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Abstract: As an emerging nano energy technology, nanogenerators have been developed rapidly,
which makes it crucial to analyze the evolutionary pathways of advanced technology in this field to
help estimate the development trend and direction. However, some limitations existed in previous
studies. On the one hand, previous studies generally made use of the explicit correlation of data such
as citation and cooperation between patents and papers, which ignored the rich semantic information
contained in them. On the other hand, the progressive evolutionary process from scientific grants
to academic papers and then to patents was not considered. Therefore, this paper proposes a novel
framework based on a separated three-layer knowledge graph with several time slices using grant
data, paper data, and patent data. Firstly, by the representation learning method and clustering
algorithm, several clusters representing specific technologies in different layers and different time
slices can be obtained. Then, by calculating the similarity between clusters of different layers, the
evolutionary pathways of advanced technology from grants to papers and then to patents is drawn.
Finally, this paper monitors the pathways of some developed technologies, which evolve from grants
to papers and then to patents, and finds some emerging technologies under research.

Keywords: nanogenerator; technology evolution pathway; knowledge graph; representation learning;
multi-source data

1. Introduction

As a novel energy solution for micro and wearable wireless electronic devices, nano-
generators (NG) have been developed to harvest energy from the environment, including
biomechanical energy, solar and wind energy, thermal energy, etc. [1]. Based on different
physical effects, nanogenerators can be roughly divided into piezoelectric nanogener-
ators (PENGs), triboelectric nanogenerators (TENGs), and pyroelectric nanogenerators
(PYENGs) [2]. Notably, nanogenerators present widespread applications other than energy
harvesting, benefiting from related technologies such as 5G and Internet of Things (IoT) [3],
nanomaterials [4], flexible sensors [5], and so on. To date, these applications can be divided
into two domains. One is the innovative devices and techniques in the engineering domain
(e.g., self-powered sensing systems, wearable devices [6]), the other is the biomedical
domain (e.g., implantable devices, tissue regeneration [7]). Due to the rapid development
and diversity of nanogenerator technology, identifying and understanding the evolutionary
path of nanogenerator technology is crucial for decision-makers to capture the development
trends and directions [8].

Some previous studies roughly described a sub-field development path of nanogen-
erator technology based on literature reviews. However, with the rapid development of
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nanogenerators, the corresponding increase in literature makes it difficult to thoroughly
analyze the evolutionary trends of the nanogenerator technologies based solely on literature
reviews. Therefore, quantitative approaches such as bibliometrics, patent citation analysis,
technology roadmap, and text mining are used to analyze the evolutionary trends [9,10].
However, citation networks only make use of the explicit correlation of data, which ignores
the rich semantic information contained in them. To deal with this, the knowledge graph
(KG), a constructed knowledge base with powerful semantic processing ability, is taken
into consideration naturally [8]. Essentially, the knowledge graph is a semantic network
with nodes and edges that reveals the entities and relationships and can formally describe
things and relationships in the real world. In addition, at the level of research purpose,
scholars only focused on the technology evolution pathways over time [11–19], which
ignored the progressive evolutionary process from scientific grants to academic papers and
then to patents, while technologies generally emerge with grants or papers and become
sophisticated with patents.

In this paper, we propose a novel framework for monitoring the evolutionary paths
of nanogenerator technology based on analyzing grants, papers, and patents data. The
framework is shown in Figure 1. After multi-source data acquisition, the knowledge graph
was constructed to capture semantic information between entities, as shown in the top
right corner of Figure 1. Different colors of dots show the different types of entities (such as
the author, paper, institution, and journal in paper knowledge graph), and the connections
between dots show the relations between entities. Then, representation learning and
clustering methods were used to cluster entities with similar topics, as shown in the bottom
right corner in Figure 1, while the circles represent clusters and the black dots represent
the grants, papers, and patents contained in clusters. Finally, we describe the evolutionary
path from grants to papers and then to patents by connecting similar clusters.
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Figure 1. The framework to monitor the technology evolution pathways.

The key contributions of this paper can be summarized as follows:

1. The nanogenerator field is emergent and rapidly developed, making it hard to analyze
the evolutionary pathways of advanced technologies. This paper proposed a novel
framework to monitor the evolution pathways based on multi-source data and a
knowledge graph.

2. When monitoring the evolution pathways, we applied the representation learning
method and clustering method to connect similar entities, which enables the quantita-
tive analysis of large-scale data, thus improving efficiency and accuracy.
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3. This paper used multi-source data from three data sources and analyzed the evo-
lutionary pathways between different data sources, which reflected the technology
trends comprehensively and pluralistically.

2. Literature Review
2.1. Development of Nanogenerators

With the rise of the Internet of Things (IoT), advanced materials, and electronics,
wearable and implantable devices have developed rapidly. Miniaturization and power
continuity have become an important development direction of such devices, which puts
high demands on power supply systems [20]. Traditional power methods such as lithium
batteries and lead-acid batteries have the limitations of considerable size, short service
life, poor flexibility, the possibility of environmental pollution, and the need for frequent
replacement. Therefore, developing a new microelectronic power supply device with high
flexibility and a sustainable power supply has become the focus of researchers.

Piezoelectric nanogenerators (PENG) using ZnO nanowires were first invented in 2006
by Wang Zhonglin based on the piezoelectric effect to harvest mechanical energy and con-
vert it to electric power, which marked the beginning of self-power technology [21]. After
that, other researchers made many attempts and improvements in piezoelectric materials.
At present, the mainstream and mature piezoelectric materials include ZnO, BaTiO3 [22],
lead zirconate titanate (PZT) [23], and polyvinylidene fluoride (PVDF) [24]. While develop-
ing piezoelectric materials, triboelectric nanogenerators (TENG) came out in 2012, which is
based on the conjunction of triboelectrification and electrostatic induction [25]. Compared
with PENG, TENG has the advantages of having a high output, low cost, simple structure
design, and excellent stability. Up to now, PENG and TENG have made significant progress
in output performance, sensitivity, energy conversion rate, flexibility, and being environ-
mentally friendly [26]. At the same time, some other types of nanogenerators have been
developed, such as pyroelectricity nanogenerators (PYENG) and piezoelectric triboelectric
hybrid nanogenerators (PTENG) [27].

2.2. Technology Evolution Pathways

As a law of nature, evolution occurs all the time. Additionally, there is also an
evolution process in the field of technology [28]. At present, the definition of technology
evolution is not unified. There are roughly two views among researchers: one holds that
technology evolution is generated by the accumulation of continuous innovation behind
technology, and the other holds that the development and change process of technology
itself symbolizes technology evolution and the induction and display of various changes in
the form of paths is the technology evolution pathway [29,30].

The early analysis methods of technology evolution were mainly qualitative methods,
including morphologic analysis, Delphi survey [30], and technology roadmap [19], which
is under the guidance of expert knowledge and experience and requires a lot of human
participation. Therefore, qualitative methods have high research costs and subjectivity,
making the research results inefficient and unstable. With the rapid growth of data min-
ing technology, quantitative methods have been well applied in technology evolution
analysis. The main quantitative analysis methods include patent citation analysis, patent
classification analysis, text mining methods, etc.

Huenteler et al. analyzed the evolution process of technology based on the citation
links of patents, while a citation network can reflect the flow process of knowledge [31].
Zhou et al. analyzed the technology layout and trends of solar cells based on patent classifi-
cation by IPC code [32]. However, the citation network analysis and classification analysis
do not take semantic information in the text corpus into consideration. Additionally, the
IPC code does not change over time. Thus, it is unable to sensitively perceive the technology
evolution for the rapidly developing or converging and emerging technology fields. To
fully use the semantic information in patent text, text mining methods were taken into
consideration to analyze technology evolution. Yoon et al. constructed a semantic network
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using text mining methods to analyze the development trend of technology [33]. Miao
et al. has studied more than 30,000 patents since the 1990s using text mining methods
to obtain products and applications with application prospects and rule out traditional
technologies with a declining trend [11]. However, text mining methods pay more attention
to the semantic information carried by patent text while ignoring the relationship between
patents. Naturally, researchers consider combining the patent citation network and text
mining methods to research technology evolution trends. Li et al. monitored and forecast
the development trend of nanogenerators by citation analysis and used a Hierarchical
Dirichlet Process topic model to extract technological topics [8].

Moreover, most of the existing studies only focus on a single source of data such as
patents and papers, ignoring the interaction between knowledge discovery represented
by grants or papers and technologies applications represented by patents, as well as the
correction and difference of the information.

2.3. Knowledge Graph and Representation Learning

With the advent of the information age, the explosive growth of multi-source hetero-
geneous data has brought significant challenges to the data organization and application
in the big data environment. A knowledge graph (KG) is a structured knowledge base
with strong semantic processing ability, which provides a new idea to solve these problems.
KG comes from Google’s next-generation intelligent semantic search engine technology.
In essence, it is a semantic network that reveals the relationship between entities and can
also formally describe things that existed in the real world and their relationships. Now
KG has been used to refer to all kinds of large-scale knowledge bases. Within the KG, the
storage structure of data and knowledge is a triple, such as <s, p, o> or p (s, o), where s and
o are nodes in the KG, representing subject entity knowledge and object entity knowledge,
respectively, and p is the edge in the KG, meaning the relational knowledge from subject s
to object o.

At present, general knowledge graph technology, such as Freebase, DBpedia, Wikidata,
and so on, has played an essential role in the internet field, such as intelligent search, intelli-
gent Q&A, and personalized recommendation. At the same time, it has been preliminarily
applied in many areas such as finance, e-commerce, medical treatment, etc. Compared
with the general knowledge graph, the domain knowledge graph has more knowledge
sources, faster requirements for large-scale expansion, a more complex knowledge struc-
ture, higher requirements for knowledge quality, and broader application forms. In the
field of nanogenerators, there is little literature on the application of knowledge to analyze
the relationships between various entities.

A knowledge graph is a structured knowledge base that stores entities’ features and re-
lationships, which demands a data mining method to efficiently obtain specific knowledge
from the vast knowledge base. In recent years, representation learning algorithms have de-
veloped rapidly. Their purpose is to learn the potential, informative, and low dimensional
representation of entities, which can simplify the graph while retaining the graph structure,
entities’ features, labels, and other auxiliary information. Socher et al. defined the evalua-
tion function for each triplet in the knowledge graph using a single-layer neural network.
They solved the representation of each entity by maximizing the evaluation function [34].
Although the nonlinear model based on the single-layer neural network can capture the
semantic relationship between entities well, the computational cost is considerable. In-
spired by the phenomenon of translation invariance in word vector space, Bordes et al.
proposed the TransE model to learn the representation of entities in the knowledge graph
in vector space, and the relationship is regarded as the translation vector between related
entity pairs to constrain the learning results [35]. The TransE model is simple to reduce
the computational cost, and the performance is significantly improved compared with the
previous models. Nevertheless, TransE still has many limitations, which has encouraged
later researchers to put forward many improved models. Wang et al. thought that the same
entity should have different vector representations under different relationships, so they
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proposed the TransH model to improve the ability to deal with complex relationships [36].
Lin et al. further proposed the TransR model based on the belief that different relationships
should correspond to different semantic spaces [37]. The TransR model represents entities
in triples into the vector space corresponding to the relationships and then establishes the
translation relationship between entity vectors proposed by the TransE model. On the basis
of TransR, the TransD model further defines different projection matrices for head entity
and tail entity and simplifies the number of parameters of matrix [38].

TransE and its improved model only use the relationship data between entities in the
knowledge graph for representation and learning. However, a large amount of descriptive
information about the entity itself has not been used. Occasionally, the graph neural
network (GNN) has attracted the attention of relevant researchers. GNN is a deep learning
model based on information propagation, which can use the structure information and
node information of the graph for representation at the same time. However, most classical
GNN models, such as GCN [39], GAT [40], GAE [41], etc., can only apply to the knowledge
graph of a single type of entity and relationship. To deal with this, Cen et al. proposed the
MEIRec model, which uses the meta-path sampling method to sample multiple subgraphs
of unified formal structures to facilitate GNN representation learning [42]. Wang et al.
proposed the HAN model, which calculates the adjacency matrix of different meta-paths
and puts it into the GAT model to learn the graph representation [43].

3. Methods
3.1. Data

This study attempted to analyze the knowledge flow between different data sources.
Firstly, using the term “nanogenerator* or nano-generator”, we collected the papers of
nanogenerators in the Thomson Reuters Web Of Science database (WOS) by the end of
December 2021. Then, 3304 publications were retrieved from the whole database, including
the publication’s title, citation information, abstract, time, author, institution, DOI, and
journal name. Likewise, using the term “nanogenerator* OR nanometer generator”, we
collected the patents and nanogenerators in the Derwent Innovation Index (DI) database
by the end of December 2021. Then, 984 patents were retrieved from the database, includ-
ing the patent’s title, citation information, time, and institution. Finally, using the term
“nanogenerator*”, we collected the grants of nanogenerators in the grants database of the
China Knowledge Centre for Engineering Science and Technology (CKCEST). A total of
169 grants were retrieved, including title, start date, keywords, abstract, and institution.
The details of data acquisition are shown in Table 1.

Table 1. Description of data acquisition.

Data Database Time Range Search Query Amounts

Grants
China Knowledge Centre for

Engineering Science and
Technology (CKCEST)

2006–2021 nanogenerator* 169

Papers Thomson Reuters Web Of
science database (WOS) 2006–2021

TI = (nanogenerator* OR
nano-generator*) AND

PY = (2006–2021)
984

Patents Derwent Innovation Index
database (DI) 2006–2021

TI = (nanogenerator* OR
nanometer generator) AND

PY ≤ 2021
3304

3.2. Knowledge Graph of Different Time Slices

To make use of the semantic information in the multi-source data, we need to construct
knowledge graphs to reflect the relationships between entities. Take paper data as an
example. Based on the related entities of papers, such as author, institution, and journal, we
can construct a mapping r (s, o) to preserve the relationship of paper and other entities, while
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s represents the source of the relationship and o represents the object of the relationship,
and r represents the type of relationship. Then, we can obtain several relationships, such
as papers published in a journal p (p, j), papers written by the author w (p, a), and papers
owned by an institution o (p, i). In the meantime, by dealing with the citation information
of papers, we can obtain the relationship of a paper cited by other papers c (p, p). For each
type of relationship, we can construct a matrix MAB to save the mapping, while A and B
represent the type of entities.

Thus far, we have obtained the relationships between entities by the semantic informa-
tion contained in papers. Next, we need to extract features that can reflect the similarity
and differences of papers by the word vectorization method. Specifically, we can vectorize
the title of papers by the doc2vec model (denoted by fi). After vectorization, the paper
with similar subject words in the title has higher vector similarity, which saves the feature
information of papers. The process of knowledge graph construction of patents and grants
is the same as that of papers.

After constructing the knowledge graph of different data sources, we cut it into three
time-slices of 2006–2012, 2013–2017, and 2018–2021. The detail of the knowledge graph is
shown in Table 2. While 2006–2012 represents the preliminary stage of nanogenerators be-
cause PENG was proposed in 2006 and TENG was proposed in 2012, 2013–2017 represents
the development stage of nanogenerators, and 2018–2021 represents the present stage.

Table 2. Description of knowledge graph and meta-path selection.

Data
Source Time Slice Number of Entities Types of Relations Meta-Paths

Grants
2006–2012 21 Contain (grant, keyword)

Own (institution, grant)
G-K-G
G-I-G

2012–2017 76
2017–2021 33

Papers

2006–2012 134 Publish (journal, paper)
Write (author, paper)

Cite (paper, paper)
Own (institution, paper)

P-J-P
P-A-P
P-I-P
P-P

2013–2017 825

2017–2021 2345

Patents
2006–2012 105 Cite (patent, patent)

Own (institution, patent)
P-P

P-I-P
2013–2017 337
2017–2021 542

3.3. Heterogeneous Graph Attention Network for Representation Learning

In this paper, we use a Heterogeneous Graph Attention Network (HAN) to consider
the graph topology and text information at the same time [43]. The HAN model is improved
from the Graph Attention Network (GAT) model while reserving the attention mechanism
of GAT and proposing a solution for heterogeneous graph representation learning [40]. The
framework of HAN is shown in Figure 2.

First, the meta-path was defined as a path in the form of E1
R1→ E2

R2→ · · · Rn→ En+1 (ab-
breviated as E1E2 · · · En+1), which describes the composite relation R = R1

◦ R2
◦ · · · ◦ Rn

between entities E1 and En+1, where ◦ denotes the composition operator on relations.
Based on the definition of meta-path, we can extract relations between different papers,

grants, or patents. For example, we can define the relation of journal co-occurrence of

papers by the meta-path P1
published→ J1

publish→ P2 (abbreviated as PJP). The complete
meta-paths of different data sources are shown in Table 2. Specifically, based on the rela-
tionship we obtained in the process of knowledge graph construction, we can calculate the
transformation matrix of different meta-paths by matrix multiplication (MPP = MPJ ×MJP,
MPP can be denoted by Mϕi while ϕi represent the type of entities).
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Next, based on the transformation matrix of different meta-paths, for each type of en-
tity (e.g., entities with type ϕi), we can conduct information propagation process as follows:

f ′i = Mϕi · fi (1)

where fi and f ′i are the original and processed features of node i, respectively.
After that, self-attention is leveraged to learn the weight among various kinds of

entities. Given an entity pair (i, j) which are connected via meta-path ϕ, a node-level
attention α

ϕ
ij can be learned to show how important entity j will be for entity i. The process

can be formulated as follows:

α
ϕ
ij = attnode

(
f ′i , f ′j , ϕ

)
(2)

Then, the meta-path-based embedding of entity i can be aggregated by the neighbor’s
projected features with the corresponding coefficients as follows:

zϕ
i = σ

 ∑
jεN ϕ

i

α
ϕ
ij · f ′j

 (3)

where zϕ
i is the learned embedding of entity i for meta-path ϕ.

Given the meta-path set {ϕ1, ϕ2, · · · ϕm}, after feeding features into entity-level at-
tention, we can obtain m groups of semantic specific node embeddings, denoted as
{Zϕ1, Zϕ2, · · · Zϕm}.

Generally, every node contains multiple types of semantic information, and semantic
entity embedding can only reflect nodes from one aspect. To learn a more comprehensive
node embedding, we need to fuse multiple semantics, which can be revealed by meta-paths.
A novel semantic-level attention was proposed to automatically learn the importance of
different meta-paths and fuse them. The learned weights of each meta-path can be shown
as follows: (

βϕ1, βϕ2, · · · βϕm
)
= attsem

(
Zϕ1, Zϕ2, · · · , Zϕm

)
(4)

With the learned weights as coefficients, we can fuse these semantic-specific embed-
dings to obtain the final embedding Z as follows:
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Z =
M

∑
m=1

βϕm · Zϕm (5)

3.4. K-Means for Clustering and LDA for Topic Extracting

K-means is an unsupervised clustering algorithm, which identifies clusters
C = {C1, C2, · · · , Ck} based on square error minimization for the given sample set
D = {x1, x2, · · · , xn}. The process can be expressed as:

E =
k

∑
i=1

∑
x εCi

||x− µi||2 (6)

where µi =
1
|Ci | ∑xεCi

x is the mean vector for cluster Ci, and k is the number of clusters
proposed to be classified.

In this paper, the final embedding of entities was used as the input of the K-means
model for clustering. Then, we can obtain k clusters, which represent research sub-fields.

To clarify what each cluster means, we used the Latent Dirichlet Distribution (LDA)
topic model to extract topic words for clusters. The LDA topic model is an unsupervised
method for extracting hidden topics distribution of document and hidden word distribution
of topics. It can represent each cluster by several important topics, and each topic contains
several keywords.

3.5. Clusters Association for Evolutionary Path Identification

The mean value of entity embedding vectors was calculated to reflect the cluster
vector. By calculating the similarity of different cluster vectors in different time slices
or different data sources, we can connect clusters with the highest similarity to form
technology evolution paths, in which the clusters’ topics were used to reflect specific
technologies. In this paper, the reciprocal of the Euclidean distance was used to measure
the similarity of different clusters.

4. Results and Discussions
4.1. Representation Learning and Clustering

According to the proposed method in Section 3, the technology evolution pathway was
identified and described. The multi-source data were utilized to construct the knowledge
graphs of different data sources and different time slices. Based on these knowledge graphs,
we can extract the transformation matrix A ∈ Rn×n by different meta-paths, and the feature
matrix X ∈ Rn×m by doc2vec model, while n was the number of grant, paper, or patent
entities in the knowledge graph, which can be found in Table 2 and m was the vector
dimension of doc2vec output.

Then, the transformation matrix A and feature matrix X were input into the HAN
model to learn the representation vector of entities. In this paper, we set the learning rate to
0.005, the dimension of the semantic-level attention vector to 128, the attention head K to 8,
the dropout of attention to 0.6, and the training epochs to 200.

After using the trained model to get embedding vectors with 64 dimensions, we
utilized K-means model to cluster these embedding vectors. In order to select the number
of clusters accurately, we chose the number corresponding to the maximum silhouette
coefficient while repeating clustering for cluster number change in ranges 2 to 10.

After clustering, we extracted keywords of clusters by LDA topic model using the text
information in each cluster. We provide one topic and ten keywords for each cluster. The
details can be found in Tables 3–5.
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Table 3. Cluster information of grants.

Data Source Time Slice Cluster
Number

Numbers of
Entities Keywords Categories

Grants 2006–2012 0 19

nanometer, nanogenerator, structure,
development, characteristic,

application, utilize, piezoelectric,
analysis, nanowire

PENG structure

Grants 2006–2012 1 2

nanometer, influence, wide band gap,
energy, structure, research,

characteristic, photoelectricity, stress,
element

Undefined

Grants 2013–2017 0 55
nanogenerator, friction, drive, sensor,

flexible, nanomaterial, structure,
electric, piezoelectric, biology

PENG applications

Grants 2013–2017 1 12
piezoelectric, nanogenerator, ZnO,
element, energy, structure, harvest,

nanowire, power supply
PENG structure

Grants 2013–2017 2 9
nanometer, friction, structure,

regulation, semiconductor, device,
polymer, wearable, nanomaterial

Wearable devices

Grants 2018–2021 0 12

nanogenerator, structure,
piezoelectric, wearable, biology,

power supply, nanometer, element,
application, detection

PENG applications

Grants 2018–2021 1 21

nanometer, friction, research,
nanogenerator, harvest, performance,

energy, mechanism, flexibility,
application

TENG applications

Table 4. Cluster information of papers.

Data Source Time Slice Cluster
Number

Numbers of
Entities Keywords Categories

Paper 2006–2012 0 94

nanogenerator, piezoelectric, ZnO,
flexible, transparent, sensor,

nanowire, self-powered, array,
substrate

PENG applications

Paper 2006–2012 1 28

nanogenerator, piezoelectric,
nanostructure, ZnO, ultrasound,

piezotronics, energy, nano-systems,
oxide, self-powered

PENG structure

Paper 2006–2012 2 12

nanogenerator, self-powered,
piezoelectric, graphene,

alpha-particle, driven, actinium255,
sensor, ZnO, energy

PENG materials

Paper 2013–2017 0 454

nanogenerator, triboelectric, energy,
self-powered, harvesting,

piezoelectric, sensor, flexible,
wearable, system

Wearable devices
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Table 4. Cont.

Data Source Time Slice Cluster
Number

Numbers of
Entities Keywords Categories

Paper 2013–2017 1 371

nanogenerator, triboelectric,
piezoelectric, flexible, based, output,

performance, effect, enhanced,
application

Performance
improvement

Paper 2018–2021 0 390

nanogenerator, piezoelectric,
triboelectric, energy, harvesting,

performance, composite, electrospun,
nanofibers

Fiber structure

Paper 2018–2021 1 530
triboelectric, nanogenerator,

performance, high, output, effect,
charge, enhanced, effect, density

Performance
improvement

Paper 2018–2021 2 918

triboelectric, nanogenerator,
self-powered, sensor, wearable,

flexible, system, monitoring,
stretchable, motion

Wearable devices

Paper 2018–2021 3 507
triboelectric, nanogenerator, energy,

harvesting, self-powered, mechanical,
wave, water, wind, vibration

Energy source

Table 5. Cluster information of patents.

Data Source Time Slice Cluster
Number

Numbers of
Entities Keywords Categories

Patent 2006–2012 0 9
bubble, generator, treatment, water,
method, involves, utilizing, based,

micro-nano, controlled, nano
undefined

Patent 2006–2012 1 18
layer, zinc, substrate, piezoelectric,

oxide, element, laminating,
manufacturing, method, nanowire

Manufacturing
method of PENG

layers

Patent 2006–2012 2 35
piezoelectric, nanogenerator,

structure, solar, power, electrical,
conductive, energy, material, cell

PENG structure

Patent 2006–2012 3 43
electrode, layer, nanogenerator,
substrate, piezoelectric, array,

insulating, material, power, film
PENG materials

Patent 2013–2017 0 58

nanogenerator, energy, piezoelectric,
element,

storing, comprises, layer, substrate,
electric, storage

PENGstructure

Patent 2013–2017 1 99
friction, layer, electrode, generator,
nanogenerator, power, component,

nano, surface, signal
TENG structure

Patent 2013–2017 2 56
friction, layer, triboelectric,

nanogenerator, electrode, conductive,
unit, power, generator, surface

TENG structure

Patent 2013–2017 3 60
layer, nanogenerator friction,

electrode, film, polymer, piezoelectric,
material, metal, flexible

TENG materials
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Table 5. Cont.

Data Source Time Slice Cluster
Number

Numbers of
Entities Keywords Categories

Patent 2013–2017 4 64
generator, friction, device, energy,

flexible, power, electric,
nanogenerator, storage, nanometer

TENG application

Patent 2018–2021 0 128
friction, nanogenerator, connected,

signal, electrode, system, layer,
sensor, voltage, output

Performance
improvement

Patent 2018–2021 1 106
triboelectric, nanogenerator, layer,

film, piezoelectric, composite,
material, electrode, flexible, generator

TENG materials

Patent 2018–2021 2 118
friction, nanogenerator, layer, energy,

wearable, device, conductive,
triboelectric, body, power

Wearable devices

Patent 2018–2021 3 87

layer, friction, electrode,
nanogenerator, substrate, conductive,

flexible, structure, material,
comprises

TENG structure

Patent 2018–2021 4 103
friction, nanogenerator, generator,
device, energy, water, plate, shaft,

inner, connected, layer

TENG
energy harvesting

All of the experimental procedures were based on Python 3 programming language
and PyCharm platform.

From Tables 3–5, we can summarize the technology topic of different time slices. In
2006–2012, the main topic was the PENG structure and sensors based on PENG. In 2013–2017,
the flexible sensors and wearable devices were the mainstream nanogenerator applications,
while TENG began to appear and gradually replace PENG. In 2018–2021, wearable devices
were still the research hotspots, while novel energy sources and the performance improvement
of nanogenerators such as output voltage became the research questions.

4.2. Technology Evolution Pathways

Following the step of K-means, we calculate the vector distance of clusters in different
time slices and connect the clusters with minimum distance while the minimum distance is
smaller than the threshold (set to 2) to form the technology evolution pathways. The results
are shown in Figure 3, in which the evolution pathways were automatically generated by
calculating the similarity of the preceding clustering results using a written Python program.
The dots in Figure 3 indicate the clusters which connect similar grants, papers, and patents.
The line connections between dots indicate high similarity between different clusters, which
can represent the knowledge flow and indicate the technology evolution pathways.

From Figure 3, we can analyze the knowledge flow pathways between data sources.
First, we can find that the knowledge flows from grants to papers were faster than that from
papers to patents, as the technologies proposed by grants can be found in papers in the
same time slice but can be found in patents in the backward time slice. An explanation for
this condition is that making a profound study is easier than applying theory to application.

Then, we can find several knowledge flows from research to application successfully.
The most typical case is the wearable devices with nanogenerator sensors. Wearable devices
were proposed by grants in cluster 2 in 2013–2017 based on the basic research of nanogen-
erator structures and materials, and then get a profound study by scholars in 2013–2017.
Finally, after abundant research about the performance of flexible sensors and the devel-
opment of remote monitoring and communication technology, wearable devices based on
flexible and self-powered nanogenerators were applied in daily life. In addition, based on
Figure 3, we can also monitor the evolutionary pathways of piezoelectric nanogenerators.
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Except for these obvious evolution pathways, we can find several isolated short
pathways in 2018–2021, which represent the technologies with strong innovativeness.
Specifically, cluster 3 of papers in 2018–2021 contains the keywords “mechanical”, “wave”,
“wind”, “water”, “vibration”, “energy” and “harvesting”, and cluster 4 of patents in
2018–2021 contains the keywords “water” and “energy”. These keywords demonstrate that
novel energy sources such as wind, water, and mechanical vibration became new research
directions and hotspots. Cluster 0 of papers in 2018–2021 represents the fiber structure of
nanogenerators, which indicates the innovation direction of nanogenerator structures.

5. Conclusions

This paper proposed a novel framework to monitor the evolutionary pathways of
nanogenerator technology based on multi-source data and a knowledge graph. In the frame-
work, the knowledge graph makes full use of text information, and the multi-source data
fully considers the evolutionary pathways from different data perspectives. Additionally,
we show that the novel framework is efficient and accurate.

We find some characteristics that the evolution process and knowledge flow from
grants to patents is faster than that from papers to patents, which indicates that making
a profound study is easier than applying theories to applications. We also monitor the
complete evolution pathways of piezoelectric nanogenerators, wearable devices, and
nanogenerator performance improvement technologies. While analyzing the evolution
pathways, we also find several emerging research directions for nanogenerators, such as
novel energy sources and fiber structure of nanogenerators.

However, due to the numbers of grants, papers, and patents in the nanogenerator
field, we cannot unleash the full advantage of the knowledge graph and representation
learning. In the meantime, the identification of cluster topics requires expert knowledge
and human intervention. So, in future research, we will attempt to get more data and use
the machine learning method to achieve the automatic classification of cluster topics.

Author Contributions: Conceptualization, Y.L. (Yufei Liu) and Y.Z.; methodology, Y.L. (Yufei Liu)
and G.W.; software, validation, data curation, writing—original draft preparation, visualization, G.W.;
resources, project administration, Y.L. (Yufei Liu); writing—review and editing, Y.L. (Yufei Liu) and
Y.L. (Yuhan Liu); supervision, Y.Z.; funding acquisition, Y.Z. and Y.L. (Yufei Liu). All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China [grant
numbers 72104224, 71974107, L2124002, 91646102, L1924058]; the MOE (Ministry of Education in
China) Project of Humanities and Social Sciences [grant number 16JDGC011]; the Construction Project
of China Knowledge Center for Engineering Sciences and Technology [grant number CKCEST-2021-2-
7]; the Tsinghua University Initiative Scientific Research Program [grant number 2019Z02CAU]; and



Nanomaterials 2022, 12, 838 13 of 14

the Tsinghua University Project of Volvo-Supported Green Economy and Sustainable Development
[grant number 20183910020].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gabris, M.A.; Ping, J. Carbon nanomaterial-based nanogenerators for harvesting energy from environment. Nano Energy 2021, 90,

106494. [CrossRef]
2. Sun, M.; Li, Z.; Yang, C.; Lv, Y.; Yuan, L.; Shang, C.; Liang, S.; Guo, B.; Liu, Y.; Li, Z.; et al. Nanogenerator-based devices for

biomedical applications. Nano Energy 2021, 89, 106461. [CrossRef]
3. Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021, 5, 1391–1431.

[CrossRef]
4. Mahapatra, B.; Patel, K.K.; Vidya; Patel, P.K. A review on recent advancement in materials for piezoelectric/triboelectric

nanogenerators. Mater. Today Proc. 2021, 46, 5523–5529. [CrossRef]
5. Zhang, D.; Xu, Z.; Yang, Z.; Song, X. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide

nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251. [CrossRef]
6. Wang, S.; He, M.; Weng, B.; Gan, L.; Zhao, Y.; Li, N.; Xie, Y. Stretchable and Wearable Triboelectric Nanogenerator Based on

Kinesio Tape for Self-Powered Human Motion Sensing. Nanomaterials 2018, 8, 657. [CrossRef]
7. Shin, D.M.; Hong, S.W.; Hwang, Y.H. Recent Advances in Organic Piezoelectric Biomaterials for Energy and Biomedical

Applications. Nanomaterials 2020, 10, 123. [CrossRef]
8. Li, X.; Fan, M.; Zhou, Y.; Fu, J.; Yuan, F.; Huang, L. Monitoring and forecasting the development trends of nanogenerator

technology using citation analysis and text mining. Nano Energy 2020, 71, 104636. [CrossRef]
9. Wang, B.; Liu, Y.; Zhou, Y.; Wen, Z. Emerging nanogenerator technology in China: A review and forecast using integrating

bibliometrics, patent analysis and technology roadmapping methods. Nano Energy 2018, 46, 322–330. [CrossRef]
10. Li, M.; Zhou, Y. Visualizing the knowledge profile on self-powered technology. Nano Energy 2018, 51, 250–259. [CrossRef]
11. Miao, Z.; Du, J.; Dong, F.; Liu, Y.; Wang, X. Identifying technology evolution pathways using topic variation detection based on

patent data: A case study of 3D printing. Futures 2020, 118, 102530. [CrossRef]
12. Liu, H.; Chen, Z.; Tang, J.; Zhou, Y.; Liu, S. Mapping the technology evolution path: A novel model for dynamic topic detection

and tracking. Scientometrics 2020, 125, 2043–2090. [CrossRef]
13. Zhou, Y.; Dong, F.; Kong, D.; Liu, Y. Unfolding the convergence process of scientific knowledge for the early identification of

emerging technologies. Technol. Forecast. Soc. Change 2019, 144, 205–220. [CrossRef]
14. Kong, D.; Yang, J.; Li, L. Early identification of technological convergence in numerical control machine tool: A deep learning

approach. Scientometrics 2020, 125, 1983–2009. [CrossRef]
15. Zhou, Y.; Miao, Z.; Urban, F. China’s leadership in the hydropower sector: Identifying green windows of opportunity for

technological catch-up. Ind. Corp. Change 2020, 29, 1319–1343. [CrossRef]
16. Zhou, Y.; Dong, F.; Liu, Y.; Li, Z.; Du, J.; Zhang, L. Forecasting emerging technologies using data augmentation and deep learning.

Scientometrics 2020, 123, 1–29. [CrossRef]
17. Zhou, Y.; Zang, J.; Miao, Z.; Minshall, T. Upgrading Pathways of Intelligent Manufacturing in China: Transitioning across

Technological Paradigms. Engineering 2019, 5, 691–701. [CrossRef]
18. Zhou, Y.; Li, X.; Lema, R.; Urban, F. Comparing the knowledge bases of wind turbine firms in Asia and Europe: Patent trajectories,

networks, and globalisation. Sci. Public Policy 2016, 43, 476–491. [CrossRef]
19. Liu, Y.; Zhou, Y.; Liu, X.; Dong, F.; Wang, C.; Wang, Z. Wasserstein GAN-Based Small-Sample Augmentation for New-Generation

Artificial Intelligence: A Case Study of Cancer-Staging Data in Biology. Engineering 2019, 5, 156–163. [CrossRef]
20. Jin, L.; Zhang, B.; Zhang, L.; Yang, W. Nanogenerator as new energy technology for self-powered intelligent transportation

system. Nano Energy 2019, 66, 104086. [CrossRef]
21. Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [CrossRef]

[PubMed]
22. Shin, S.-H.; Kim, Y.-H.; Lee, M.H.; Jung, J.-Y.; Nah, J. Hemispherically aggregated BaTiO3 nanoparticle composite thin film for

high-performance flexible piezoelectric nanogenerator. ACS Nano 2014, 8, 2766–2773. [CrossRef] [PubMed]
23. Park, K.I.; Son, J.H.; Hwang, G.T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-efficient,

flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520. [CrossRef] [PubMed]
24. Jin, L.; Ma, S.; Deng, W.; Yan, C.; Yang, T.; Chu, X.; Tian, G.; Xiong, D.; Lu, J.; Yang, W. Polarization-free high-crystallization

β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 2018, 50, 632–638. [CrossRef]
25. Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [CrossRef]

http://doi.org/10.1016/j.nanoen.2021.106494
http://doi.org/10.1016/j.nanoen.2021.106461
http://doi.org/10.1016/j.joule.2021.03.013
http://doi.org/10.1016/j.matpr.2020.09.261
http://doi.org/10.1016/j.nanoen.2019.104251
http://doi.org/10.3390/nano8090657
http://doi.org/10.3390/nano10010123
http://doi.org/10.1016/j.nanoen.2020.104636
http://doi.org/10.1016/j.nanoen.2018.02.020
http://doi.org/10.1016/j.nanoen.2018.06.068
http://doi.org/10.1016/j.futures.2020.102530
http://doi.org/10.1007/s11192-020-03700-5
http://doi.org/10.1016/j.techfore.2019.03.014
http://doi.org/10.1007/s11192-020-03696-y
http://doi.org/10.1093/icc/dtaa039
http://doi.org/10.1007/s11192-020-03351-6
http://doi.org/10.1016/j.eng.2019.07.016
http://doi.org/10.1093/scipol/scv055
http://doi.org/10.1016/j.eng.2018.11.018
http://doi.org/10.1016/j.nanoen.2019.104086
http://doi.org/10.1126/science.1124005
http://www.ncbi.nlm.nih.gov/pubmed/16614215
http://doi.org/10.1021/nn406481k
http://www.ncbi.nlm.nih.gov/pubmed/24517314
http://doi.org/10.1002/adma.201305659
http://www.ncbi.nlm.nih.gov/pubmed/24523251
http://doi.org/10.1016/j.nanoen.2018.05.068
http://doi.org/10.1016/j.nanoen.2012.01.004


Nanomaterials 2022, 12, 838 14 of 14

26. Khandelwal, G.; Minocha, T.; Yadav, S.K.; Chandrasekhar, A.; Maria Joseph Raj, N.P.; Gupta, S.C.; Kim, S.-J. All edible materials
derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy 2019, 65, 104016. [CrossRef]

27. Singh, H.H.; Khare, N. Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy 2018, 51, 216–222.
[CrossRef]

28. Erwin, D.H.; Krakauer, D.C. Insights into innovation. Science 2004, 304, 1117. [CrossRef]
29. Valverde, S.; Sole, R.V.; Bedau, M.A.; Packard, N. Topology and evolution of technology innovation networks. Phys. Rev. E Stat.

Nonlin. Soft Matter Phys. 2007, 76, 056118. [CrossRef]
30. Boulkedid, R.; Abdoul, H.; Loustau, M.; Sibony, O.; Alberti, C. Using and reporting the Delphi method for selecting healthcare

quality indicators: A systematic review. PLoS ONE 2011, 6, e20476. [CrossRef]
31. Huenteler, J.; Ossenbrink, J.; Schmidt, T.S.; Hoffmann, V.H. How a product’s design hierarchy shapes the evolution of technological

knowledge—Evidence from patent-citation networks in wind power. Res. Pol. 2016, 45, 1195–1217. [CrossRef]
32. Zhou, X.; Zhang, Y.; Porter, A.L.; Guo, Y.; Zhu, D. A patent analysis method to trace technology evolutionary pathways.

Scientometrics 2014, 100, 705–721. [CrossRef]
33. Yoon, B.; Park, Y. A text-mining-based patent network: Analytical tool for high-technology trend. J. High Technol. Manag. Res.

2004, 15, 37–50. [CrossRef]
34. Socher, R.; Chen, D.; Manning, C.D.; Ng, A.Y. Reasoning With Neural Tensor Networks for Knowledge Base Completion. In

Proceedings of the Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013;
pp. 926–934.

35. Bordes, A.; Usunier, N.; Garcia-Duran, A. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the
Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2787–2795.

36. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014; pp. 1112–1119.

37. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2181–2187.

38. Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge Graph Embedding via Dynamic Mapping Matrix. In Proceedings of the 7th
International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; pp. 687–696.

39. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, Toulon, France, 24–26 April 2017.

40. Velickovi, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the 6th
International Conference on Learning Representations, Toulon, France, 30 April–3 May 2018.

41. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. In Proceedings of the NIPS Workshop on Bayesian Deep Learning,
Barcelona, Spain, 9–10 December 2016.

42. Fan, S.; Zhu, J.; Han, X.; Shi, C.; Hu, L.; Ma, B.; Li, Y. Metapath-guided Heterogeneous Graph Neural Network for Intent
Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, USA, 4–8 August 2019; pp. 2478–2486.

43. Wang, X.; Ji, H.; Shi, C.; Wang, B.; Cui, P.; Yu, P.; Ye, Y. Heterogeneous Graph Attention Network. In Proceedings of the 19th
International Conference on World Wide Web, San Francisco, CA, USA, 13–17 May 2019.

http://doi.org/10.1016/j.nanoen.2019.104016
http://doi.org/10.1016/j.nanoen.2018.06.055
http://doi.org/10.1126/science.1099385
http://doi.org/10.1103/PhysRevE.76.056118
http://doi.org/10.1371/journal.pone.0020476
http://doi.org/10.1016/j.respol.2016.03.014
http://doi.org/10.1007/s11192-014-1317-4
http://doi.org/10.1016/j.hitech.2003.09.003

	Introduction 
	Literature Review 
	Development of Nanogenerators 
	Technology Evolution Pathways 
	Knowledge Graph and Representation Learning 

	Methods 
	Data 
	Knowledge Graph of Different Time Slices 
	Heterogeneous Graph Attention Network for Representation Learning 
	K-Means for Clustering and LDA for Topic Extracting 
	Clusters Association for Evolutionary Path Identification 

	Results and Discussions 
	Representation Learning and Clustering 
	Technology Evolution Pathways 

	Conclusions 
	References

