacuum oven to completely
remove solvent. For pristine PLA, the nanofiber sample was marked as PLA-NF, and POSS
incorporated scaffolds were marked as PS-NF, for instance, PS2-NF mean the POSS is
2 wt% to PLA. Afterwards, all the samples were observed by scanning electron microscope
(SEM, JSM-5600 LV, JEOL, Tokyo, Japan) to analyze the influence of POSS amount on the
nanofiber morphology and determine the suitable sample for the following experiment.
In addition, the nanofibrous mets were cut into 4 cm × 1 cm to evaluate the mechanical
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properties by electronic universal testing machine (Instron 5969, Norwood, MA, USA) with
a cross-head speed of 5 mm/min.

2.2. Mineralization Test

To measure the HA deposition ability, the scaffolds were incubated in simulated
body fluid (SBF) prepared as the reference [42] for a certain period at 37 ◦C. During the
incubation period, SBF would be changed each day. Then, the samples were moved out,
washed with deionized water and dried in 60 ◦C vacuum oven for observation of surface
change and analysis of POSS influence on HA deposition.

2.3. Preparation of Dexamethasone Loaded Porous Carbon Nanofibers

Firstly, porous carbon nanofibers (PCNFs) were prepared from polyacrylonitrile (PAN)
and polymethylmethacrylate (PMMA) via electrospinning with the same procedures and
factors as Part 2.1, followed by pre-oxidation 280 ◦C for 2 h and carbonization under
800 ◦C for 2 h of PAN/PMMA blend nanofibers. Then, a mixed acid solution of H2SO4
and HNO3 (volume ratio is 3:1) was used to treat the surface of PCNFs under 70 ◦C to
make it hydrophilic and able to disperse in a water environment. For drug loading, 1 g
dexamethasone (DEX) and 1 g PCNFs were added in 10 mL deionized water; the solution
was ultrasonicated and kept stirring for 24 h under dark condition. Afterwards, the solution
was centrifuged, and the solid was washed with deionized water to obtain DEX@PCNFs.
The supernatant and washing solution were collected to determine the DEX loading amount
by using UV–VIS spectra at wavelength of 242 nm. Before calculating the loading efficacy
of DEX on PCNFs, a DEX standard curve of adsorption and concentration was studied.
Subsequently, DEX solutions before and after adsorption were scanned by UV–VIS to
obtain adsorption value, and corresponding concentrations were calculated according to
the standard curve. Finally, the mass change, loading amount was further calculated.

2.4. Fabrication of Multi-Incorporated Scaffold

Based on the fabrication of PS-NF in Part 2.1, pearl powder (average diameter of
100 nm, Guanghua Weiye Co., Ltd., Shenzhen, China) and DEX@PCNFs were further
added in the electrospinning to prepare multi-incorporated nanofibrous scaffold. To
guarantee the success of electrospinning process, the adding amount of DEX@PCNFs
was 1 wt% to PLA, and pearl powder was 5–15 wt%. Due to the amount of POSS and
DEX@PCNFs was determined, the as-prepared multi-incorporated scaffold was marked as
PSCP-NF according to the variation of pearl powder amount, for instance, PSCP5-NF mean
that pearl powder is 5 wt% to PLA. The morphology and distribution of pearl powder
and DEX@PCNFs were observed by SEM and transmission electron microscope (TEM,
JEM-2100, JEOL, Tokyo, Japan).

2.5. Cell Culture

Bone mesenchymal stem cells (BMSCs, Chinese Academy of Science, Shanghai, China)
of fourth to sixth generation were selected to complete all the in vitro experiments in
this work. The cells were cultured in normal complete medium of low glucose DMEM
containing 10% FBS and 1% penicillin/streptomycin at 37 ◦C and 5% CO2 for normal
proliferation cytotoxicity assay. When it came to the osteoconducting test, the normal
medium was supplemented with 10 mM β-glycerol phosphate and 50 µg/mL of L-ascorbic
acid. During all the culture period, the medium would be replaced every 3 days.

2.6. Cytotoxic Assay

The cytotoxicity of different samples was measured by MTT assay. Briefly, BMSCs were
seeded on the surface of sanitized samples in 24-well plate with 400 µL normal complete
medium at a density of 2 × 104 cells per well. After incubating for pre-determined time
point, the samples were washed with PBS and continued to be incubated with 360 µL fresh
low glucose DMEM and 40 µL MTT solution (5 mg/mL) per well for another 4 h. Then,
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the solution was removed, and 400 µL dimethylsulfoxide (DMSO) per well was added
for further 0.5 h incubation in a 37 ◦C shaker for 10 min under dark condition. A volume
of 100 µL of the supernatant per well was transferred to 96-well plate for the absorbance
measurement at wavelength of 570 nm with a microplate reader (Multiskan GO, Thermo
Fisher, Waltham, MA, USA). Every scaffold would set at least 3 parallel samples, and the
average and standard deviation (SD) of the absorbance data were analyzed.

For cell adhesion evaluation via confocal laser scanning microscopy (CLSM), BMSCs
were seeded on the scaffolds and cultured for 3 days, then washed with PBS and fixed
with 4% glutaraldehyde for 30 min at 4 ◦C. Afterwards, the cells were washed with PBS
and soaked in 0.1% Triton X-100 solution for 5 min. After washing with PBS again, the
cells were stained in turn with Alexa Flour@ 488 phalloidin solution (165 nM) and DAPI
solution (100 nM) to label cytoplasm and nucleus, respectively. Finally, the samples were
washed with PBS for CLSM observing.

2.7. Alkaline Phosphate Activity Test

The alkaline phosphate (ALP) activity of BMSCs was tested by corresponding assay
kit (Beyotime Institute of Biotechnology, Shanghai, China). Briefly, after incubating with
different samples in conducting medium at pre-determined time points, BMSCs were
lysed by cell lysis buffer, and 50 µL cell lysate was transferred into 96-well plate with
50 µL substrate solution for 30 min incubation at 37 ◦C, followed by adding 100 µL stop
solution to terminate the reaction for evaluating the absorbance at wavelength of 405 nm
via plate reader. In addition, another 10 µL cell lysate was used to measure the total protein
concentration by protein assay kit (Beyotime Institute of Biotechnology, Shanghai, China).

2.8. Alizarin Red S Staining

After incubating in conducting medium for pre-determined time point, BMSCs were
fixed with 4% glutaraldehyde for 30 min and washed with PBS. Deionized water was
further used to wash the samples to remove residual salt for the purpose of staining BMSCs
with 2% (w/v) alizarin red S (ARS) solution with adjusted pH value of 4.1–4.3 for 10 min
at room temperature. Then, ARS solution was removed, the sample was washed with
deionized water until there was no residual ARS to obtain the stained sample, which was
photographed with a camera.

2.9. Statistical Analysis

Statistical analysis was carried out through a one-way analysis of variance (one-way
ANOVA) and Scheffe’s post hoc test. The statistical significance for all tests were considered
at * p < 0.05 and ** p < 0.01 [43,44].

3. Results and Discussion
3.1. Fabrication and Characterization of PS-NF

To improve the mineralization ability of PLA nanofibrous scaffold, POSS was added
with different amount. The surface of as-prepared nanofibers was observed with SEM
and showed in Figure 1. As we can see, PLA-NF scaffold was well prepared with smooth
surface, the average diameter was calculated to be around 596 nm, and PS2-NF presented
similar morphology as PLA-NF with average diameter of about 568 nm, whereas with the
increase of POSS amount, the nanofiber diameter greatly decreased, and some adhesion
areas were generated among the fibers. In addition, the mechanical properties showed
that PLA-NF and PS2-NF had similar tensile strength, while that of scaffold with higher
POSS amount was much lower (Table 1), even though PS6-NF cannot be tested. These
results might contribute to the plasticizer effect of POSS decreasing the viscosity of polymer
solution [45], which decreases the diameter of nanofibers during electrospinning process.
The much lighter weight of single nanofiber also made the scaffold fluffier, which resulted
in the bigger porosity and lower mechanical property. Therefore, the POSS amount was
determined to be 2 wt% to PLA, which was used in the following experiments.
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Table 1. Mechanical properties of PLA NF with different POSS ratio.

PLA-NF PS2-NF PS4-NF PS6-NF

Tensile strength (MPa) 6.7 ± 0.3 6.1 ± 0.5 1.2 ± 0.5 -
Elongation at break (%) 86.8 ± 4.5 95.3 ± 6.2 41.8 ± 8.6 -

Mineralization property is an important aspect of the scaffold for the application
of bone regeneration field. In this study, HA depositing capacity of the scaffold was
investigated to reveal the effect of POSS incorporation. After incubating with SBF for
3 days, the morphology change of PLA-NF and PS2-NF was observed with SEM to find
deposited HA particles. As shown in Figure 2, no obvious change was found on PLA-NF,
the surface remained smooth, while some small particles were adhered on the surface of
PS2-NF, indicating that the incorporation of POSS could successfully capture Ca2+ from
SBF accelerate HA deposition [38].
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3.2. Preparation of DEX@PCNFs

PCNFs were applied as drug carriers in this study, which were prepared through
electrospinning of PAN and PMMA, followed by pre-oxidation and carbonization. As
reported in our previous work, due to the different physical and chemical behavior of these
two polymers during the preparing process, PAN would transform into carbon framework,
while PMMA would be decomposed into H2O and CO2 [46]. As shown in Figure 3, the
mesopores, which were beneficial to improve the drug loading amount, were well formed
on the surface and the axial channel of the inside. After blending with DEX solution, DEX
was successfully loaded in PCNFs to obtain a drug-loading system DEX@PCNFs, and the
loading amount was measured to be 53.4 mg/g through UV–VIS spectra.
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3.3. Fabrication and Characterization of PSCP-NF

Besides the applied POSS and DEX@PCNFs, pearl powder was also incorporated in
the nanofibrous scaffold. As shown in Figure 4, the SEM pictures of scaffold with pearl
powder concentration of 5 wt%, 10 wt% and 15 wt% to PLA, as well as 2 wt% POSS and
1 wt% DEX@PCNFs, illustrated that the pearl powder and PCNFs could be distributed on
the surface of the nanofibers without obvious influence on the nanofiber forming during the
electrospinning process. In addition, the TEM pictures of PSCP5-NF (Figure 5) showed that
pearl powder and PCNFs could also be wrapped inside the PLA nanofiber. Moreover, no
fiber breakages were found due to the blending of these additives, despite the morphology
of PLA-NF becoming a little rough to some degree. Benefitting the coverage of PLA
shell, the release rate of DEX would further slowdown based on the controlled release
from PCNFs, which would decrease the waste of DEX along with body fluid flowing and
prolonging the working period of DEX in the cells.
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3.4. Cytotoxicity of PSCP-NF

The investigation of the cytotoxicity of the as-prepared scaffold should be carried
out before the cell differentiation test. BMSCs were applied to this in vitro experiment
with MTT assay. The O.D. value of various scaffolds was presented in Figure 6a; it can be
found that all the composite scaffolds showed no obvious cytotoxicity on BMSCs when
comparing with pristine PLA-NF during the 2 weeks incubating period. In addition, the
proliferation rate was gradually raised with the increase of additive amount, especially in
long-time incubation. As expected, with the increase of the amount of pearl powder, the
scaffold showed an increasing tendency in proliferation rate. In addition, the morphology
of BMSCs was observed by CLSM and presented as Figure 6b; all cells on different scaffold
showed stretched morphology with pseudopodium along the nanofiber axial direction,
which suggested that the additives would not affect the adhering and cloning behavior.
The results indicated that multi-incorporated scaffold is much biocompatible and suitable
for the following experiments.
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3.5. ALP Activity Test

In this study, POSS was applied to accelerate HA deposition, which is the main inor-
ganic component of natural bone tissue and could raise osteoconduction ability to BMSCs.
DEX, a bioactive agent to improve the osteogenic differentiation activity of BMSCs, was
loaded on PCNFs to construct drug-controlled release system. Pearl powder in nanosize
was also used in bone tissue regeneration due to the bioactive component including BMP-2,
which is a peptide benefiting to enhance BMSCs differentiation. Based on the above ad-
vantages of these materials, the multi-incorporated scaffold was expected to obtain much
better osteoblastic differentiation activity comparing with pristine PLA. As a typical mark
of differentiation, ALP activity of BMSCs incubated with different scaffold was measured,
the upregulation of which is a key signal at the early period of bone regeneration. The
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results were showed in Figure 7a, all composite scaffolds obtained higher ALP activity than
pristine PLA, despite PLA being a great biocompatible polymer, while hardly being able to
present bioactivity to support cell differentiation, whereas the released DEX from PCNFs
and BMP-2 like bioactive components from pearl powder would well improve the ALP
activity of BMSCs after osteoconducting incubation for 2 weeks. Obviously, with the in-
crease of pearl powder amount in the scaffold, the ALP activity would also be upregulated.
Therefore, the multi-incorporated nanofibrous scaffold showed great ability to enhance
ALP activity of BMSCs.
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3.6. In Vitro Mineralization

BMSCs would synthesize calcium deposition as mineralized product during the
osteoconducting incubation period, which could be stained to red with ARS solution.
After 2 weeks of differentiation, the ARS-stained samples were observed under optical
microscopy and presented in Figure 7b, the calcium deposition was well formed on the
scaffolds. Due to the low osteoconductivity of PLA, the area of calcium deposition was not
very big. However, after incorporating with POSS, DEX@PCNFs and pearl powder, this
area was obviously bigger than PLA, which indicated that ability of calcium deposition
synthesis was remarkably improved. According to the above results, the multi-incorporated
scaffold could exert all the positive effect on the osteogenic differentiation of BMSCs.
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4. Conclusions

In summary, a multi-incorporated PLA nanofibrous scaffold with different functional
components was prepared through electrospinning for the application of bone tissue en-
gineering. The mineralization result showed the POSS in the scaffold could accelerate
HA deposition, which is beneficial to reconstruct bone tissue structure. Moreover, PCNFs
were prepared and used to load DEX to obtained drug delivery system of DEX@PCNFs,
which was co-incorporated with pearl powder to the scaffold. The in vitro experiment
demonstrated that the DEX and bioactive component from pearl powder would contribute
to the improving of biocompatibility, upregulating ALP activity and increasing calcium de-
position of BMSCs based on pure PLA. Therefore, the multi-incorporated PLA nanofibrous
scaffold obtained better osteogenic differentiation ability and showed bright potential for
bone tissue regeneration.
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