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Abstract: Over the past few decades, silicon-based solar cells have been used in the photovoltaic (PV)
industry because of the abundance of silicon material and the mature fabrication process. However,
as more electrical devices with wearable and portable functions are required, silicon-based PV solar
cells have been developed to create solar cells that are flexible, lightweight, and thin. Unlike flexible
PV systems (inorganic and organic), the drawbacks of silicon-based solar cells are that they are
difficult to fabricate as flexible solar cells. However, new technologies have emerged for flexible
solar cells with silicon. In this paper, we describe the basic energy-conversion mechanism from
light and introduce various silicon-based manufacturing technologies for flexible solar cells. In
addition, for high energy-conversion efficiency, we deal with various technologies (process, structure,
and materials).
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1. Introduction

Over the past decade, the global energy crisis, while subject to traditional problems
such as global warming, ozone depletion, carbon emissions from fossil fuels, and decreasing
availability of fossil energy (oil, gas, and coal), is facing new challenges [1–3]. For example,
newly developing countries require much more energy for their growth. Future technology,
such as the Internet of Things (IoT), will also require more energy. Therefore, renewable-
energy technology is essential to enable further energy production [4]. To date, many
non-renewable energies are produced in limited amounts in specific parts of the world
and take a long time to replenish, making energy more abundant for some nations than
others. In contrast, renewable energy sources are found anywhere on Earth, making them
more abundant depending on know-how and technology [5,6]. All nations are given an
amount of energy from sun, wind, plant, and geothermal sources for free. Among the
various types of renewable energy sources, photovoltaic (PV) technology using Sol. Energy
has been more developed than other sources. From the sun, approximately 1.7 × 1017 W
of Sol. Energy irradiates the Earth, which is more than 10,000 times the global energy
consumption [6,7].

Conventional PV cells are made from a silicon wafer that transforms sunlight directly
into electricity. These silicon-based solar cells use 150 to 200 µm crystalline silicon wafers,
which are often brittle and hard [8]. Therefore, niche flexible PV-cell applications have been
developed using diverse methods, such as low-temperature and solution processes with
thin-film materials deposited on flexible substrates. Despite being flexible, light, and thin,
they have a short lifetime, low energy-conversion efficiency, and a small active area, and
include harmful materials. Silicon-based PV cells can become bendable or flexible when
silicon wafers are sufficiently thin. Flexible PV cells with a silicon substrate can work much
better than other similar flexible materials [9,10].

Nanomaterials 2021, 11, 2944. https://doi.org/10.3390/nano11112944 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-7371-208X
https://orcid.org/0000-0002-9394-4240
https://doi.org/10.3390/nano11112944
https://doi.org/10.3390/nano11112944
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11112944
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11112944?type=check_update&version=3


Nanomaterials 2021, 11, 2944 2 of 27

In this study we consider a basic mechanism for the conversion from Sol. Energy
to power generation and the progress in PV development by using silicon materials. We
consider only flexible, lightweight, and thin PV devices using silicon-based elements.
Finally, we provided a summary of the prospective development and technology related to
flexible silicon-based solar cells.

2. Basic Theory for the Conversion from Sol. Energy to Power Generation
2.1. Basic Photoconversion Mechanism and Structure

In this section, we introduce a simple structure of a solar cell and discuss its operating
process under sunlight. Electron–hole pairs should be successfully separated and pre-
vented from recombining in order to achieve solar-energy conversion. Therefore, selecting
materials that are efficient in absorbing Sol. Energy (photons) can accelerate electrons to
high energies and transfer them to an external load through an electrical circuit is crucial.
A basic solar cell is designed with p-n junction semiconductor materials that convert the
energy of light into direct current (DC) electricity using the PV effect. The p-n junction
semiconductor consists of two types of semiconductor materials: a negative (n)-type mate-
rial and a positive (p)-type material, as shown in Figure 1a [11]. P- and N-type materials
are used for commercial silicon material; their polarity is created by doping the material
with phosphorus (P) or boron (B). As electrons and holes are diffused to the opposite
low-charge concentration of each material, the depleted region is naturally created around
the junction interface. The depletion layer is typically small, and the electric field E is
present inside the depleted region without electron–hole recombination. The electron–hole
pairs are generated inside the junction’s depleted region by photon energy from sunlight.
Assuming uniform illumination inside the depleted region, electricity generation from
sunlight involves four steps [11,12]:

1. Light absorption and generation of carriers. Photons originating from sunlight arrive
at the surface of the solar cell, which absorbs them. Many electron–hole pairs are
produced by the photon-absorption mechanism.

2. Carrier separation and collection of the light-generated carriers to generate a current.
The electrons are released into the negative layer, and the decomposed electrons flow
through the positive layer.

3. Generation of a voltage across the solar cell. The electrons overcome the boundary
energy at the n-type layer and flow through the negative electrode at the top of the
cell, which is connected to an external load. This provides a path for the positive
material layer; thus, electricity is generated. When the electric field is sufficiently
strong to cease further diffusion of holes and electrons, the depleted region reaches
equilibrium. Integrating the electric field across the depleted region determines what
is called the built-in voltage (also called electric field or voltage). Electrons and holes
diffuse into regions with lower concentrations of them.

4. Carrier collection and dissipation of power in the load. Electrons return to the cell
after exiting the external load and repeatedly move from the positive to the negative
side for continuous electricity generation.

Because of the built-in potential of p-n junctions, the minority carriers (electrons in
p-region move towards the n-region, holes in the n-region move toward the p-region) are
separated as shown in Figure 1a. These minority charge carriers are collected by metallic
contacts. The common unit cell of a single-junction silicon solar cell can produce an open-
circuit voltage (VOC) of approximately 0.6 volts. To increase voltage to be stably applied for
various electrical applications, solar cells are combined into a large panel with serial and
parallel connections of the unit cells, so that a great deal of electricity can be generated [12].

Figure 1b shows the loss mechanisms in standard PN-junction solar cells. The usual
mechanism is that absorption of a photon generates an electron–hole pair. In other words,
under illumination, photogeneration results from an interaction of an electron with a
photon; the electron is promoted into the conduction band, leaving behind a hole. However,
if the electron doesn’t absorb enough energy from light, it cannot be exited from the valence
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band (VB) to the conduction band (CB). Solar cells eventually cannot convert photons with
energy less than the energy band gap into electricity. Moreover, at least 50% of the incident
Sol. Energy would be lost. Other loss factors include non-absorption/reflection, junction
loss, contact loss, and recombination loss. Even though the same amount of light shines on
a solar cell, the energy-conversion efficiency of solar cells is considerably below what was
expected [13].
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2.2. Performance Evaluation of Solar Cells

The exciton has enough energy to move an electron to generate electricity when the
following processes occur: (1) light absorption and exciton formation; (2) exciton dissocia-
tion into free charge; (3) free-charge transport and collection; (4) free-charge recombination
into excitons, and (5) exciton annihilation. As mentioned above, the total power-conversion
efficiency (PCE) of a solar cell depends on process steps 1–4. Quantum efficiency (QE)
should be considered to understand the PV mechanisms in solar cells. QE is one of the
most important parameters used to evaluate the performance of solar cells. It depends on
the spectral response to reflect its wavelength dependence [11,14]. QE normally includes all
energy loss of the solar cell itself by the absorbance reflection and transmittance in incident
light. The QE of a solar cell could be evaluated by External Quantum Efficiency (EQE) or
Internal Quantum Efficiency (IQE). EQE is the ratio between the charge carriers collected
by the solar cell and the photons given energy on the solar cell by incident photons. In
other words, it means how the solar cell converts electrons to photons. The EQE focuses on
the number of carriers collected on a solar cell from solar-energy photons. EQE is called
the Incident photon-to-electron conversion efficiency (IPCE). The total value of EQE (ηext)
can be calculated using the following equation [14]:

η = ηabsorption × ηexciton × ηcollection

where ηabsorption is the light-absorption efficiency, ηexciton is the exciton-dissociation effi-
ciency (including exciton transport), and ηcollection is the charge-collection efficiency. If
spectral responsivity (SR) is introduced (SR: Ratio of the photocurrent generated by the
solar cell and the power incident):

EQE = (hc/qλ) × (SR)
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where h is Planck’s constant, c is the speed of light, q is the electronic charge, and λ is the
wavelength. IQE is called the quantum yield and can be calculated by the recombination
rate, that is, how many electrons and holes are recombined in the active layer of a solar cell.
IQE is higher than EQE because all irradiated light is not absorbed in the active layer and
all photogenerated electron–hole pairs are generated out of the solar cell [15]. After EQE of
a solar cell is measured, IQE can be calculated with EQE data combined with transmission
and reflection using the following equation:

IQE = (number of electrons)/(number of absorbed photons) = EQE/(1 − R)

where T is transmission and R is reflection. The parameters for performance of a solar
cell are evaluated by short-circuit current, open-circuit voltage, fill factor, and conversion
efficiency [15].

(a) Short-Circuit Current (ISC)

Short-circuit current (or short-circuit photocurrent) is the current that flows through
a solar cell when the voltage applied across the solar cell is close to zero. In other words,
when a solar cell is short circuited, the current is that flowing through the solar cell, and
its value is negative. In a solar cell, maximum short-circuit current depends on various
factors; these are device area, light intensity, spectral distribution of incident light, and
absorption/reflection on the surface of the solar cell. To get a high short-circuit current
(ISC), the number of electrons and holes that shift to each electrode should increase without
photogenerated electron and hole recombination and be prohibited from reflecting on the
surface of the solar cell [15,16].

Solar cells with p-n junctions, such as a diode, have non-linear current–voltage (I-V)
characteristics. The I-V curve of a solar cell is the superposition of the I-V curve of the
solar-cell diode in the dark with the light-generated current IL. The light shifts the I-V
curve down into the fourth quadrant, where power can be extracted from the diode. The
equation for the I-V curve in the first quadrant is [17]:

Idark = I0

[
e

qV
KT − 1

]
I = ISC − Idark = ISC − I0

[
e

qV
KT − 1

]
where is I is total current, ID is diffusion current, IL is light-generated current, I0 is a constant,
q is electronic charge, K is Boltzmann’s constant, and T is absolute temperature (◦K).

JSC = qG
(

Ln + Lp
)

where q is the elementary charge, G is the generation rate, and Ln and Lp are the electron
and hole diffusion lengths, respectively. If the diffusion length of the charge carrier is
smaller than the thickness of the cell, the short-circuit current would decrease.

To remove the influence of the solar-cell area, the short-circuit current density (JSC,
mA/cm2) is used; it is measured from the standard 100 mW/cm2 of the solar spectrum
(AM1.5). Short-circuit current (ISC) is the maximum current and is calculated as follows [17]:

ISC =
∫ ∞

0
JSC(λ)dλ ∼=

∫ λ0

0.3µm
JSC(λ)dλ

where λ is wavelength from incident light. Typical silicon-based solar cells under an AM1.5
spectrum have a maximum current density of 46 mA/cm2.

(b) Fill Factor (FF)

FF represents how easily the device produces the carriers that are photogenerated
by light absorbed inside the solar cell. The theoretical value of FF is 100%, close to the
rectangular shape shown in the graph of the I-V curve. Unfortunately, FF cannot reach
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100%. Even in the reported solar cells, it is limited to a maximum FF of 90%. Typical
FF values are distributed in the range of 0.7 to 0.8. There are several factors that can
significantly influence FF, and these factors interact with each other very intricately. As
light power incident on the device, FF is expressed by [16,17]:

Fill Factor =
Pm

ISC
=

ImVm

ISCVOC

where Im is the maximum power current and Vm is the maximum power voltage on the
external load.

Figure 2 shows the equivalent electrical circuit of a solar cell. Conventional solar cells
consist of a current source (the light-generated current) and a diode with a dark saturation
current. No series resistance and no shunt resistance are present. If RS (series resistance)
and RSH (shunt resistance resistance) have no effect on the performance of the device, the
fill factor can be redefined as:

Ideal Fill Factor (FF0) =
VOC − ln(vOC + 0.72)

vOC + 1

Moreover, FF can be defined amount by which Jm and Vm rectangle is filled as the
relationship between dark and light current in typical current–voltage (I-V) characteristics
for dark and light current in a solar cell, illustrating the important parameters for devices
as shown in Figure 3.
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We introduce the result only in the form of an FF-vOC curve in Figure 4, where vOC is
the dimensionless voltage vOC = qVOC/kBT. FF is increasing as vOC.

In practical solar cells, parasite resistances are unavoidable factors. Therefore, the
series resistance and shunt resistance are introduced into the equivalent model to account
for these energy losses (Figure 3). Usually, series resistance is derived from the bulk
resistances of the active layer and electrodes, and the contact resistances between the active
layer and electrodes. The shunt resistance originates from the current leakage induced by
the pinhole in the cell, or the current leakage from the edge of the device.
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(c) Power-Conversion Efficiency (PCE)

PCE is an essential characteristic that determines the energy-conversion efficiency of
a solar cell. The efficiency is defined as the ratio of energy output from the solar cell to
input energy from the Sun. The efficiency (η) measured at standard dark and illumination
conditions (AM 1.5: 100 mW/cm2 at 25 ◦C) show the parameter of electricity generation to
compare the performance of solar cells:

η =
Pout

Pin
=

ISC × VOC × FF
Pin × A

3. Technology for Improving the Power-Conversion Efficiencies

Traditionally, silicon-based solar cells are limited to approximately a 29% power-
conversion efficiency. Sunlight has many kinds of wavelength (ultraviolet, infrared, visible,
etc.). Even though all light could be to be changed to more useful energy such as electricity,
a silicon-based solar cell absorbs only light of 400~1000 nm because of the 1.11 eV energy
band of silicon. Other light, that is, short wavelengths (under 500 nm) or long wavelengths
(above 1000 nm), cannot be absorbed and is thrown away. Therefore, we should focus on
how much light is used.

First, efficient capture of light is essential for improving the efficiency of solar cells.
As mentioned above, because only part of the light can be used, it is important for the
solar cell to be designed to minimize optical losses itself. For improving light absorption
in solar cells, technologies such as anti-reflective coating and dielectric and light-trapping
coating have been introduced, as shown in Figure 5. In Figure 5a–g, the light-trapping
layers were built on the device via dry etching with a pattern of the PR (photoresist)
as the designed mask on the silicon substrate and molding with polydimethysiloxane
(PDMS) for a lens array, pillar array, and lens array with rough surfaces. Actually, this
technique was applied for improving the efficiencies of Dye Sensitized Solar Cells (DSSC),
and their energy-conversion efficiencies increased to 70% over that of the cell without light-
trapping layers. Figure 5h–k shows the result of non-resonant all-dielectric coatings for
increasing the photovoltaic absorption. P. M. Voroshilov et al. prepared three different all-
dielectric structures (a flat anti-reflecting coating, an array of densely packed polystyrene
nanospheres, and an array of nanovoids, both cylindrical and tapered shapes, in the PMMA
layer) on the amorphous silicon-based solar cell. Among them, the highest light-trapping
property was shown by the nanovoids (Light-trapping efficiency, LTE: Tapered voids 2.57,
cylindrical voids 5.04, spheres 2.54, ARC 1.31).

Second, in terms of effective carrier generation, photogenerated carriers (electron–
hole) are easily separated in the internal electric field, and carriers should be diffused at
short times in solar cells. For the effective electron–hole pairs to generate and separate as
induced by photogeneration, the valence band (VB) and the conduction band (CB) of the
semiconductor materials that consist of p type and n type are important factors. These are
calculated using the following equations:

EVB = χ − EC + 0.5
(
Eg
)

ECB = EVB − Eg

where EVB and ECB are the valence (VB) and conduction (CB) band edge potentials, respec-
tively; χ is the electronegativity value, which is the geometric mean of the electronegativities
of the constituent atoms (the electronegativity of an atom is the arithmetic mean of the
atomic electron affinity and the first ionization energy); EC is the energy of free electrons
on the hydrogen scale (~4.5 eV), and Eg is the bandgap energy of the semiconductor. For
tuning the bandgap, impurity atoms used as dopants, such as boron (B), phosphorus (P),
and arsenic (As), occupy substitutional positions where the dopant atoms can contribute
free electrons or holes to the silicon lattice of pure silicon.
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following cases. Reprinted from ref. [19].

If the carriers recombine, then the electron-hole (e–h) pair is lost, no photocurrent
can flow in the device, and power is not generated. The recombination of photogenerated
e–h pairs could occur at the surfaces of cells and at the back counter electrode of solar
cells because of the inherent defect and trap level in the bandgap. To reduce losses by
recombination, a passivating contact layer is required between the silicon wafer and the
metal terminals contacted with the external load.

Commercial silicon-based solar-cell manufacturing goes through many processes,
such as front-surface texturing, phosphorus diffusion (p-n junction), passivation film
deposition, anti-reflective layer coating, electrode patterning (screen printing), and metal
contact. Figure 6a–c shows various kinds of solar cells with an inserted passivation layer.
The front-side texture is an essential layer, because a solar cell with an untreated surface
reflects over 40% of the light because of the smooth surface. The addition of the passivation
layer in the solar cell helps prevent recombination, could reduce the defect, and thus
increases the device voltage. The hybrid metal–insulator–semiconductor (MIS) cell (see
Figure 6a) is a representative crystalline silicon solar cell (c-Si solar cell) with passivating
contacts. The tunnel-oxide passivating contact (TOPCon) solar cell (Figure 6b) has a
structure that features a front-side boron (B+)-diffused selective emitter for the hole contact
and a rear phosphorus-doped poly crystalline silicon (p-Si) electron contact. A dopant-free
asymmetric heterocontact (DASH) solar cell is applied for the dopant-free metal oxide and
fluoride electron and hole transport layers to replace the doped silicon layers.

For the insertion of passivating thin films, candidate materials for passivating contacts
were introduced (Figure 6d). Metal oxides (aluminum oxide (Al2O3), silicon oxide (SiOx),
silicon nitrite (SiNx), and hydrogenated amorphous silicon (a-Si:H), etc.) have been de-
posited via a vacuum deposition method, such as by magnetron sputtering. Recently, solar
cells with a dopant-free concept have been emerging because of their simpler preparation
and low temperature.

The traditional solar cell with a p-n junction has been replaced by a solar cell with
a dopant-free heterojunction, which depends on the work functions of materials that do
not require additional doping. The most-studied dopant-free materials are based on metal
oxides, as shown in Figure 6. The inserted passivation layer has also been playing an
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increasingly important role in anti-recombination activity. Therefore, it is very important
to select materials for optimal design of devices to improve the photovoltaic performance.
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Next, we explain the role of the resistance in a solar cell. The resistance of a device
consists of two kinds: series resistance (RS) and parallel (shunt) resistance (RSH), as shown
in Figure 2. The resistance of materials has a direct effect on the efficiencies of the device
and a decrease in their value leads to a loss of the solar cell itself. For an ideal solar cell,
RS is 0 ohm and RSH is close to infinity. As the shunt resistance of a solar cell increases,
the active area (power generation) shrinks, and the point of maximum VOC and ISC is
approaching zero from the ideal slope of the I-V curve, as shown in Figure 3, including
the degradation of the fill factor. Series resistance is the resistance of materials between
two electrical contacts (terminals), as in Figure 2a, in addition to the contact resistances of
the front and back electrodes that connect the load. All electrode materials have their own
resistance. The opaque metal materials used are Al, Au, Pt, Cu, and Ag (<10−5 ohm-cm),
and transparent electrode materials (transparent conducting oxides) include tin-doped
indium oxide (ITO, <10−4 ohm-cm) and fluorine-doped tin oxide (FTO, <10−4 ohm-cm).
ITO have been used as material for transparent electrodes with more than 90% optical
transmittance in the visible range. However, compared to FTO, ITO is more sensitive
to heating; its own resistance increases as temperature on the device increases. High
temperatures cause higher resistance and contribute to efficiency losses in the solar cell.
Moreover, a transparent electrode is related to the active layer of the solar cell. The larger
the area, the better, but it shows the problem of increasing the own resistance at that time.
The selection of its quality is important for improving the power-conversion efficiencies.

4. Technology of Ultrathin Silicon for Flexible Solar Cells

Silicon wafers are divided into crystalline (mono- and poly-) and amorphous silicon.
Conventional manufacturing processes for solar cells have employed thick Si wafers of
100–500 µm. Because of the hardness and brittleness of normal silicon wafers, such silicon-
based solar cells are incompatible with flexible devices for bending and being lightweight.
Recently, an ultrathin silicon wafer has been developed. Its thickness was dramatically
shrunk for flexibility suitable for covering and bending the surface [21,22].
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The greatest advantage of an ultrathin substrate is that it can be applied to a fully
bendable surface. As shown in Figure 7a,b, the Si film is 3 µm thick and can be wrapped
around a plastic rod (diameter 7 mm). In addition, the films can be unfolded and folded to
a radius of around 1 mm. Films are easily cut with normal scissors along the crystalline
directions (Figure 7c). For thinning a film, mechanical polishing is used, as shown in
Figure 7d. M. Xue et al. [23] successfully reduced a bulk Si wafer (~500 µm) to a thickness
of 2.7 µm via grinding with aluminum oxide grit (particle size, 9 µm) and polishing with
colloidal silica. A flexible ultrathin crystalline silicon solar cell has a total sample thickness
of 8 µm and efficiency above 12.0%, as shown in Figure 7e,f [24].

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 28 
 

 

transparent electrode materials (transparent conducting oxides) include tin-doped in-
dium oxide (ITO, <10−4 ohm-cm) and fluorine-doped tin oxide (FTO, <10−4 ohm-cm). ITO 
have been used as material for transparent electrodes with more than 90% optical trans-
mittance in the visible range. However, compared to FTO, ITO is more sensitive to heat-
ing; its own resistance increases as temperature on the device increases. High tempera-
tures cause higher resistance and contribute to efficiency losses in the solar cell. Moreover, 
a transparent electrode is related to the active layer of the solar cell. The larger the area, 
the better, but it shows the problem of increasing the own resistance at that time. The 
selection of its quality is important for improving the power-conversion efficiencies. 

4. Technology of Ultrathin Silicon for Flexible Solar Cells 
Silicon wafers are divided into crystalline (mono- and poly-) and amorphous silicon. 

Conventional manufacturing processes for solar cells have employed thick Si wafers of 
100–500 μm. Because of the hardness and brittleness of normal silicon wafers, such silicon-
based solar cells are incompatible with flexible devices for bending and being lightweight. 
Recently, an ultrathin silicon wafer has been developed. Its thickness was dramatically 
shrunk for flexibility suitable for covering and bending the surface [21,22]. 

The greatest advantage of an ultrathin substrate is that it can be applied to a fully 
bendable surface. As shown in Figure 7a,b, the Si film is 3 μm thick and can be wrapped 
around a plastic rod (diameter 7 mm). In addition, the films can be unfolded and folded 
to a radius of around 1 mm. Films are easily cut with normal scissors along the crystalline 
directions (Figure 7c). For thinning a film, mechanical polishing is used, as shown in Fig-
ure 7d. M. Xue et al. [23] successfully reduced a bulk Si wafer (~500 μm) to a thickness of 
2.7 μm via grinding with aluminum oxide grit (particle size, 9 μm) and polishing with 
colloidal silica. A flexible ultrathin crystalline silicon solar cell has a total sample thickness 
of 8 μm and efficiency above 12.0%, as shown in Figure 7e,f [24]. 

 
Figure 7. (a,b) Ultrathin silicon films (~3 μm) that are flexible and bendable; (c) photo images when cutting the silicon 
films. Reprinted with permission from ref. [24]. Copyright 2013 American Chemical Society; (d) sample fabrication process 
to release the ultrathin crystalline silicon (c-Si) cell from the substrate; (e) photos of the free-standing c-Si cell (total sample 
thickness, 8 μm; cell thickness, 2.7 μm); (f) photo of the free-standing c-Si cell attached to a quartz wafer for testing in a 
solar simulator. Reprinted with permission from ref. [23]. Copyright 2020 Elsevier; (g) photos of an ultrathin c-Si substrate 
(thickness ~20 μm); (h) absorption spectra (left y axis) of ultrathin c-Si with and without a silicon nitrite (SiNx; thickness, 
~70 nm) layer and the absorption depth (right y axis) of the c-Si substrate; (i) schematic of a thin c-Si solar cell and (j) 
current density–voltage (J-V) characteristics of thin c-Si solar cells with and without RIP-PDMS films. Reprinted with 
permission from ref. [22]. Copyright 2020 Elsevier. 

5. Cell Manufacturing from Materials 

Figure 7. (a,b) Ultrathin silicon films (~3 µm) that are flexible and bendable; (c) photo images when cutting the silicon films.
Reprinted with permission from ref. [24]. Copyright 2013 American Chemical Society; (d) sample fabrication process to
release the ultrathin crystalline silicon (c-Si) cell from the substrate; (e) photos of the free-standing c-Si cell (total sample
thickness, 8 µm; cell thickness, 2.7 µm); (f) photo of the free-standing c-Si cell attached to a quartz wafer for testing in a
solar simulator. Reprinted with permission from ref. [23]. Copyright 2020 Elsevier; (g) photos of an ultrathin c-Si substrate
(thickness ~20 µm); (h) absorption spectra (left y axis) of ultrathin c-Si with and without a silicon nitrite (SiNx; thickness,
~70 nm) layer and the absorption depth (right y axis) of the c-Si substrate; (i) schematic of a thin c-Si solar cell and (j) current
density–voltage (J-V) characteristics of thin c-Si solar cells with and without RIP-PDMS films. Reprinted with permission
from ref. [22]. Copyright 2020 Elsevier.

5. Cell Manufacturing from Materials
5.1. Device Manufacturing Methods

(a) Roll-to-Roll Printing

Flexible PV devices cannot be manufactured using general PV device processes that
involve high-vacuum film deposition and high temperatures. Therefore, new manufac-
turing methods are required. In many reports about flexible PV devices, roll-to-roll (R2R)
processing has been highlighted as the latest high-throughput, large-scale production
technology [25]. R2R processing is associated with printing techniques. Figure 8 shows
four representative printing methods.

First, gravure printing is widely used for printing magazines and high-volume print
runs, such as catalogs. Successful gravure printing depends on the uniformity of the ink
transferred to the patterned substrate. A gravure printing machine consists of two heavy
cylinders, a doctor blade, and an ink supply. The substrate is fed between the top and
bottom cylinders and is printed with the desired pattern. Then, the doctor blade removes
excess ink. The technique was developed and used for photographs and newspapers in the
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past, and its potential has been reported in a few journals about solar-cell production [26,27].
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However, flexographic printing is considered to be faster and simpler than gravure
printing [26]. Flexographic printing involves directly printing rubber or plastic materials,
such as plastic polyvinylidene fluoride or polyvinylidene difluoride (PVDF). Flexographic
printing has been used for printing transparent electrodes and active layers of organic solar
cells. However, the quality of the finished product is poor, despite its advantages, owing to
the low pressure used to apply the ink.

Screen printing is the most popular printing technique and has been used for more
than 100 years in the design of fabrics, paper, and ceramics. The technique involves a
mesh stretched over a modified frame and uses a squeegee to manually transfer ink onto
the overlapped substrate. Screen printing enables the quick formation of a layer on the
substrate, which is a very low-cost process.

Rotary screen printing employs an automatic roller, rather than the manual squeegee
used in conventional screen printing, which can quickly print a larger area with a more
uniform layer than that from manual screen printing [27].

(b) Sputtering

Among the film-deposition techniques, sputtering is the best option for the preparation
of large-scale high-quality films. Sputtering requires a vacuum chamber to maintain a very
low pressure (<30 mTorr) working gas (argon, oxygen, nitrogen, etc.) that affects the target.
The gas inside the discharged plasma bombards the target and sputters off the materials
that are deposited on the substrate. However, when sputtering is applied, high-energy
particles, such as Ar, negative ions, and secondary ions with high kinetic energy, directly
bombard the substrate and film material. Consequently, films prepared by sputtering have
defects in the crystal structure, have low density, and suffer from the disorder in an ion
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bombardment crystal caused by internal stress. Moreover, the temperature of the substrate
increases to over 100 ◦C, which is unsuitable for polymer substrates [28].

Recently, facing target sputtering (FTS) has been introduced to address problems
encountered by conventional sputtering. During film deposition in the sputtering system,
high-density plasmas are induced by the working gas, and electrons, as well as secondary
and charged ions, undergo a round-trip helical motion between the two cathodes. The
substrate is placed above the two targets that are outside the plasma stream, as shown in
Figure 9. Thus, FTS allows film deposition in a low-temperature atmosphere. Kim et al. [29]
investigated the substrate temperature during film sputtering. The temperature was
increased to 80 ◦C after sputtering for 1 h in the FTS system. FTS can control plasma
confinement by controlling the cathode installed inside the magnetic-field arrangement of
the system to ensure that the quality of the film can be improved under a lower-temperature
environment. Jeong et al. [30] reported that Al-doped ZnO (AZO) films with a sheet
resistance of 39 ohm/sq (film thickness ~330 nm) and average transmittance of 84.86%
were deposited on a polyethylene terephthalate (PET) substrate using FTS.
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(c) Spin Coating

Spin-coating techniques are the most appropriate film preparation methods for flexible
PV devices. Normally, spin coating is performed at room temperature. Materials (typically
liquids) are dropped onto the center of a rotating substrate driven by a mechanical vacuum
motor. The film thickness is defined by the rotational speed, acceleration, spinning time,
and drying conditions. The most important condition for defining the film thickness is the
number of coats applied, whereas the film properties depend on the drying temperature
after the spin process [31]. Im et al. [32] reported the effects of spin coating on PSCs.
After the TiO2 layer was applied to a fluorine-doped tin oxide (FTO) substrate, PbI2 and
CH3NH3I were deposited on the compact and mesoporous TiO2/FTO substrate using
either a one- or a two-step method (Figure 10). Unlike that produced using the one-step
method, a CH3NH3PbI3 film prepared using the two-step method was formed without
defects or voids. In addition, the PCE increased from 7.5 to 13.9% for the two-step-deposited
cells compared to that of the one-step cells.
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(d) Spray Coating

Spray-coating technology has recently attracted attention as a large film-deposition
method, rather than spin coating, which is the best option for film preparation in high-
performance organic PV solar cells, such as perovskite solar cells (PSCs). However, in terms
of scalable deposition, spin coating cannot cover large thin films on the substrate to the
industrial scaling level. Spray coating has been used to grow thin films at low temperatures.
It has many advantages, such as a relatively simple, low-cost deposition technique, R2R,
and film covering on a large-area substrate. Moreover, it is a high-speed film deposition
process because it can dry quickly [33,34].

As shown in Figure 11, a conventional spray-coating system consists of a hopper that
supplies solutions, a nozzle (driven by high-pressure air or nitrogen or ultrasonically), and
a solution supply tank. After the solution in the supply tank passes through the stream
nozzle, it breaks down into ultrafine droplets, and a continuous flow can be dispensed
directly onto the substrate. After covering the substrate with the dispensed droplets, the
solvents were dried by heating to form a film. The film thickness can be controlled based
on the solution conditions, status of the substrate surface (hydrophilic or hydrophobic),
nozzle viscosity (solution flow rate), working distance between the hopper and substrate,
and spray-gun moving speed.
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Bishop et al. [36] reported the successful preparation of PSC devices on a 25 mm × 75 mm
FTO substrate using spray coating. The active area of the PSCs was 1.5 cm2, as shown in
Figure 12, and the efficiency reached a peak of 10.2%.
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(e) Other Film-Coating Methods (Dip/Blade/Slot-die)

In addition, dip coating, blade coating, and slot-die coating have been used to fabricate
solar cells (see Figure 13). Coating is a very simple, quick, and low-cost process for growing
films in a solution. After the coating material was dissolved in the solvent, the substrate
was placed inside the solution, where it remained for a specific time and then was removed.
Once the solvent is dried by annealing, a film is formed on the substrate. Further, the
film thickness can be controlled by changing the dipping speed, time, and temperature, as
shown in Figure 14 [37].

Adan et al. [37] reported that all layers were deposited on FTO glass substrates using
dip coating. After being coated for 600 s in the MAI solution, the MAPbI3 perovskite film
was successfully formed on a large substrate (30 cm × 26 cm) with a PCE of 12.41% as
shown in Figure 14. The blade (doctor blade or knife) coating is the most famous meniscus
fabrication technique for large-area and low-cost film deposition [39]. Blade coatings have
been used in organic material-based solar-cell devices such as PSCs. Blade coating was
developed for screen printing and enables the designated patterns to be prepared while
moving across the silkscreen on the substrate as shown in Figure 13b. Normal coating
solutions can be used as the liquid type, which includes solvents or water. The substrate
could be selected from a glass substrate to a conventional polymer, such as polyvinyl
chloride (PVC), polyethylene terephthalate (PET), polytetrafluoroethylene, polyurethane,
or other elastomers. For example, Grätzel et al. [40] reported that a modified TiO2 paste
was prepared and used as an active layer in dye-synthesized solar cells (DSSCs) using
blade coating. The blade has been used for compact TiO2 layers and mesoporous TiO2 in
DSSCs. Once TiO2 powder is made into a fine powder with nanosized particles, the powder
is mixed with a solvent, such as isopropyl alcohol, until it becomes thick. Then, a large
amount of paste is obtained from the substrate and is pushed toward the designated area by
pressing the blade with a small force, as shown in Figure 14b. After the film was uniformly
spread on the substrate, the samples were dried until the solution was completely removed
by heat annealing.
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Slot-die coating is another film-coating technique for large-area deposition, wherein a
coating solution is delivered onto the substrate by positioning a narrow gap between the
slot and the surface of the substrate [38,39]. Compared to other traditional solution-coating
methods, a major advantage is the uniform and very thin film across large areas of the
substrate. As shown in Figure 13c, the slot-die coating system has a slot-die head, including
a coating solution that is supplied from the solution container. The film thickness can be
controlled by the flow rate of the solution and the slot-die head traveling time onto the
substrate. If the slot-die head is not moving, then the film thickness can be controlled by
the rotating speed of the coated substrate [39,41].

5.2. PV Module Manufacturing: From Cells to Modules

From raw materials, the crystal-silicon wafer is fabricated by polishing and slicing
Ingots grown using the Czochralski (CZ) method. Solar unit cells are fabricated on poly-
/single-crystalline or mono silicon wafers [42]. Theoretically, a solar cell with silicon has at
least 28% efficiency in terms of the unit cell. Commercial silicon-based PV devices have
low voltage (0.6–0.7 V) and high current (~9 A). The total voltage increases as each cell
is connected in series; for parallel combinations, the current increases without changing
the voltage. As shown in Figure 15, PV modules consist of series- and parallel-connected
solar cells (48–72 cells) [42]. After the modules are assembled with unit cells, the total
efficiency decreases because of the problem of interconnecting to each module, including
poor connection and failure. In addition, over 40% of solar modules failed to generate
electricity because of interconnection breakage between individual solar cells [43].

Individual cell connection is performed after the discrete or monolithic processes are
carried out. After the conversion materials are coated onto the conductive film, solar cells
are divided into unit cells, and each cell is connected with a metal wire. In the monolithic
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process, a pathway is created by laser scribing and not cutting. In this process, all layers
form on the same substrate [44,45].
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The classic interconnections are monolithic, made by laser scribing for PV module
arrays. Silicon-based solar cells are suitable for the design of monolithic modules. In
particular, monolithically interconnected individual cells can be large-scale, light, and
highly reliable without metal welding [46].

PV modules with monolithic series connections are fabricated using three scribe steps,
namely, P1, P2, and P3, via laser scribing, as shown in Figure 16. The laser scribing is
sequentially lined next to each line.
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The first scribe (P1) divides the conductive coating on the substrate into isolated stripes.
After P1 scribing, all layers, including transparent conductive oxides (TCO), absorbance
layer, and the back metal conductive layer, are independently formed on the substrate.
The second scribe (P2) goes from the top to the metal conductive layer. After P2 scribing,
the interconnecting path is provided, and each cell is connected to the bottom electrode
(metal back contact). Finally, the third scribe (P3) cuts the top electrode (TCO) to isolate the
cells and complete the fabrication into a series-interconnected structure. This three-scribe
patterning process is repeated until the PV modules are completed (Figure 16). Further,
unit cells have an active area and dead area in the PV module, as shown in the six steps in
Figure 16. The area of P1–P3 is the non-generated section (or dead area), which often leads
to energy loss in the modules. Photogeneration is performed only in the active area for
power generation. The geometric fill factor (GFF) is defined as the ratio between the active
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area and the total area of the module and can be evaluated using the active area designated
modules by means of the following equation [48]:

GFF (%) =

(
1 − Dead Area

Total Area

)
× 100

Organic-based cells such as the DSSC module can be designed as a monolithic type,
and their active area ratio reaches over 90% [49]. However, because silicon is resistant to
lasers, the GFF values should be close to almost 1.0.

6. Flexible Photovoltaics
6.1. Flexible Thin-Film c-Si Solar Cells

At the beginning of the PV era in the mid-1970s, crystalline silicon (c-Si) was used for
solar cells, because it was an available abundant material that was relatively low cost, had a
high carrier mobility, and could use well-established processing techniques [49]. However, in
the early 1980s, crystalline silicon thin-film technology within the cell was fully recognized,
which was the first time that high efficiency in thin films of silicon was achievable [50–52]. On
a laboratory scale, Zhao fabricated stable silicon cells with 24.5% efficiency on magnetically
confined CZ substrates under the standard global spectrum (100 mW/cm2) at 25 ◦C [53].
Whereas a 21.5% efficient thin-film solar cell has been achieved for a 47 µm-thick cell, the c-Si
films become flexible at a thickness < 50 µm [54]. One of the most important advantages of
increasing the c-Si thickness is the potential to reduce production costs and enable material
reuse. PV devices based on silicon have dominated the market. In addition, the recombination
in the bulk wafer has been limited to thin cells (~20 µm) with an FF approaching 0.9, and the
open-circuit voltage VOC reaching 800 mV at room temperature [55]. To realize flexible thin-
film c-Si solar cells that can be installed on intricate designs, uneven surfaces, and clothing,
c-Si solar cells should be formed on suitable flexible substrates to replace the brittle and rigid
substrates. Therefore, several methods have been investigated for the development of c-Si
thin-film solar cells on flexible substrates.

(a) Transfer Technologies

The transfer process is one of the most popular methods for fabricating c-Si solar cells.
Single-crystalline films are produced by peeling off films from a single-crystalline Si wafer
and transferring them to foreign substrates. This method was first reported by Werner, who
transferred single-crystalline Si films onto a plastic foil and achieved efficiencies as high as
14% for cells with a thickness of 40 µm [56–58]. Figure 17a illustrates a host surface, where
flexible c-Si solar cells start to form with the epitaxial growth of a monocrystalline Si thin
film [56]. Several layers were first grown on the Si wafers. The Si thin-film cells were then
detached from the silicon wafer and transferred onto a flexible polymer foil that served as a
flexible foreign substrate. Thereafter, the Si wafer can be reprocessed for the next growth cycle;
thus, waste of materials is limited. The restructuring process of the porous Si layer requires
high-temperature treatment (>1050 ◦C) [59]. Higher deposition rates and high-quality films
have been achieved by high-temperature deposition, leading to higher throughput [60]. The
porous Si structure was reorganized because of the lower surface energy [61]. However, the
annealing of the porous layer at high temperatures forms large voids. Hence, the porosity of
the Si layer increases, as shown in Figure 17b [62]. The device is attached to a flexible foreign
substrate from the host wafer by the direct application of a mechanical force. A 1 µm-thick
layer of Al was evaporated onto the backside of the cell, and the back of the device served
as the back contact layer [63]. A highly flexible 25 µm-thick c-Si film can be bent to a 2 mm
curvature radius. In the bending experiments, an efficiency of 14.6% was independently
confirmed after the film was transferred to a flexible plastic foil [64]. Solar cells prepared by
transfer technology have achieved conversion efficiencies of up to 16% [63,65].

(b) Etching Method

Directly etching of the bulk wafer is the most common method among the various
technologies developed for thinner Si wafers owing to a simple procedure that uses high-
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quality material [66]. Figure 17c shows a schematic of the chemical etching fabrication
process for ultrathin flexible Si solar cells [67]. The wafer thickness was controlled by
varying the etching time. To complete the fabrication, back-contact Ag material was
deposited by sputtering to avoid strong parasitic absorption. Flexible PV modules of
15–20 µm thickness can achieve efficiencies in the range of 6–8% without back reflectors and
retain their efficiency at a bending radius of 5 mm up to 200 cycles [68]. Cruz-Campa et al.
fabricated flexible thin-film modules with an efficiency of 14.9% using an etching method
that produced hexagonal Si segments [69]. Further, chemical etching of bulk c-Si employed
a Cu-assisted method to obtain 45 µm-thick flexible solar cells that achieved a high efficiency
of 17.3% [67].

(c) Exfoliation Method

Among the various ways to prepare thin-film c-Si solar cells, an exfoliation technique
has been investigated recently to obtain ultrathin flexible monocrystalline Si substrates.
The exfoliation technique is one of the promising techniques because of the simplicity
of the process of cleaving. The process sequence begins with the deposition of Ni by
sputtering as the stressor layer controlling the layer thickness [70]. In the exfoliation
method, the thickness is controlled by varying the electroplated metal thickness and
annealing process [71]. According to Niepelt, using Al-metallization layers as the stress-
inducing element after the exfoliation process can provide a moderate cost-saving potential
of 3–36% over that of other c-Si solar-cell production methods [72]. The flexible handle
layer was attached to a Ni film covering without producing multiple cracks during the
process. A 25 µm thin-film exfoliated monocrystalline Si solar cell was fabricated with
12.5% efficiency using an unoptimized single heterojunction cell process. In another study,
a thick silicon foil formed by carefully controlling the conditions and texturing process
achieved a high efficiency of up to 14.9% (Figure 17d) [73].

6.2. Flexible Thin-Film a-Si:H/µc-Si:H Solar Cells

Flexible hydrogenated amorphous (a-Si:H)/microcrystalline Si (µc-Si:H) thin-film
solar cells have many advantages in terms of performance and large-scale production;
these facilitate the scaled-up development of flexible solar cells other than flexible c-Si solar
cells. They are either amorphous or microcrystalline and are deposited by plasma-enhanced
chemical-vapor deposition (PECVD), including from 5 to 15% hydrogen atoms. Hydrogen
atoms play an important role in the semiconductor films of flexible thin-film solar cells by
passivating inherent defects [74]. Therefore, thin-film Si PV modules using a-Si:H/µc-Si:H
absorbers prepared on flexible substrates, such as plastic, polymer, or plastic foil, are
potential alternative candidates for flexible c-Si solar cells.

(a) Materials of flexible a-Si:H/µc-Si:H solar cells

In a-Si:H/µc-Si:H single-junction solar cells, the active layer includes three Si layers,
comprising n- and p-type doped layers, with an intrinsic (i) layer as the absorbed incident-
light layer. The a-Si thin films were first prepared using the PECVD method created by
Chitick [75]. The a-Si layer deposited from silane by PECVD was doped using either
phosphine (PH3) or diborane (B2H6) as the n- and p-type dopants, respectively. Using this
method for thin a-Si layers increased their conductivity by several orders of magnitude. So-
lar cells were first fabricated using a-Si:H with an efficiency of 2–5% in 1976 [76]. Moreover,
high-quality solar cells using other methods have been investigated, such as low-pressure
hot-wire-assisted chemical-vapor deposition [77–79] or very-high-frequency plasma depo-
sition [80]. By changing the hydrogen dilution ratio (R = [H2]/[SiH4]) in the preparation
process, different crystal phases can be obtained in the layers. For example, with low
hydrogen dilution, amorphous layers are produced. As R increases, an amorphous phase
and a low concentration of minuscule crystallites form; at a very high hydrogen dilution
ratio, highly crystalline layers are formed. Figure 18a illustrates various film structures
obtained using different PECVD parameters for films deposited on a glass substrate [81].
Single-chamber processes or multi-chamber deposition can be used for thin-film a-Si:H
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solar-cell production [82]. However, these processes have various drawbacks, such as
cross-contamination of doping atoms [82–86]. The R2R production of thin-film Si solar
cells introduces several advantages for the fabrication of lightweight, flexible, and low-cost
products. Figure 18b shows the cross-section of an R2R PECVD system on flexible metal
foils. Aken reported that a-Si solar cells fabricated by an R2R PECVD process achieved
efficiencies of up to 6.6% [87]. The bandgap of the intrinsic µc-Si:H layer (1.1 eV) is lower
than that of the intrinsic a-Si:H layers because of the crystalline phase of the materials [88].
Stable conversion efficiencies of 13.0% have been achieved using an a-Si-based material to
absorb the green- and red-wavelength photons by controlling the ratio of silicon to germa-
nium [89]. Thin-film silicon solar cells have extensively used tandem and multi-junction
configurations, leading to the generation of various designs. First, in a simple a-Si:H/a-Si:H
tandem configuration, the I layer of the subcells is thinner than that in single-junction cells
with the same light absorption. Second, triple-junction cells based on a-Si–germanium
alloys (a-Si:H/a-SiGe:H/a-SiGe:H) allow the bandgap of the individual cells to change.
Third, the micromorph a-Si:H/µc-Si:H tandem cell uses a-Si on the top and µc-Si on the
bottom [90].
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(b) Structures of flexible a-Si:H/µc-Si:H solar cells

The first a-Si:H and µc-Si:H solar cells were fabricated by the p–i–n deposition se-
quence using a TCO-coated glass substrate. In this configuration, light enters the solar cell
through the glass substrate, which functions as a contact layer. The p-layer is deposited on
the top of the glass as the first semiconductor layer to allow the light to strike the thicker
i-layer to generate charge carriers. Figure 18c illustrates the cross-sectional structure of
flexible solar cells using the a-Si:H/µc-Si:H double junction, fabricated using the PECVD
technique with a radio frequency of 13.56 MHz [92].

These flexible solar cells can achieve an efficiency of 8.0% and a stabilized effi-
ciency of 7.1% without a back reflector layer. Donker first demonstrated flexible a-
Si:H/µc-Si:H tandem modules in a superstrate configuration with efficiencies of up to
9.4% (Figure 19a,b) [92]. As another configuration, a substrate design using an n–i–p
structure is generally suitable for flexible solar cells because of the advantages gained by
using lightweight, strong substrates, such as stainless steel, PI, or PET. In this case, light
enters the device through a semiconductor layer deposited as the final layer. Therefore,
the fabricated device is different from superstrate-type devices, because of the modified
deposition sequence [93]. By reducing the i-layer thickness from 400 to 250 nm, a 4.9% PCE
was achieved using ZnO:Al/PET [94], and up to 5.9% efficiency was achieved by direct
deposition of n–i–p-type a-Si cells fabricated at a low temperature (~100 ◦C) [95]. Thus, the
mechanical strength and thermal stability of polymers are not as suitable as those of metal
foils. In one study, a-Si:H/a-SiGe:H tandem solar cells were fabricated on plastic substrates
to fabricate 40 × 80 cm cells with 9% efficiency [96]. Further, a flexible textured substrate
was fabricated at 180 ◦C, demonstrating a high short-circuit current density (25.8 mA/cm2)
with 8.1% efficiency [97].

Using this structure, Yan fabricated flexible a-Si:H-based triple-junction solar cells,
achieving an efficiency of 15% [98]. Finding suitable polymers for solar-cell substrate
materials is crucial, because they allow the fabrication of solar cells on plastics. A peel-
and-stick method has been investigated on universal substrates without changing the
conditions of material deposition or cell performance [99]. The solar cell was fabricated
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on a nickel-coated Si wafer under conventional conditions. The solar cell was attached
to a thermal tape and soaked in water. Ultrathin flexible solar cells were obtained on the
universal substrates after transfer.
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6.3. Perovskite/c-Silicon Tandem Solar Cells

In addition to the advantages of PSCs in terms of efficiency, the limited absorption edge
on the long wavelength (800 nm) restricts the development of efficiency beyond the Shockley–
Queisser limit. Tandem PSCs are an innovative approach to ameliorate the disadvantages
of perovskite absorbers. A perovskite tandem solar cell can be divided into 4-terminal (4T)
and 2-terminal (2T) based on how the junctions are located between the top and bottom cells.
In this paper, we focused on the evolution of monolithic perovskite/c-Si tandem solar cells
designed in perovskite top cells and crystalline silicon (c-Si) bottom cells. Crystalline silicon
(c-Si), which is classified into silicon homojunctions and silicon heterojunctions, is one of the
most appropriate materials for high-efficiency PV devices because of their desirable intrinsic
properties [100]. Therefore, monolithic perovskite/c-Si tandem cells can be divided into two
different types: perovskite/homojunction and perovskite/heterojunction.

(a) Perovskite/Silicon Homojunction Solar Cells

A 2-terminal monolithic perovskite/silicon solar cell was first reported in 2015 and
achieved a stable PCE of 13.7% with a Voc as high as 1.65 V [101]. However, this PCE
value was still much lower than the record efficiency for PSCs, because of technological
constraints under the perovskite-silicon tandem field. Further improvements can be
achieved by using zinc tin oxide (ZTO) as a recombination layer to improve its electrical
and optical stability at high temperatures. As shown in Figure 20a, a ZTO layer was
directly sputtered onto the P-doped diffused layer, which increased the total transmittance
at long wavelengths (800 nm) and the electron mobility from 21.8 to 35 cm2·V−1·s−1, which
increased charge transportation with >16% efficiency [102]. This new homojunction c-Si
cell architecture has been used with passivated and rear surfaces and rear-side texturing
to process compact and mesoporous TiOx at high temperatures. Consequently, these
innovations boosted the efficiency of perovskite tandem solar cells up to 22.5% (steady
state) with a VOC of 1.75 V on a 1 cm2 cell [103]. Recently, 23%-efficient monolithic
perovskite/homojunction-silicon tandem solar cells have been reported on 4 cm2 cells
by applying textured polydimethylsiloxane [104]. Figure 20b shows the schematic and
cross-section of the perovskite top cell with the rear of the silicon bottom cells. The stability
of perovskite tandem solar cells improved after 36 days of 8 h/day UV exposure, which is
considered a significant improvement in the stability of PSCs.

(b) Perovskite/silicon heterojunction solar cells

Heterojunction solar cells (low-temperature tolerance < 250 ◦C) require a new ap-
proach to replace the high-temperature mesoporous or compact TiO2 layer. A 2-terminal
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heterojunction (SHJ) c-Si/perovskite tandem solar cell has been reported using a low-
temperature-processed perovskite subcell that achieved an efficiency of 19.9% [105]. Figure 20c
shows the structure of perovskite/silicon heterojunction solar cell, in which VOC for Cs-
doped perovskite devices was due to the widened bandgap and reduced trap density. Using
the same architecture of perovskite/heterojunction silicon tandem cells, Werner [106] in-
vestigated low-temperature NIR transparent perovskite cells with an efficiency of up to
25.2% with 0.25 cm2. Because of the developed rear side, QE in the near-infrared region
could be improved, thus reducing the performance-limiting factor of perovskite/silicon
tandem cells. The developed cesium formamidinium lead halide perovskite combined
with an infrared-tuned silicon heterojunction bottom cell provides a stable and efficient
perovskite tandem solar cell that has negligible parasitic absorption and good thermal
stability when subjected to a 1000-hour test under harsh conditions [107]. Further im-
provements were achieved by investigating the influence of the current mismatch on the
device performance [108]. The optimal perovskite thickness and top contact increased
the JSC by approximately 19.5 mA cm−2, boosting the efficiency of tandem devices by up
to 26%, with negligible hysteresis. Recently, an independently certified PCE of 25.7% for
perovskite-silicon tandem solar cells was reported to have reduced the diffusion-length
phase segregation [109]. The textured c-Si was fabricated by alkaline wet-chemical etching
(Figure 20d), which changed the perovskite morphology and film thickness. The large grain
sizes (up to 4 µm) of the perovskite layer covered the micrometer-sized pyramids c-silicon
to achieve a uniform layer. Overall, the perovskite/homojunction tandem solar cells and
perovskite/heterojunction solar cells are innovative approaches to deal with the instability
and improve the efficiency of PSCs, which have been a great challenge for researchers to
develop solar-energy systems.
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from ref. [104]. Copyright 2019 American Chemical Society; (c) schematic of the device architecture of the perovskite/
heterojunction solar cells. Reprinted with permission from ref. [105]. Copyright 2019 American Chemical Society; (d) top-
view image of the textured c-Si surface and cross-section of the perovskite crystal layer. Reprinted with permission from
ref. [109]. Copyright 2020 The American Association for the Advancement of Science.

7. Conclusions and Outlook

In this paper, we deal with energy-generation mechanisms and the developments
and progress achieved in the areas of silicon-based flexible PV devices. Moreover, we
introduced photovoltaic technologies for improving the efficiency of solar cells. To date,
silicon-based solar cells have dominated the PV market, but they are no longer applicable
for flexible PV applications, because they are heavy, brittle, and non-bendable. Despite all
the challenges, harnessing new technologies for silicon-based flexible photovoltaic could
provide an auspicious future such as pliable, low-temperature, and simple process of
ultra-thin silicon wafers. For the device manufacturing methods, it is crucial to develop
cost-effective methods to apply for large-scale modules such as roll-to-roll printing or spray
coating method. For flexible photovoltaics, we reviewed flexible thin-film c-Si solar cells.,
flexible thin-film a-Si:H/µc-Si:H solar cells, and Perovskite/c-silicon tandem solar cells.
Perovskite tandem solar cells are expected to dominate the market with high efficiency and
long stability in the near future. In addition to establishing our own silicon technology,
even though it has advantages in terms of large-scale modules, stability, and high efficiency,
it extends the PV industry through integration with other technologies, such as organic
solar cells. In addition, flexible silicon-based solar cells are low cost and have significant
potential in applications such as roofs on houses, outdoor buildings, electronics, vehicles,
and textiles.
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