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Abstract: Optical aspherical lenses with high surface quality are increasingly demanded in several
applications in medicine, synchrotron, vision, etc. To reach the requested surface quality, most
advanced manufacturing processes are used in closed chain with high precision measurement
machines. The measured data are analysed with least squares (LS or L2-norm) or minimum zone
(MZ) fitting (also Chebyshev fitting or L∞-norm) algorithms to extract the form error. Performing
data fitting according to L∞-norm is more accurate and challenging than L2-norm, since it directly
minimizes peak-to-valley (PV). In parallel, reference softgauges are used to assess the performance
of the implemented MZ fitting algorithms, according to the F1 algorithm measurement standard, to
guarantee their traceability, accuracy and robustness. Reference softgauges usually incorporate
multiple parameters related to manufacturing processes, measurement errors, points distribution,
etc., to be as close as possible to the real measured data. In this paper, a unique robust approach based
on a non-vertex solution is mathematically formulated and implemented for generating reference
softgauges for complex shapes. Afterwards, two implemented MZ fitting algorithms (HTR and
EPF) were successfully tested on a number of generated reference pairs. The evaluation of their
performance was carried out through two metrics: degree of difficulty and performance measure.

Keywords: fitting algorithm validation; reference softgauges generation; minimum zone fitting;
Chebyshev fitting; complex surfaces

1. Introduction

Conformance assessment of manufactured parts to design tolerance specification is
a major activity in the quality control process. Traceable ultra-high precision coordinate
measuring machines (CMMs) to the SI metre definition are usually deployed to generate a
set of data points lying on the artefact’s surface [1]. The recorded data will be processed in
order to infer information about the measured surface. This task becomes difficult when
it comes to the measurement of aspherical and freeform surfaces due to their complex
geometry. Different factors could greatly affect the machine uncertainty, namely, the work
piece, the hardware of the CMMs, the sampling strategy, the fitting algorithms, etc. [1–3].
Fitting could be defined as the process of determining parameters of the geometric features
that best describe the measured data according to a defined criterion. This geometric
element is called “associated feature” [4]. Different criteria could be used, including least
squares (LS) (or Gaussian, or L2-norm fitting), minimum zone (MZ) (or minimax, Cheby-
shev, L∞-norm fitting) and one-sided measures, such as minimum circumscribed (MC)
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or maximum inscribed (MI) elements. While the two least criteria are well adapted for
circular or cylindrical features, the former ones could be applied for almost all shapes. Least
squares criterion, which is more adapted when random measurement errors predominate,
originates from maximum likelihood theory [5]. It is the most widely used criterion in
industry and most fitting commercial software relies on it. However, in the accept/reject
process, LS fitting may not give complete information and may cause the rejection of
conforming parts. Therefore, the use of MZ fitting reflects the functional requirements of
measured parts. This criterion is appropriate when measuring errors are small compared
to manufacturing ones. Moreover, MZ is considered as the default fitting criterion in the
ISO geometrical product specification (GPS) [6,7]. Once the MZ value is found, a measure
of variability must be set and the part will be accepted if the measure is below design limits.
The commonly used measure is the peak-to-valley (PV), which is the difference between
maximum and minimum form deviations. Unlike LS fitting methods, the implementation
of MZ fitting methods is challenging, since it directly minimizes the peak-to-valley (PV) [8].

For metrology of aspherical and freeform surfaces, a few reference fitting algorithms
have recently been developed. Key characteristics of reference fitting algorithms were
outlined in [8]. Thus, it is stated that they must:

• perform well for representative data
• work sensibly for unrepresentative data and be able to detect extreme cases
• perform efficiently in poor cases

Despite its importance, performance in terms of execution time is not the first char-
acteristic sought for reference MZ fitting algorithms. However, as reported in [2] the
algorithm must be stable and robust. The stability means that the underlying numerical
operations are numerically stable. For example, small perturbations in input data must
only result in small perturbations in output. Robustness refers to the algorithm ability to
handle extreme cases.

To establish the traceability chain for datasets analysis with a small uncertainty (be-
low the nanometre level), the validation of implemented reference MZ fitting algorithms
becomes indispensable in order to make sure that the returned values are correct. There
exist two methods to assess the correctness of the values returned by MZ fitting algo-
rithms [9–12], namely type F1 algorithm measurement standard (using reference softgauges
pair) and type F2 algorithm measurement standard (using reference algorithm) [11].

For complex geometries, an approach based on type F1 was presented in [13]. However,
the proposed method generates reference softgauges with vertex solution only. Meanwhile,
non-vertex solution occurs in practice as reported in [1,14].

In this article, the validation of MZ fitting algorithms using reference softgauges
is discussed. Section 2 introduces the MZ fitting optimisation problem, and Section 3
investigates the validation procedures. The problem is mathematically formulated in
Section 4, while a general approach is given in Section 5 on the generation of reference
softgauges based on a non-vertex solution for the case of complex shapes. Numerical
validation on two implemented fitting algorithms (exponential penalty function (EPF)
and hybrid trust region (HTR)) is carried out in Section 6. Two metrics to determine the
degree of difficulty and the performance measure are given in Section 7, so as to assess the
performance of MZ fitting algorithms.

2. Data Fitting

LS or MZ fitting are considered as an optimisation problem. Given a set of N data
points, {Pi}1≤i≤N , let f

(
X̂, s

)
= 0 is the generic equation describing the shape of the

measured surface where X̂ is the space vector (X̂ = (x̂, ŷ, ẑ) in Cartesian coordinates)
and s denotes the shape parameters. For each point Pi, one could associate its orthogonal
projection on the nominal surface denoted by Qi. di = ‖Pi−Qi‖, where ‖.‖ is the Euclidean
norm, which defines the orthogonal distance between the measured data points Pi and the
nominal surface, known as form deviation (Figure 1).
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Figure 1. Definition of the form errors (or deviation errors).

The objective function to minimize for LS (resp. MZ) is given in (1) (resp. (2)).
x = (m, s) ∈ Rn could be either the set of intrinsic shape parameters s, the motion
parameters m: rotation and translation applied to {Pi}, or both.

min
x

N

∑
i=1

(‖Pi −Qi‖)2 (1)

min
x

max
1≤i≤N

‖Pi −Qi‖ (2)

The formulations (1) and (2) represent different mathematical properties. Those
problems were extensively studied for simple geometries and a number of techniques were
developed, as reported in [15–18]. Existing methods like variants of the Gauss–Newton [8]
could be applied to solve the smooth least squares objective function. The objective
function in the second MZ problem (2) is not differentiable; thus, a number of differentiable
optimization techniques cannot be applied. Numerous MZ fitting methods were suggested
for the case of straightness, flatness, roundness and cylindricity tolerances [19–21]; however,
rare methods were proposed for the MZ fitting of complex shapes. Nevertheless, some
attempts were made in [22–24], where techniques such as smoothing functions, primal-dual
interior point methods or differential evolution algorithms were adapted to aspherical
shapes.

3. Validation of MZ Fitting Algorithms

The need for fitting algorithm validation in metrology was initiated and supported
in [3,12]. The aim is to ensure that MZ fitting algorithms return correct values. One method-
ology to assess the results returned by metrology algorithms is to use a reference pair. This
methodology known as “Type F1 algorithm measurement standards” is defined in ISO 5436-2
2012 [11]. Even if this Type F1 standard is common in surface texture domain, its concept
could be extended to MZ fitting algorithms. Type F1 standards could be considered as a
numerical representation of the measured part to which we associate a reference measure
and value known with a given uncertainty. For the evaluation, reference softgauges are
inputted to the metrology algorithm under test, the returned value is compared to the ref-
erence measure, and then a decision could be made as to whether the metrology algorithm
is accepted or rejected (Figure 2).
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A second methodology to evaluate metrology algorithms is based on the use of refer-
ence algorithms defined in ISO 5436-2 2012 as “Type F2 algorithm measurement standards” [11].
There are traceable metrology algorithms against which the tested algorithm will be com-
pared. A common set of data points is submitted to both metrology algorithms (reference
algorithm and algorithm under test) and the two results are then compared in order to take
an accept/reject decision (Figure 3). Reference algorithms do not exist for a wide range of
applications in metrology. Their development is not always straightforward, especially for
applications such as MZ fitting.

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 18 
 

 

are generated such as to meet the number of conditions reported by Boyd et al. [25]. A set 
of points are selected on the nominal shape, such that the linear independence constraint 
qualification (LICQ) of the problem holds [26]. Then, equations resulting from KKT con-
ditions are solved in order to determine the Lagrangian multiplier [25]. If the resulting 
Lagrange multipliers are not positive (dual feasibility does not hold), a new set of data 
points are chosen and the procedure is repeated. Once the dual feasibility condition is 
satisfied, the contacting points are constructed and additional random points are gener-
ated on the surface. A flowchart describing the proposed approach is illustrated in Figure 
4. 

 
Figure 2. Illustration of the type F1 algorithm measurement standard. 

 
Figure 3. Illustration of the type F2 algorithm measurement standard. Figure 3. Illustration of the type F2 algorithm measurement standard.

For MZ fitting, Forbes et al. [1] developed a method for the generation of reference
softgauges with vertex solution. Similarly to LS fitting, the Karush–Kuhn–Tucker (KKT)
optimality conditions for the MZ fitting problem are indispensable and the data points
are generated such as to meet the number of conditions reported by Boyd et al. [25].
A set of points are selected on the nominal shape, such that the linear independence
constraint qualification (LICQ) of the problem holds [26]. Then, equations resulting from
KKT conditions are solved in order to determine the Lagrangian multiplier [25]. If the
resulting Lagrange multipliers are not positive (dual feasibility does not hold), a new set of
data points are chosen and the procedure is repeated. Once the dual feasibility condition is
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satisfied, the contacting points are constructed and additional random points are generated
on the surface. A flowchart describing the proposed approach is illustrated in Figure 4.
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4. Mathematical Formulation of the Reference Softgauges Generation for MZ Fitting

Based on Figure 5, MZ fitting is formulated as a nonlinear programming (3).

min
x,e

e such that : −e ≤ di(x) ≤ e ∀i ∈ {1, . . . , N} (3)

where e ≥ 0 is the form error, N the number of measured points and di = ‖Pi −Qi‖.
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The problem (3) could be formulated in the standard form given in (4).

min
y

f (y) subject to Ci(y) =
{

C+
i (y) ≥ 0

C−i (y) ≥ 0
∀i ∈ {1, . . . , N} (4)

where y = (e, x) ∈ Rn+1, C+
i (y) = e− di(x), C−i (y) = e + di(x) and f (y) = e.

Let y∗ be a local minimum of the problem (4). Hence, y∗ could be feasible when it
satisfies the condition Ci(y∗) ≥ 0, ∀i ∈ {1, . . . , N}.

At a feasible point y∗,{
Ci(y∗) = 0 ith constraint is active

Cj(y∗) > 0 jth constraint is inactive
(5)

An active constraint could be interpreted as a point belonging to the measured data
for which the distance to the reference surface is equal to the form error (“a contacting point
to the enclosing envelope”) as illustrated in Figure 5. Whereas, this distance is lower than the
form error for inactive constraint.

4.1. Vertex vs. Non-Vertex Solution

A solution y∗ is said to be vertex if the number of active constraints is greater or equal
to n + 1 (n is the number of unknowns parameters). If the number of active constraints is
strictly less than n + 1, y∗ is said to be a non-vertex solution. By definition, a constraint
C(y) ≥ 0 is active at y∗ only if C(y∗) = 0.

For canonical surfaces, the MZ fitting is almost formulated as a linear program-
ming [26] and the solution could be at some vertex of the feasible domain (Figure 6). For
complex surfaces, the solution could be either at some vertex of the feasible domain, or at a
face or an edge (non-vertex solution (Figure 7)).
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If at P∗ there can be no binding feasible descent direction (Figure 5), then P∗ solves
the equality constrained sub-problem in (6).

min
y

f (y) subject to Ci(y) = 0, i ε I∗ (6)

where I∗ is the set of active constraint.
Therefore, P∗ is considered as a local solution of the equality constrained problem (6),

in particular when there exist Lagrangian multipliers λ∗ for which (P∗, λ∗) is a stationary
point of the Lagrangian L(x, λ) defined in (7).

L(x, λ) = f (x)− Σi∈I∗λiCi(x) (7)

Considering the first order derivative of Lagrangian L(x, λ), both λ∗ and P∗ should
satisfy the KKT Equation (8).{

∇x f (P∗) = ∑
i∈I∗

λ∗i ∇xCi(P∗)

Ci(P∗) = 0, i ∈ I∗
(8)

4.2. Optimality Conditions

If the number p (belongs to I∗) of active constraints is less than n (number of unknowns
parameters), let Z = z(a) be the n× (n− p) orthogonal complement to C∗ the matrix of
gradients ∇aCi, i ∈ I∗, so that ZtC∗ = 0. Hence, the second order optimality conditions
are required.



Nanomaterials 2021, 11, 3386 8 of 18

• The necessary conditions for P∗ to be a local minimiser are:

# feasibility: Ci
(

p∗i
)
≥ 0 ∀i ∈ {1, . . . , N}

# first order: if I∗ is the set of active constraints at p∗, there exist a Lagrangian
multiplier λ∗ for which:{

∇x f (P∗) = ∑
i∈I∗

λ∗i ∇xCi(P∗)

λ∗i ≥ 0; i ∈ I∗
(9)

# second order: if p < n, the matrix Z(P∗)tW(P∗, λ∗)Z(P∗) is positive semi-
definite (W is the Hessian matrix of the Lagrangian (7)).

• The sufficient conditions for P∗ to be a local minimizer under constraint qualification
are:

# feasibility: Ci(P∗) ≥ 0 ∀i ∈ {1, . . . , N}
# first order: if I∗ is the set of active constraints at P∗, there exist a Lagrange

multiplier λ∗ for which:{
∇x f (P∗) = ∑

i∈I∗
λ∗i ∇xCi(P∗)

λ∗i > 0; i ∈ I∗
(10)

# Second order: if p < n, the matrix Z(P∗)tW(P∗, λ∗)Z(P∗) is positive definite.

4.3. Reference Softgauges Generation for Complex Surfaces: Aspherical Shapes

A method to generate reference softgauges is introduced for the case of complex
surfaces when motion parameters are sought. Since the aspherical lenses are rotationally
symmetric surfaces, only five motion parameters are unknown x = {TX , TY, TZ, θX , θY}
(translations in X, Y and Z directions as well as rotations around X- and Y-axis), then a
non-vertex solution consists of, at most, five contacting points (active constraints). The
proposed algorithm includes 7 steps as follows:

Step 1: five points
{

Q∗i
}

i=1,..,5 are randomly selected on the nominal aspherical surface
(Figure 5). These points represent the orthogonal projections of the contacting points{

P∗i =
(

x∗i , y∗i , z∗i
)}

i=1,..,5 onto the nominal shape.
Step 2: an index αi ∈ {0, 1} is associated to each point in

{
Q∗i
}

i=1,..,5. A point with
αi = 1 represents the orthogonal projection of a contacting point assigned to the lower
surface (S−), i.e., for which di

(
Q∗i , P∗i

)
= −e. Those with αi = 0 are assigned to the

upper (S+) i.e., for which di
(
Q∗i , P∗i

)
= e (e is the desired form error).

Step 3: verify that the gradient vectors of distances with respect to motion parameters
∇di

(
Q∗i , P∗i

)
are linearly independent. Otherwise, go to step 1. The gradient vectors are

calculated using equations given from (11) to (15).

∂di
∂TX

= (−1)αi ni,X (11)

∂di
∂TY

= (−1)αi ni,Y (12)

∂di
∂TZ

= (−1)αi ni,Z (13)

∂di
∂θX

= (−1)αi (Q∗i × ni).eX (14)

∂di
∂θY

= (−1)αi (Q∗i × ni).eY (15)
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where ni = (ni,X , ni,Y, ni,Z) is the normal vector to the nominal shape at the point{
Q∗i
}

i=1,..,5, a × b defines the cross product of the two vectors a and b. eX (resp.eY) is
the unit vector with respect to the X-axis (resp. Y-axis).

Step 4: determine Lagrangian multipliers λ∗ =
(
λ∗1 , . . . , λ∗5

)
by solving the quadratic

programming given in (16).
min

λ
||Gλ− b|| st. λ ≥ 0 (16)

where G is a 6 × 5 matrix, such that G = (g1, . . . , g5), gT
i =

(
(−1)αi∇dT

i , 1
)

and bT =
(0, 0, 0, 0, 0, 1). If ||Gλ− b|| > ε, where ε is a predefined parameter, go to step 1. This step
represents the resolution of the equation resulting from KKT conditions of the problem
given in (3) cited in [14].

Step 5: determine a nonzero null space vector p such that GT p = 0.
Step 6: verify that pT

b Hpb > 0 where pb is the vector composed of the first five elements
of p and H is the Hessian of the Lagrangian given in (17).

H =
5

∑
i=1

(−1)αi λ∗i ∇2di (17)

If this condition is not satisfied, then go to step 1. Otherwise, calculate contacting
points coordinates by setting P∗i = Q∗i + (−1)αi eni (i=6,..,N).

Step 7: generate additional random points {Pi}i=6,..,N such that Pi = Qi + θini with
{θi}i=6,...,N is a set of randomly selected numbers in the domain [−e, e].

It is worth mentioning that the proposed robust reference softgauges algorithm could
work on all complex surfaces, as the only required knowledge is the normal vector with
respect to the X-, Y- and Z-axis. Furthermore, the developed approach could be applied to
continuous nominal shape described by a mathematical model or to discrete high accurate
measured dataset.

5. Hybrid Trust Region vs. Exponential Penalty Function for Minimax Fitting
5.1. Hybrid Trust Region (HTR) Algorithm

The hybrid trust region algorithm consists of performing either the trust region step,
line search step or curve search step, according to the specific situation faced at each
iteration [8,27,28]. It enables one to avoid having to solve the trust region problem many
times. Each iteration relies on obtaining a trust region trial step dk by solving the following
quadratic problem (QP) given in (18).

min(dεRn+1)
1
2< d, Bkd >+ z = Mk(d, z),

S.t< ∇ fi(xk, d) >− z ≤ φ(xk)− fi(xk), i = 1, . . . , m
dk∞ ≤ ∆k

(18)

Bk is (n× n) symmetric definite matrix, ∆k is user-defined coefficient of the domain
of the trust region, z is a parameter that depends on the first derivative of ϕ, meanwhile
< ., . > is the dot product. The trust region domain is defined using MZ instead of LS; thus,
QP becomes easily solved. The QP in (18) always has a solution, since (0,0) lies inside the
feasible domain. This QP could be solved using adapted methods, such as interior point
method [25]. If the resulting trust region trial step dk could not be accepted, a corrected
step dk + d̃k is determined by solving the QP in (19).

min
(d̃εRn+1)

1
2< dk + d̃, Bk

(
dk + d̃

)
>+ z̃ = M̃k

(
d̃, z̃
)

,

S.t< ∇ fi

(
xk, d̃

)
>− z̃ ≤ φ(xk + dk)− fi(xk + dk), i = 1, . . . , m

dk + d̃∞ = ∆k

(19)
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If the corrected dk + d̃k is not accepted in the trust region scheme, then a line search or
curve search along dk is performed when dk is a descent direction rk > 0. If (rk ≤ 0), a step
length is sought by performing a curve search that verifies (20). φ

(
xk + tkdk + t2

k d̃k

)
≤ φ(xk)− αtk< dk, Bkdk >

α ∈
[
0, 1

2

] (20)

dk is the solution of (18) and d̃k is the solution of (19). In this case, ‖dk‖ ≤ ‖d̃k‖, d̃k
should be taken to be 0. Additional details are discussed in [8,28] and the following
flowchart (Figure 8) illustrates how the HTR algorithm performs.
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5.2. Exponential Penalty Function (EPF) Algorithm

Exponential penalty function is a technique that aims at approximating the non-
smooth objective function in the MZ fitting by a parameterized smooth function. The
resulting smooth function is optimized using Newton-based methods [23,27,29]. Let (21)
be the approximation function, {di(x)} are the set of distances between the measured data
and the reference surface.

min
x

ΦMZ = max
1≤i≤N

di(x) (21)
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Let Fp be the continuously differentiable approximation function and (p > 0) the
smoothing parameter, as in (22). One can demonstrate the inequality given in (23).

Fp =
1
p

Log

(
N

∑
i=1

exp(pdi(x))

)
(22)

∀x ∈ Rn, F(x) ≤ Fp(x) ≤ F(x) +
LogN

p
(23)

When the value of p goes to infinity, Fp converges to F. For a given value of the
smoothing parameter p, minimisation of Fp is carried out through derivative-based meth-
ods. Once the optimum of Fp is found, p is multiplied by a user-defined coefficient, and
a new approximation function is formulated. This process is repeated until the resulting
approximation function Fp becomes sufficiently close to the original objective function F.

5.3. Numerical Validation on Aspherical Shapes and Discussion

The developed method for reference softgauges generation based on a non-vertex
solution is applied for the case of aspherical shapes. An asphere could be defined as a
rotationally symmetric surface with a radius of curvature that varies gradually from the
centre of the lens (Figure 9). Optical aspherical surfaces are very popular in the domain
of optical design regarding their superiority over classical spherical lenses, as well as
advancements made in manufacturing techniques [30]. Several formulations could be
employed for the description of asphere; however, the most widely used is the one given
in ISO 10110-12:2007 [30] called monomial formulation, given in (24). This formulation
depends on the sag of the surface parallel to the radial symmetric axis z, radius r, radius of
curvature R, conic constant κ and monomial coefficients a2m+4.

z(r) =
r2

R
(

1 +
√

1− (1 + κ) r2

R2

) +
M

∑
m=0

a2m+4 r2m+4 (24)
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Figure 9. Description of aspherical shapes.

Three configurations are selected, as given in Table 1. For each configuration, a dataset
with predefined number of points N = {10,404, 50,024, 100,489} and MZre f = 10−4 mm
are generated to evaluate the performance of the two implemented MZ fitting algorithms
(HTR and EPF).

Table 1. Nominal values of the aspheric shapes parameters.

Configuration R (mm) k a4 (mm−3) a6 (mm−5) a8 (mm−7) a10 (mm−9)

I 19.79 −0.9 −1.5× 10−17 −7.55× 10−18 −3.77× 10−18 −1.88× 10−19

II 8.88 −0.8 −1.9× 10−12 −9.72× 10−13 −4.86× 10−13 −2.43× 10−13

III 4.14 −0.9 −4.1× 10−12 −2.08× 10−12 −1.04× 10−12 −5.21× 10−13

The corresponding PV values respectively PVEPF (or MZEPF) and PVHTR (or MZHTR),
as well as execution time, respectively TEPF and THTR, are compared with respect to the
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methodology presented in Figure 10. Initial data is rotated by angle π/20 around X-axis
and π/15 around Y-axis, as well as translated by −1 mm in X-axis, 1 mm in Y-axis and
−1 mm in Z-axis. Both HTR and EPF algorithms were implemented on a computer based
on Intel Core i7/x64 platform with 16 GB of RAM and a 2.30 GHz processor.
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Figure 10. Comparison methodology (LM algorithm: Levenberg–Marquardt algorithm).

Nine reference aspherical softgauges were generated and Figures 11 and 12 illustrate
only one generated softgauges with five contacting points. Each generated softgauge was
submitted to both HTR and EPF fitting algorithms, and Tables 2–4 summarize the returned
results of MZ-MZref and the execution time for configurations I, II and III.
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which the form error is equal to e. Blue indicates form error equals to −e.
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Table 2. Values of MZ-MZref and execution time (s) for HTR and EPF (configuration I).

N MZHTR −MZRef (mm) MZEPF −MZRef (mm) THTR (s) TEPF (s)

10,404 1.78 × 10−16 4.51 × 10−16 12.1 61.91
50,024 1.71 × 10−16 4.78 × 10−16 24.5 135.71

100,489 1.64 × 10−16 4.92 × 10−16 41.51 226.96

Table 3. Values of MZ-MZref and execution time (s) for HTR and EPF (configuration II).

N MZHTR −MZRef (mm) MZEPF −MZRef (mm) THTR (s) TEPF (s)

10,404 1.41 × 10−15 3.08 × 10−15 4.27 36.50
50,024 3.78 × 10−16 4.78 × 10−16 10.78 157.71

100,489 6.73 ×1 0−15 6.78 × 10−15 20.52 255.06

Table 4. Values of MZ-MZref and execution time (s) for HTR and EPF (configuration III).

N MZHTR −MZRef (mm) MZEPF −MZRef (mm) THTR (s) TEPF (s)

10,404 1.15 × 10−16 2.14 × 10−15 35.88 200.16
50,024 4.78 × 10−16 1.78 × 10−16 42.35 240.45

100,489 9.86 × 10−15 1.05 × 10−14 50.03 274.75

According to Tables 2–4, it seems that HTR and EPF fitting algorithms return quite
similar results of MZ, accurate at the sub-nanometre level, with a noticeable upper hand
of HTR when the execution time is regarded. This is due to EPF approximation of the
non-smooth objective function in the MZ fitting by one parametrized smooth function.
Then, the applied Newton method requires the computation of the Hessian matrix, which
is proportional to the number of points in the softgauges. Moreover, the accuracy of the
obtained descent direction is not always guaranteed. Hence, corrections must be brought
to the Hessian matrix whenever needed.

Regarding the HTR algorithm, the matrix Bk is chosen to be symmetric positive definite
while setting up the QP, through Powell modification BFGS (Broyden–Fletcher–Goldfarb–
Shanno) formula. Therefore, there is no need to compute the second order derivation terms,
which considerably reduces the execution time.

6. Difficulty Degree and Performance Measure

Measuring an algorithm quality could be established by setting a framework, in-
cluding: (1) the preconditions for quality measurement, (2) the analysis strategy of the
meaningfulness of quality measures, as well as (3) the interpretation and use of the mea-
sured values [31].

The degree of difficulty was discussed by Cox and Harris in [32]. It aims at defining a
quantity associated to each dataset that indicates at which level the generated reference
softgauges challenge the algorithm under test. Thus, the methodology of testing metrology
MZ fitting algorithms consists of generating datasets with increasing difficulty number.
The output of the algorithm under test is assessed using a performance measure on each
set. Therefore, the degree of difficulty could be sought as the difficulty to converge to a
global optimum. Usually, the selected feature could help in predicting the difficulty of the
MZ fitting problem. It regroups: (1) the nature of the solution, (2) the number of points
affecting tremendously both execution time as well as the accuracy, (3) the initial position
of the measured data compared to the final position.

The suggested degree of difficulty denoted by λ is given in (25).

λ = β1V + β2
N
N0

+ β3
Θ
Θ0

(25)
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where β1, β2 and β3 are user-defined parameters, such that: ∑3
i=1 βi = 1, V is a binary

variable that indicates whether the set of data is vertex or non-vertex, N is the number of
the data points in the set and N0 is the maximum number of points that could be handled
by the algorithm under test. Θ is the measure of the initial position. Θ0 is the estimation of
the maximum initial alignment, calculated by taking the norm of the vector of maximum
permissible translation and rotation.

The performance measure For MZ fitting could be considered as the difference be-
tween the minimum zone value returned by the algorithm under test and the reference
value. When execution time is involved, the performance measure could combine both
result accuracy and execution time. In addition, the heuristic/deterministic aspect of the
algorithm under test should be considered, because deterministic algorithms are more
appreciated for metrology software. The latter requirement could be assembled in a sample
of performance measure denoted η given in (26).

η = α1 f1(E, λ) + α2 f2(T, λ) + α3 f3(∆, λ) (26)

where α1, α2 and α3 are user-defined parameters, such that:
3
∑

i=1
αi = 1. The expression of

the functions f1, f2 and f3 are given in (27)–(29), respectively.

f1(E, λ) =

{
E0(λ)

E , i f E > E0(λ)
1 , otherwise

(27)

f2(T, λ) =

{
T0(λ)

T , i f T > T0(λ)
1 , otherwise

(28)

f3(∆, λ) =

{
0 , if heuristic

1 , if deterministic
(29)

E0 and T0 are the recommended error and execution time of each value of the number
of difficulty, while T and E are the actual execution time and the MZ value.

Figure 13 illustrates the performance of a given MZ fitting algorithm under test, as well
as the acceptance domain for reference algorithms and operating ones. Since an algorithm
of reference and an operating one do not have the same operational requirements, these
two types of algorithms present two different characteristics in the degree of difficulty and
performance measure domain.
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7. Analysis of the Results and Discussion

With the aim of defining the weights associated to the samples of performance measure
and the degree of difficulty, a survey was conducted involving 45 engineers and researchers
from industrial and academic fields, NMIs (National Metrology Institutes) and others.

The survey is based on questions regarding how important it is that an algorithm
gives accurate results, runs in short time and returns deterministic or heuristic results.
Then, the weights α1, α2 and α3 were estimated based on the survey’s answers (Table 5).

Table 5. Estimation of the weights based on the survey answers.

Associated Weights

Reference algorithm Operating algorithm
α1 0.41 0.4
α2 0.24 0.28
α3 0.35 0.32

EPF is considered as an operating algorithm and the determination of β1, β2 and β3
is given as follow: β1 = 0.5, β2 = 0.5 and β3 = 0 (since the coarse fitting has taken place
before proceeding to fine fitting). The recommended execution time and the form error
were determined through L2- fitting (LS).

The function that determines the accepted limits could be formulated as a convex
combination of the form tb + (1− t)a, where a is the performance measure of the algorithm
under test for the first set, b = a− ε, ε is the user-defined coefficient and t ∈ [0, 1].

The obtained performance measure results are presented in Figure 14. Therefore, HTR
is as stable as an algorithm of reference could be. This is due to its accurate MZHTR values
and the execution time that was not affected by the number of points in the dataset. EPF is
unstable with an increased degree of difficulty, as it is sensitive to the number of points in
the dataset.
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Nevertheless, vertex or non-vertex solution cannot be the only concern when con-
structing reference softgauges for MZ fitting. There are still some requirements needed
before proceeding to softgauges generation; in particular, the scope and characteristics
of the algorithm under test must be clearly identified. Then the abilities claimed by the
algorithm should be determined so that task-specific data points are generated and the
algorithm to test is not “disfavoured”.

These characteristics may include:
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• Uniqueness of the solution: generated reference softgauges must have a unique
associated reference solution [33]. For fitting problems, reference softgauges with two
different “substitute geometry” will be problematic, especially if these geometries
will be taken as datum. These situations must be avoided when generating reference
softgauges.

• Number of points: the number of points contained in the reference softgauges must
not exceed the maximum number of points that could be handled by the algorithm.

• Initial alignment: initial position of measured data highly affects the performance of
MZ fitting algorithms. Some algorithms could only perform if the input data are close
to the solution position.

• Error-free: validation of metrology MZ fitting algorithms must be performed in the
perfect operator approximation. This means that measuring errors (or errors from
any origin) must not be embedded in constructed data. Adding measuring errors to
the reference softgauges might induce some difficulties, since we cannot tell whether
inaccuracy results from measurement or processing.

• Stability: a small perturbation in the designed data must not affect the reference value
of the measurand. The analysis of an MZ fitting algorithm stability was related to the
values of Lagrangian multipliers [11,34].

• Uncertainty: it should be associated to reference softgauges. Considering the data
coordinates

(
x∗i , y∗i , z∗i

)
and targeted form error et expressed in double precision as

well as the LICQ and dual feasibility conditions satisfied, the actual value of form
error e is given in (30).

e =
√(

xi − x∗i
)2

+
(
yi − y∗i

)2
+
(
zi − z∗i

)2 (30)

with xi = x∗i + etni,X , yi = y∗i + etni,Y and zi = z∗i + etni,Z
Uncertainties of x∗i , y∗i and z∗i and et depend on the accuracy of the machine architec-

ture, while uncertainties of xi, yi, zi, ni,X , ni,Y and ni,z could also be calculated analytically
using propagation rules. Thus, the uncertainty of the actual form error e denoted by u(e)
could be estimated.

8. Conclusions

In this paper, the generation of reference softgauges dedicated to the assessment of
MZ fitting algorithms of complex shapes is provided. The developed robust approach
is based on satisfying KKT first and second order optimality conditions before inferring
reference softgauges with non-vertex solutions. It could be applied to continuous nominal
shape described by a mathematical model or to discrete high accurate measured dataset.

The implemented approach based on a non-vertex solution was adopted and inves-
tigated for the case of aspherical shapes. Nine reference softgauges were generated with
predefined number of points and MZre f = 10−4 mm. The reference softgauges were
submitted to two implemented MZ fitting algorithms (HTR and EPF). Results show the
conformance of the returned values of MZHTR and MZEPF with the reference measurand
ones MZre f . However, the performance of the HTR fitting algorithm in terms of execution
time is noticeable in comparison to the EPF one.

Two metrics were introduced to define the performance measure in the function of
the degree of difficulty to measure the performance of an MZ fitting algorithm. As these
two metrics contains some arbitrary variables, a survey based on a number of industrial
and academic professionals has allowed us to determine these weights. An application on
HTR and EPF fitting algorithms was carried out such as to measure their performances.
The given results reveal that EPF performs poorly when the number of points is higher,
especially when the execution time is taken into consideration.

Requirements of the generated reference softgauges were also discussed in this arti-
cle. In fact, generated softgauges must be aligned with characteristics of the MZ fitting
algorithm under test. Data points’ extraction, number of points, stability of the solution,
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etc. must be taken into account when generating softgauges. Most of the considered
requirements need further research. Therefore, future work will mainly cover original
methods for assessing the stability of generated softgauges, in particular for the case of
complex shapes.
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