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Abstract: Kink deformation is often observed in materials with laminated layers. Graphite composed
of stacked graphene layers has the unique laminated structure of carbon nanomaterials. In this
study, we performed the interlayer deformation of graphite under compression using a simulation of
molecular dynamics and proposed a differential geometrical method to evaluate the kink deformation.
We employed “mean curvature” for the representativeness of the geometrical properties to explore
the mechanism of kink deformation and the mechanical behaviors of graphite in nanoscale. The effect
of the number of graphene layers and the lattice chirality of each graphene layer on kink deformation
and stress–strain diagrams of compressed graphite are discussed in detail. The results showed that
kink deformation occurred in compressed graphite when the strain was approximately equal to 0.02,
and the potential energy of the compressed graphite proportionately increased with the increasing
compressive strain. The proposed differential geometric method can not only be applied to kink
deformation in nanoscale graphite, but could also be extended to solving and predicting interlayer
deformation that occurs in micro- and macro-scale material structures with laminated layers.

Keywords: graphite; kink deformation; mean curvature; laminated structure; differential geometry

1. Introduction

Graphite that is composed of stacked graphene layers has the unique laminated struc-
ture of carbon nanomaterials. Although graphene that consists of a hexagonal pattern of
carbon atoms has extremely excellent mechanical behavior, natural graphite with laminated
graphene is soft and easy to deform under high pressure due to the weak van der Waals
(vdW) interaction force between the adjacent graphene layers [1]. When deformation
occurs in graphite, its mechanical properties may be changed due to its laminated struc-
ture. Moreover, exploring the deformation behavior of graphite not only investigates the
mechanical behavior of graphite itself, but it also establishes a general theory for studying
other materials with similar laminated structures. Ref. [2] emphasized that “The fact that
one can learn something about an earthquake from studying the deformation of graphite,
is quite astonishing and remarkable indeed”. Kink deformation in bending graphite was
observed from experimentation, and it was studied by theoretical analysis and molecular
dynamic (MD) simulation [3]. Band theory [4] and discrete-plate theory [5] were employed
to investigate the kinking phenomenon in graphite. The stability, elastic properties, and
deformation behavior of graphene-based, diamond-like phases were analyzed by MD
simulation [6], where Poisson’s ratio of graphene with the lattice defect was identified [7].

According to the unique deformation phenomena in laminated structures, the concept
of the kink band was proposed by [8], where the generation of a kink band that would
produce kink deformation was studied theoretically. Ref. [9] predicted the kink band angle
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and compressive strength of materials with laminated structures. Ref. [10] performed
continuum mechanical modeling of the formation of kink bands in fiber-reinforced com-
posites, from where the kink propagation stress, the kink orientation angle, and the fiber
direction within the kink band could be determined completely. Compressive failure due
to steady state kink-band broadening in materials with laminated structures was analyzed
theoretically by [11], where an incremental scheme was proposed for calculating kink-band
broadening stress and the lock-up conditions of the kink band. Ref. [12] proposed a new
micromechanical model of the broadening of kink bands in fiber-reinforced composites,
which was employed to simulate the steady-state axial propagation of kink bands. Ref. [13]
described the mechanisms of kink-band broadening in fiber-reinforced composites using
the softest deformation modes and measured kink-band broadening stress using experi-
ments. Refs. [14,15] calculated the critical strain of fiber-reinforced composites; he found
that fibers could break in the first step and a fully developed kink band could exist in
the second step. Using micromechanical models, Vogler et al. [16] performed theoretical
analysis on the initiation and the growth of kink bands in fiber-reinforced composites,
which was motived by experimental findings. The Maxwell stability criterion was also
proposed to investigate the properties of kink bands [17,18]. Microscopic deformation in
structures caused by crystal plasticity were studied using theoretical analysis [19,20] or
computational approaches [21,22]; the simplified explanation of the mechanism of a kink
band would be also useful for the coarse-grained model. Kink deformation played an
important role in achieving a reversible hysteresis in a pseudo elastic deformation [23,24].
The compression behavior of natural graphite sheet [25] has been reported, and it points out
that deformation is significant during the forming process. The determination of graphite
deformation behaviour using microtribological pressure tests [26] has been investigated
using a numerical approach. Moreover, ref. [27] have discussed the characterization of
ripplocation mobility in compressive graphite. In addition, Ref. [28] proposed the nonlinear
continuum theory to describe the buckling behavior of graphene and Ref. [29] discussed
the phonon frequency of graphite under uniaxial compression along the c axis. However,
the deformation of graphite has not been described by exact quantitative figures, and there
is no explanation of the relationship between the shape of it and force. Especially, the
deformation mechanism of laminated structures was still not clarified clearly enough up
until now.

The establishment of a general deformation theory based on a differential geometric
method is expected to elucidate the deformation mechanism in laminated structures,
e.g., graphite in the present work. To investigate kink deformation in micro-buckled
graphite with laminated graphene layers, in the following parts, we build two kinds of
atomic simulation models: armchair graphite and zigzag graphite. Both kinds of graphite
incorporate 20, 30, 40, 50, or 60 atomic layers, and we performed the compression test
on each type of graphite using MD simulation at first. Then, we proposed a differential
geometric method to evaluate the mean curvature of each graphene layer in each type of
graphite. Next, we discussed the geometrical properties of unique deformation and studied
the relationship between the distributions of mean curvature and potential energy. Lastly,
we summarized the remarkable conclusions.

2. Atomic Model of Graphite with Layered Structure

In this study, we built an atomic model of graphite composed of laminated graphene
layers where each layer of graphene consisted of perfect hexagonal lattice of carbon atoms,
which is shown in Figure 1. The atomic model of graphene was located on the x − y plane,
whose dimensions in x direction (lx) and y direction (ly) were 102 Å and 49 Å, respectively.
Moreover, the heights of models were dependent on the number of graphene sheet (GS)
layers. We noted here that the dimension of a simulation model was representative for
clearly illustrating the mechanism of kink deformation in graphite.
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(a) Top view.

(b) Side view.

(c) Bird’s eye view.

Figure 1. Atomic model of graphite.

We set the lamination direction along the z direction with the well-known ABAB
stacking planar arrangement. The number of layers n in each simulation were set as 20,
30, 40, 50, and 60, respectively. Moreover, the layers were numbered from bottom to top
with the initial interlayer distance of 3.35 Å [30]. According to the chirality of carbon
nanomaterials, we modeled two kinds of graphite, i.e., armchair and zigzag, and applied
the compression load along both the armchair direction and the zigzag direction.

3. Analysis Method
3.1. Molecular Dynamics Simulation

According to the atomic model, we performed the compression test to elucidate
the mechanism of kink deformation in graphite by MD simulation using the large-scale
atomic/molecular massively parallel simulator (LAMMPS). The interaction was evaluated
using the adaptive intermolecular reactive empirical bond-order (AIREBO) potential [31],
where the cut-off distance between carbon atoms rcut was set to 1.95 Å. The AIREBO
potential includes three potential terms: the first term is the reactive empirical bond-order
(REBO) potential of Brenner, which describes the interactions between carbon atoms in
each graphene layer; the second term is the Lennard Jones (LJ) potential, which describes
the interaction between the neighboring layers and is evaluated by the vdW interaction
force [32]; the third term is the explicit four-body potential, which describes various dihedral
angles caused by obvious out-of-plane deformation. To make an energy minimization of
the system, the initial atomic model of graphite was optimized by the conjugate gradient
(CG) method, and the stopping tolerance for energy ∆E was 1.0 × 10−10. We used the
isothermal–isobaric (NPT) ensemble as room temperature (300 K) to update the position
and velocity for atoms at each timestep, and we adopted the canonical (NVT) ensemble
during compression process. The time step ∆t was set at 1 fs. Figure 1a shows the analytical
model of graphene in the x − y plane, which was stacked along the z direction as shown
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in Figure 1b. The strain rate in the x direction of carbon atoms at x = 0 and x = lx,
marked with the left and right boxes as shown in Figure 1b, was specified as 0.5 Å/ps, and
displacements of the same carbon atoms in the y direction and z direction were fixed. Other
carbon atoms were free in each direction, and the x and y directions were set as periodic
boundary conditions.

3.2. Mean Curvature

To evaluate the out-of-plane deformation of graphene from plane to curved surface,
we proposed a differential geometry method to calculate the mean curvature tensor using
the atomistic configuration. During the compression process, each graphene layer, modeled
as a 2D plane, initially deformed to a 3D curved surface due to the out-of-plane deforma-
tion. Thus, this 2D–3D transition generated folds and kink deformations in the graphite.
However, in general, the mean curvature of the differential was used to describe the shape
of a folding non-individual body. The structure of graphene is made up of discrete carbon
atoms, in which each atom is connected with three adjacent atoms via C–C covalent bonds.
As shown in Figure 2, three neighboring atoms I, J, and K are connected to a certain atom
O; these four atoms O, I, J, and K span a curved surface S. We introduced mean curvature,
defined by atomic configuration, so that we could characterize out-of-plane deformation
with quantification. It should be sufficient to approximate the normal vector m using the
normal vector of the plane I–J–K. Here we assumed local Cartesian coordinates O–uvw
where the direction of w was parallel to the normal vector m.

Thus, the curved surface S could be expressed as:

κ11u2 + 2κ12uv + κ22v2 + w = 0, (1)

where κ11, κ12, and κ22 are the components of curvature tensor κ.

κ =

[
κ11 κ12
κ12 κ22

]
. (2)

Equation (2) corresponds to the first fundamental form of a curved surface in differential
geometry.

Since the atom O (u, v, w) = (0, 0, 0) was located on the surface S, we have the
following conditions.

κ11u2
I + 2κ12uIvI + κ22v2

I + wI = 0

κ11u2
J + 2κ12uJvJ + κ22v2

J + wJ = 0

κ11u2
K + 2κ12uKvK + κ22v2

K + wK = 0. (3)

According to the definition of mean curvature, we have wI = wJ = wK = w̄, where the
constant w̄ can be easily calculated using the atomic coordinates of O, I, J, and K. Thus,
we calculated the three unknown coefficients, κ11, κ12, and κ22, by solving Equation (3).
To determine the principal direction, the rotation matrix R with rotation angle α in the w
direction was introduced.

R =

[
cos α − sin α
sin α cos α

]
(4)

When the two non-diagonal components κ12 in Equation (2) vanished, the principal direc-
tion αP derived as Equation (5) helped us to obtain the maximum or the minimum mean
curvature.

αP =
1
2

tan−1
(

2κ12

κ11 − κ22

)
(5)
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Using the rotation matrix of R, if only the rotation angle in the principle direction was
rotated, the curvature tensor κP could be determined from Equation (6).

κP =

[
κP

11 0
0 κP

22

]
= RTκR (6)

The mean curvature H is the average value of the principal curvature components κP
11

and κP
22, shown as:

H =
κP

11 + κP
22

2
(7)

I
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(a) (b) (c)

Figure 2. Schematic diagram of mean curvature defined by atomic configuration. (a) Discrete lattice
structure. (b) The approximation of a continuous surface. (c) Curvature calculation.

4. Results and Discussion
4.1. Kink Deformation and Delamination

The deformation behavior of graphite under compression depends on the external
force and its internal structure. In this section we discuss the effect of compressive strain,
the number of graphite layers, and the lattice chirality of the graphite within the layered
structure mentioned in Section 2 in detail. The deformation of armchair graphite and
zigzag graphite with different numbers of layers of graphene is shown in Figures 3–8,
from which we could see that most of the graphene layers in each graphite were generated
sharply by out-of-plane deformation, similar to folds in strata. The mechanism of kink
deformation observed in an Mg alloy was reported in one of our previous works [22].
However, for graphite, not only kink deformation but also delamination appears during
the compression process. Furthermore, the types of kink deformation and geometrical
properties of delamination strongly depend on the compressive strain, the number of
graphene layers, and the direction of compression.

Figure 3 shows the deformation of armchair graphite with 20 graphene layers under
compression. After controling the temperature in order to stabilize the structure of the
graphite, only microscopic wave-shaped deformations appeared when the compressive
strain ε = 0.00, as shown in Figure 3a, because of the stability of structure. However,
increasing the compressive strain caused the wave-shaped deformations in the z direction
to become obvious; the mountain and valley shapes could be observed clearly when the
compressive strain ε = 0.05, as shown in Figure 3b. Moreover, delamination between
adjacent layers could be found when the compressive strain ε = 0.10, as shown in Figure 3c.
As the vdW interaction force between the adjacent layers in the graphite was weaker than
that of alloys but stronger than that in ceramics, delamination almost never occurs in
alloys with an ong-period stacking ordered (LPSO) phase, but is often observed in ceramics
(especially in ceramics with a MAX phase [22]). With the increasing compressive strain,
two small pieces of delamination, as shown in Figure 3c, combined to form one large piece
of delamination, as shown in Figure 3d, where the valley shapes disappeared.



Nanomaterials 2022, 12, 903 6 of 18

(a) ε = 0.00 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0.15 (e) ε = 0.20 (f) ε = 0.25

Figure 3. Deformation of armchair graphite under compression (n = 20).

From the results obtained using armchair graphite with 40 graphene layers under
compression, as shown in Figure 4, dependence on each graphene layer in the graphite
could be observed more obviously compared to the armchair graphite with 20 graphene
layers. When the compressive strain ε = 0.10 as shown in Figure 4c, the number of waves in
the top layer was totally different from that in the bottom layer. The delamination between
the adjacent graphene layers also appeared much later than that in armchair graphite with
20 graphene layers, and only microscopic delamination could be observed. When the
compressive strain reached ε = 0.25, as shown in Figure 4f, the delamination boundary
became more obvious, and two curves consisting of microscopic delaminations could be
observed. These two curves were the boundaries of the kink band.

(a) ε = 0.00 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0.15 (e) ε = 0.20 (f) ε = 0.25

Figure 4. Deformation of armchair graphite under compression (n = 40).
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To deeply discuss the effect the number of graphene layers has on micro-buckled
graphite, we listed and compared the deformation shapes of armchair graphite with
different number of graphene layers when the compressive strain was ε = 0.20, as shown
in Figure 5. With the increasing number of graphene layers, the delamination between
the adjacent graphene layers became smaller and smaller, whereas the boundary of the
kink band became more and more obvious. As shown in Figure 5d, the two broken curves
indicated the boundaries of the kink band in the armchair graphite with 50 and 60 graphene
layers, respectively, where the pieces of microscopic delamination were all on the two kink
boundaries; this was because the effective bending rigidity of graphite is a function of the
number of layers [33]. We speculated that the fundamental reason for the effects that the
number of graphene layers had on the compressive deformation behavior was due to the
interlayer distance-dependent interaction of the vdW force.

(a) n = 20 (b) n = 30 (c) n = 40

Boundary of kink-band Boundary of kink-band
(d) n = 50 (e) n = 60

Figure 5. Deformation of armchair graphite under compression (ε = 0.20).

Figures 6–8 show the out-of-plane deformation of zigzag graphite with 20 to 60 graphene
layers under compression. Comparing to that of armchair graphite, for the lower numbers
of laminated graphene layers, such as n = 20, as shown in Figures 3 and 6, when the
compressive strain was ε = 0.10 and ε = 0.15, the delamination in the armchair graphite
could more easily be observed than in the zigzag graphite. When the compressive strain
reached ε = 0.20 and ε = 0.25, macroscopic delamination only occurred in one place in
the armchair graphite, as shown in Figure 3e,f, whereas delamination appeared in two
different places in the zigzag graphite, as shown in Figure 6e,f. Comparing armchair and
zigzag graphite with larger numbers of laminated graphene layers when ε = 0.20, e.g.,
n = 50, as shown in Figures 5d and 8d, and n = 60 as shown in Figures 5e and 8e, only
microscopic delamination between adjacent graphene layers appeared. With increasing
kink deformation, the boundaries of the kink band passed through microscopic delami-
nation and became more obvious, while most of the pieces of microscopic delamination
disappeared. We found that the delamination and the kink deformation simultaneously
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appeared in graphite, and they controled the growth of each other. As a result, we found
that the relationship between kink deformation and delamination in graphite was similar
to that of the chicken and the egg, because it was not clear which of the two events was
the cause and which was the consequence. As the compression ratio increased, the clear
boundaries of the kink band started from the position of delamination and the growth of
delamination weakened with the growth of kink deformation. Even in zigzag graphite
with 60 graphene layers under compressive strain ε = 0.20, as shown in Figure 8e, some
carbon atoms jumped out of the graphite due to the growth of the kink deformation.
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Figures 6–8 show the out-of-plane deformation of zigzag graphite with 20 to 60199

graphene layers under compression. Comparing to that of armchair graphite, for the200

less numbers of laminated graphene layers, such as n = 20 as shown in Figures 3 and201

6, when the compressive strain ε = 0.10 and ε = 0.15, the delamination in armchair202

graphite can be more easily observed than that in zigzag graphite. When the compres-203

sive strain reaches to ε = 0.20 and ε = 0.25, macroscopic delamination only occurs in204

one place of armchair graphite as shown in Figures 3(e) and (f), whereas delamination205

appears in two different places of zigzag graphite as shown in Figures 6(e) and (f). Com-206

paring armchair and zigzag graphite with larger number of laminated graphene layers207

when ε = 0.20, e.g. n = 50 as shown in Figures 5(d) and 8(d), and n = 60 as shown in208

Figures 5(e) and 8(e), only microscopic delamination between adjacent graphene layers209

appears. With the increasing of kink deformation, the boundaries of kink-band pass210

through microscopic delamination become obvious while most of the pieces of micro-211

scopic delamination disappear. We can find that the delamination and the kink defor-212

mation simultaneously appear in graphite, and they control the growth of each other.213

As a result, we find that the relationship between kink deformation and delamination214

in graphite just like that of chicken and egg, because it is not clear which of the two215

events should be the cause and which should be the consequence. As the compression216

ratio increases, the clear boundaries of kink-band start from the position of delamina-217

tion, and the growth of delamination weakens with the growth of kink deformation.218

Even when zigzag graphite with 60 graphene layers under compressive strain ε = 0.20219

as shown in Figure 8(e), some carbon atoms jump out of the graphite due to the growth220

of kink deformation.221

(a) ε = 0.00 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0.15 (e) ε = 0.20 (f) ε = 0.25

Figure 6. Deformation of zigzag graphite under compression (n = 20).Figure 6. Deformation of zigzag graphite under compression (n = 20).
Version December 9, 2021 submitted to Nanomaterials 10 of 20

(a) ε = 0.00 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0.15 (e) ε = 0.20 (f) ε = 0.25

Figure 7. Deformation of zigzag graphite under compression(n = 40).

(a) n = 20 (b) n = 30 (c) n = 40

Boundary of kink-band Boundary of kink-band
(d) n = 50 (e) n = 60

Figure 8. Deformation of zigzag graphite under compression(ε = 0.20).

Figure 7. Deformation of zigzag graphite under compression (n = 40).
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(a) ε = 0.00 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0.15 (e) ε = 0.20 (f) ε = 0.25

Figure 7. Deformation of zigzag graphite under compression(n = 40).

(a) n = 20 (b) n = 30 (c) n = 40

Boundary of kink-band Boundary of kink-band
(d) n = 50 (e) n = 60

Figure 8. Deformation of zigzag graphite under compression(ε = 0.20).Figure 8. Deformation of zigzag graphite under compression (ε = 0.20).

4.2. Compressive Stress–Strain Curves and Average Potential Energy

Figure 9a,b shows the compressive stress–strain curves of armchair and zigzag graphite
with 20, 30, 40, 50, and 60 graphene layers, respectively. To clearly see the variation of
the stress, we expressed the compressive stress together with the compressive strain from
ε = 0.00 to ε = 0.20. According to the tendency to change of the stress-strain curves, we di-
vided them into three stages. From Figure 9, we could see that all of the stress–strain curves
showed a significant peak at the beginning (ε = 0.00∼0.01) in the first stage then decreased
in the second stage (ε = 0.01∼0.03), and increased again in the third stage (approximately
ε > 0.03). In fact, when the compressive strain reached ε = 0.03, out-of-plane deformation
occurred in almost all of the graphene layers. Moreover, both armchair and zigzag graphite
with 60 graphene layers expressed the maximum compressive stress at ε = 0.20, where the
kink deformation appeared and enhanced the mechanical behavior of the graphite. On
the contrary, both armchair and zigzag graphite with 20 graphene layers showed the least
growth in terms of compressive stress due to the generated macroscopic delamination.



Nanomaterials 2022, 12, 903 10 of 18

0.00

stage 3stage 2
stage 1

(a) Armchair direction.

0.00

stage 3stage 2
stage 1

(b) Zigzag direction.

Figure 9. Compressive stress–strain curve of graphite.

Figure 10a,b expresses the relationship between the potential energy per atom and the
compressive strain in armchair and zigzag graphite with 20, 30, 40, 50, and 60 graphene
layers, respectively. We could see that the potential energy per atom Ep, in terms of
armchair and zigzag graphite with different graphene layers, showed an increasing trend
with the increase in compressive strain, where the number of layers and the chirality of
graphite had less of an effect on the growth of the average potential energy. The curves
were almost monotonically increasing, but for part of them, the increasing ratios were not
linear; we speculated that this was because of the appearance of out-of-plane deformation,
kink deformation, and delamination in the compressed graphite.
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0.00

-

-

-

-

(a) Armchair direction.

0.00

-

-

-

-

(b) Zigzag direction.

Figure 10. Relationship between potential energy per atom and compressive strain.

4.3. Mean Curvature and Site Potential Energy

According to the derived Equation (7), we calculated the mean curvature to describe
the deformation of the designated graphene layers and discussed the relationship between
mean curvature and potential energy in detail. Figures 11–14 show the mean curvature
and site potential energy of armchair and zigzag graphite with 20 graphene layers under
compressive strain ε = 0.10 and ε = 0.20, respectively, and we have the following: (i)
shows site mean curvature, (ii) shows site potential energy, and (iii) shows mean curvature
with deformation. The deformation and delamination were in close agreement with
Figures 3 and 6, so we could confirm that the site potential energy had a close relationship
with mean curvature.

During the compressive process, each graphene layer was generated by out-of-plane
deformation. We picked the bottom layer (n = 1) and the top layer (n = 20), and the
layers with large wave deformation due to the inter-layer delamination, as representatives.
For instance, when armchair graphite with 20 graphene layers was under compressive
strain, ε = 0.10 and ε = 0.20, delamination was observed between the 11th and 12th layers,
as shown in Figure 3, so we expressed the results of the 1st, 11th, 12th, and 20th layers.
Mean curvature concentration could be seen from contour maps, which could quantify the
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drastic change of folds, and a high value of mean curvature indicated a high value of site
potential energy.

Version March 7, 2022 submitted to Nanomaterials 17 of 21

(i)

(ii)

(iii)

(a) The 1st layer (n = 1) (b) The 11th layer (n = 11)

(i)

(ii)

(iii)

(c) The 12th layer (n = 12) (d) The 20th layer (n = 20)

Figure 11. Mean curvature and site potential energy of curved surface of armchair graphite under
compression ε = 0.10. (i) Site mean curvature, (ii) Site potential energy, and (iii) Mean curvature
with deformation.

Version March 7, 2022 submitted to Nanomaterials 17 of 21

(i)

(ii)

(iii)

(a) The 1st layer (n = 1) (b) The 11th layer (n = 11)

(i)

(ii)

(iii)

(c) The 12th layer (n = 12) (d) The 20th layer (n = 20)

Figure 11. Mean curvature and site potential energy of curved surface of armchair graphite under
compression ε = 0.10. (i) Site mean curvature, (ii) Site potential energy, and (iii) Mean curvature
with deformation.

Figure 11. Mean curvature and site potential energy of curved surface of armchair graphite under
compression ε = 0.10. (i) Site mean curvature, (ii) Site potential energy, and (iii) Mean curvature with
deformation.
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Version March 7, 2022 submitted to Nanomaterials 18 of 21

(i)

(ii)

(iii)

(a) The 1st layer (n = 1) (b) The 11th layer (n = 11)

(i)

(ii)

(iii)

(c) The 12th layer (n = 12) (d) The 20th layer (n = 20)

Figure 12. Mean curvature and site potential energy of curved surface of armchair graphite under
compression ε = 0.20. (i) Site mean curvature, (ii) Site potential energy, and (iii) Mean curvature
with deformation.

Version March 7, 2022 submitted to Nanomaterials 18 of 21

(i)

(ii)

(iii)

(a) The 1st layer (n = 1) (b) The 11th layer (n = 11)

(i)

(ii)

(iii)

(c) The 12th layer (n = 12) (d) The 20th layer (n = 20)

Figure 12. Mean curvature and site potential energy of curved surface of armchair graphite under
compression ε = 0.20. (i) Site mean curvature, (ii) Site potential energy, and (iii) Mean curvature
with deformation.

Figure 12. Mean curvature and site potential energy of curved surface of armchair graphite under
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To discuss the relationship between the mean curvature and site potential energy in
detail, we plotted Figure 15. Figure 15 shows the relationship between the mean curvature
and site potential energy of armchair graphite with 20 graphene layers under compressive
strain ε = 0.20, where (a) expresses the relationships of the 1st and 2nd layers, and (b)
expresses the relationships of the 11th and 12th layers. As shown in Figure 15a, most of
the distribution plot around (0.0, −7.42 eV) and the plus or minus values of the mean
curvatures of each site potential energy in the 1st and 2nd layers were nearly the same,
which indicated a smaller out-of-plane deformation of the two layers, and there was almost
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no delamination between the two adjoint layers. From Figure 15b, we could see that
although the distributions of the site potential energy of the 11th and 12th layers were
concentrated around a point that was almost the same as the one in Figure 15a; however, the
site potential energies extended in contrary directions along the white band. Comparing
the center of the site potential energy and the opposite curvature distributions of the
11th and 12th layers indicated that obvious delamination was generated between the two
layers. Thereby, by evaluating the site potential energy and the mean curvature of each
graphene layer in the graphite, we could quantify the kind deformation in the graphite
accurately. In addition, evaluation of the site potential energy and the mean curvature was
also expected to be used to expose the deformation mechanism of other materials with
laminated structures.

-

-

-

-

-

-

(a) The 1st layer and the 2nd layer.
-

-

-

-

-

-

(b) The 11th layer and the 12th layer.

Figure 15. Potential energy and mean curvature of armchair graphite under compression ε = 0.20.

5. Conclusions

In this work, in order to investigate the interlayer deformation of micro-buckled
graphite and to establish a general methodology for evaluating the kink deformation of
compressed laminated structures, we performed compression tests on armchair and zigzag
graphite with different numbers of laminated graphene layers using MD simulation. We
proposed a differential geometric method using mean curvature to explore the relationship
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between geometrical and mechanical properties. From the compression tests, not only
the kink deformation but also the delamination were observed, and different kinds of
deformation patterns appeared in the graphite according to the different chiralities of the
graphite and different number of graphene layers. We concluded that the kink deformation
in graphite started from the position of delamination and the growth of kink deformation
weakened the growth of delamination. We also showed the relationships between com-
pressive stress and compressive strain, and between site potential energy and compressive
strain to investigate the structural effect on the material properties of graphite. Moreover,
according to the calculated mean curvature, we found that the concentration of compressive
stress and site potential energy were generated at almost the same locations in all of the
analytical models. Lastly, we should note that the calculation of site potential energy and
mean curvature using the proposed differential geometric method could be extended and
used for solving and predicting the interlayer deformation that occurs in micro and macro
materials with laminated layers.
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