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Abstract: This paper presents a substantial review of the fabrication and implementation of graphene-
PDMS-based composites for wearable sensing applications. Graphene is a pivotal nanomaterial
which is increasingly being used to develop multifunctional sensors due to their enhanced electrical,
mechanical, and thermal characteristics. It has been able to generate devices with excellent perfor-
mances in terms of sensitivity and longevity. Among the polymers, polydimethylsiloxane (PDMS) has
been one of the most common ones that has been used in biomedical applications. Certain attributes,
such as biocompatibility and the hydrophobic nature of PDMS, have led the researchers to conjugate
it in graphene sensors as substrates or a polymer matrix. The use of these graphene/PDMS-based
sensors for wearable sensing applications has been highlighted here. Different kinds of electrochem-
ical and strain-sensing applications have been carried out to detect the physiological signals and
parameters of the human body. These prototypes have been classified based on the physical nature of
graphene used to formulate the sensors. Finally, the current challenges and future perspectives of
these graphene/PDMS-based wearable sensors are explained in the final part of the paper.

Keywords: graphene; wearable; sensors; reduced graphene oxide; nanoplatelets

1. Introduction

The end of the 20th century has seen burgeoning growth in the field of nanotechnology-
based devices. Different kinds of nanomaterials [1,2] have been used to devise sensors for
domestic and industrial applications. In earlier times, when the large integrated circuits
were used for sensing applications, their impact in terms of sensitivity and longevity was
largely dependent on their immediate environment. As a replacement, the researchers
have started fabricating small-scaled sensors [3,4], which not only have enhanced char-
acteristics but can also be deployed for additional applications. The initial growth of
these sensors took place as semiconducting prototypes [5–7], where the substrates and
electrodes were formed using silicon and metallic nanoparticles such as gold, chromium,
and platinum [8,9], respectively. These silicon sensors were formed using microelectrome-
chanical system (MEMS) techniques that consisted of techniques such as conventional
photolithography [10,11] to form the designated electrodes. Although these sensors were
used for different environmental [12,13] and gas-sensing [14,15] applications, some disad-
vantages were associated with their fabrication cost. One of the primary disadvantages is
that the development of these sensors requires very expensive cleanrooms and foundry
facilities, thus increasing the assembly cost even for a few sensors [16,17]. This caused the

Nanomaterials 2022, 12, 950. https://doi.org/10.3390/nano12060950 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12060950
https://doi.org/10.3390/nano12060950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-3760-1470
https://orcid.org/0000-0002-7680-8423
https://doi.org/10.3390/nano12060950
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12060950?type=check_update&version=2


Nanomaterials 2022, 12, 950 2 of 19

researchers to further develop sensors that included flexible materials. The sensors have
been devised using extensive printing techniques [18,19] such as screen printing [20,21],
inkjet printing [22,23], 3D printing [24,25], offset lithography [26,27], flexography [28,29],
and gravure printing [30,31].

The fabrication techniques have been employed to process certain polymers and
nanomaterials to form prototypes. A wide range of polymers and nanomaterials have
been processed to develop flexible sensors [32,33], which have been selected based on
the applications of the prototypes. Regarding the polymers, some of the common ones
include polydimethylsiloxane (PDMS) [34–36], polyethylene terephthalate (PET) [37–39],
polyimide (PI) [40–42], and polyethylene naphthalate (PEN) [43–45]. These polymers have
been either used to form the substrates of the sensors or as the polymer matrix in the
nanocomposites, where the nano-fillers have been added at defined proportions. In recent
times, conductive polymers have been used to lower the manufacturing cost of the thin
films and minimize the limitations of the nanocomposite-based electrodes. Some of the
common conductive polymers used to form the flexible sensors are PEDOT: PSS [46–48],
polyaniline (PANI) [37,49,50], polyacetylene (PA) [51–53], and polypyrrole (PPy) [54–56].
Their conjugation assists in inducing additional functional groups that add material proper-
ties to the prototypes. The biocompatible polymers are highly advantageous due to certain
attributes such as renewability, biodegradability, and cost-effectiveness. These polymers
have been largely preferred to devise wearable sensors that have been used to detect chronic
and acute anomalies. The prototypes have been used externally by attaching them to the
body and internally by implanting them inside the human body. Among the biocompatible
polymers, PDMS is the most common one due to its chemically inert nature, high perme-
ability for gases, good thermal stability, optically transparency, hydrophobic nature, and its
excellent interfacial bonding with nanofillers in the composites.

Similar to the polymers, different nanomaterials have been considered to develop
flexible sensors. These nanomaterials can be distinguished into two classes, including
carbon-based allotropes [57–59] and metallic nanomaterials [60–62]. While materials such
ascarbon nanotubes (CNTs) [63–65], graphene [66–68], and graphite [69–71] fall in the
former category, the second class consists of different kinds of physiochemical structures
such as nanoparticles [72–74], nanowires [75–77], nano-beads [78–80], nano-ribbons [81–83],
and quantum dots [84–86]. Regarding the development of wearable sensors, carbon-based
allotropes have been preferred over the other allotropes due to their high biocompatibil-
ity and excellent electromechanical characteristics. Among the carbon-based allotropes,
graphene [87–89] has been one of the forerunning materials due to its ultralight nature,
high tensile strength, high charge carrier mobility, and high heat conduction capability.
It has been used for a wide range of biomedical [90–92], industrial [93–95], and envi-
ronmental [96–98] applications. Wearable sensors have efficiently monitored the human
body’s physiological signals [99,100] and motions [101,102]. Certain attributes of the wear-
able sensors such as high accuracy, reliability, and repeatability of the responses have
led the researchers to use them to analyze and provide healthcare-related data to the
monitoring unit [101,103]. Signals from critical organs have been detected in patients for
rehabilitation to improve their quality of life. Figure 1 [104,105] represents certain kinds
of graphene nanomaterials that are used along with PDMS for electrochemical and strain-
sensing applications. Even though a lot of topical reviews have been written on the use of
graphene [106,107] and PDMS-based [108,109] sensors, the illustration of the conjugated
use of these two materials in terms of fabrication and implementation has not been done
yet. A significant elucidation of the electromechanical effect of the graphene/PDMS-based
sensors for wearable sensing applications has not been done yet. This paper highlights the
use of graphene/PDMS-based sensors for different kinds of wearable sensing applications.
Categorization of the physical structures of graphene has been done to display their effect
alongside PDMS as wearable sensors.
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The paper has been organized as follows. The brief introduction regarding the signifi-
cance of graphene, PDMS, and wearable sensors given in Section 1. Section 2 highlights a
classification of different types of graphene/PDMS-based sensors. It explains the nature
of the processed materials used to form the prototypes and their subsequent applications
as wearable sensors. The sensors have been categorized into four types, each differing
from the ones in terms of the physicomechanical structure of graphene. The four cate-
gories of graphene are nanopowder [110,111], reduced graphene oxide (rGO) [112,113],
nanoplatelets [114,115], and quantum dots [116,117]. Then, the challenges related to the
current graphene/PDMS-based sensors have been highlighted, alongside some of their
possible remedies. The conclusion is drawn in Section 4.

2. Graphene/PDMS-Based Sensors

The design and development of wearable sensors using biocompatible materials have
been done for quite a few years. These biodegradable prototypes have been formed us-
ing biomaterials that increase the biocompatibility between the sensors and the human
body. The design of the device structure has been done in a way to increase the long-term
stability in their responses during the monitoring of physiological signals. Some of the
other advantages provided by these biocompatible sensors are the inclusion of low-cost
devices for multifunctional applications, the ability to perform in vitro and in vivo exper-
iments, high accuracy, reduced toxicity, and minimal side-effects during and following
the experiments [118]. The high sensitivity and fast response time of the wearable sensors
have led researchers to use them with activities related to daily life. When used as reli-
able diagnostic devices, these prototypes have been able to provide a linear response for
wearable electrochemical [119] and strain-sensing [120] applications. Graphene, having
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unique electronic and chemical properties, can detect micro-movements [121] and operate
as biomarkers to different kinds of ions [122]. Their high sensitivity towards molecules
and mechanical bending have allowed the sensors to detect changes in minuscule concen-
trations. In order to analyze the performances of graphene sensors with respect to other
nanomaterials, comparative studies have been depicted in Tables 1 and 2. The comparison
has been made on the basic parameters used to determine the qualities of electrochemical
and strain sensors. As a result of huge spectrum of electrochemical sensing applications, the
ones related to glucose sensing has been included here. It is seen that the performances of
these graphene-based prototypes excel the ones developed using other nanomaterials. The
reasons behind this can be attributed to the enhanced characteristics of graphene, PDMS,
and other associated processed materials. An optimization process was carried out for each
prototype on the number of raw materials used to form them. The following sub-sections
showcase some of the significant examples of the use of wearable sensors that are formed
using graphene and PDMS. The fabrication process and their respective applications for
each of the prototypes are briefly explained.

Table 1. Comparative study on the quality of graphene and other nanomaterials used to develop
glucose-based electrochemical sensors.

Materials Used Fabrication Method Linear Range Sensitivity Limit of Detection Ref.

GN, PDMS, Gold NPs Micromolding 0–162 mg/dL 10 mA/cm2 1.44 mg/dL [123]

rGO, PDMS, SiO2, Nafion
Electrostatic

interaction, in situ
reduction

0.1–9 mM 60.8 µA·mM−1·cm−2 3.7 µM [124]

GNP, CeO2, PDMS, PANI Magnetic stirring 5–100 µM 29.35 ± 1.4 µA·µM−1 0.14 µM [125]

GQD, PDMS Salination 0.1–600 U/mL - 0.05 U/mL [126]

Co3N NWs, Titanium Autoclave treatment 0.1 µM–25 mM 3325.6 µA·mM−1·cm−2 50 nM [127]

Co-based MOF, Ag@ZIF-67,
Glassy carbon electrode

Sequential
deposition-reduction 2–1000 µM 0.379 µA·µM−1·cm−2 0.66 µM [128]

Gold, palladium naowires Electrochemical
nanowire assembly 10−6–10−3 M 18 µA·M−1 3 × 10−7 M [129]

Gold-Nickel oxide nanowires Plasmon method 0.005–15 mM 4.061 mA·cm−2·mM−1 0.005 mM [130]

GN: Graphene nanopowder; PDMS: Polydimethylsiloxane; GNP: Graphene nanoplatelets; CeO2: Cerium oxide;
PANI: Polyaniline; Co3N: Cobalt nitride nanowires; SiO2: Silicon dioxide; Co-based MOF: Cobalt-based metal-
organic framework.

Table 2. Comparative study on the quality of graphene and other nanomaterials-based strain sensors.

Materials Used Fabrication Method Linear Range Gauge Factor Limit of Detection Ref.

GN, PDMS, Ti3C2Tx Magnetic stirring 0–74.1% 190.8 (0–56%),
1148.2 (52.6–74.1%) −0.025% (lower) [131]

rGO fiber fabrics, PDMS Vacuum filtration 0.24–70% 1668.48 1.17 Pa (higher) [132]

GNP, PDMS Coating 0–65% 62.5 65% (higher) [133]

GQD, CNTs, PDMS,
Copper wires Drop casting 7% 841.2 19% (higher) [134]

Ag NWs, Dragon skin Embed-and-transfer 0–150% 81 (>130% strain) 150% (higher) [135]

Au NWs, PU nanofibers Electrospinning 0–70% 12 (5% strain)–2379
(70% strain) 70% (higher) [136]

EGaIn, Ecoflex Electroless plating - 21–25 320% (higher) [137]

Ag NWs, PDMS Vacuum filtration
and trasfer 0–10% >20 35% (higher) [138]

GN: Graphene nanopowder; PDMS: Polydimethylsiloxane; Ti3C2Tx: Titanium carbide; GNP: Graphene platelets; rGO
fiber: Reduced graphene oxide fiber; GQD: Graphene quantum dots; Ag NWs: Silver nanowires; PU: Polyurethane;
EGAIn: Eutectic gallium indium; Ag NWs: Silver nanowires.
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2.1. Graphene Nanopowder-Based Devices

The formation of electrochemical sensors using graphene has been very advantageous
due to their excellent ion carrier capabilities. Due to the huge mass of applications of
electrochemical sensors, the authors have restricted the discussion to glucose-based elec-
trochemical sensors to ease the realization of the fabrication of sensors and their working
mechanism for the readers. The research done by Parmeggiani et al. [42] shows the for-
mation of multifunctional laser-induced graphene sensors using both PDMS and PI as
elastomeric substrates. Novel polymeric composites were formed, where PI was dispersed
inside the PDMS matrix to obtain the resultant templates for the laser-induction process.
A simple casting process was performed on the silicone elastomer to generate flexible
electrodes that can suffice to adapt to different kinds of shapes and surfaces. The mixing of
the PDMS and PI polymers was done at a ratio of 1:1 for 10 min, followed by degassing
and curing them at a temperature of 60 ◦C for an hour. The laser writing process was
carried out with optimized power value, frequency, and duty cycle of 30 W, 5 kHz, and
100%, respectively. The testing of the sensors was done using the cyclic voltammetry (CV)
technique to determine the changes in current density with respect to time. The testing
of the sensors was done at a temperature of 70 ◦C for characterizing and testing them.
The rise in the device capacitance was around 60% with respect to the bending radius for
the chosen rectangular shape. One of the interesting works related to the fabrication of
single-layer graphene film/PDMS-based wearable sensors and implementing them for
electrochemical sensing applications can be seen in [123]. Microfluidic systems were formed
for continuous monitoring of glucose molecules. Three-electrode sensors were formed
and embedded into a microfluidic chip for sensing applications without interference from
foreign body reactions. The prototypes consisted of five different PDMS layers, which
were processed using micromolding techniques. Figure 2a,b [123] shows the schematic
diagram of the different layers and the working mechanism of the devices. The five layers
consisted of a vacuum generator layer, a valve layer, a microchannel layer, an electrode
layer, and a bottom layer. Graphene and gold nanoparticles were used to develop the
working electrodes of these sensors. Electrodeposition of the gold nanoparticles was done
on the graphene layer to enhance the overall electron transfer rate and overall sensitivity.
The three-electrode systems consisting of working, counter, and reference electrodes were
formed on glass substrates. While the reference electrodes were formed by sputtering
chromium and platinum layers, the graphene composites were used as working electrodes.
The electrochemical polymerization of graphene was done on the surface of the working
electrodes for the detection of glucose molecules. The prototypes were employed for the
measurements of low glucose levels, and they were able to detect hypoglycemia with
excellent performances. The linear range and limit of detection (LOD) of 10–1620 ppm and
10.44 ppm (0.44 mg/dL), respectively.

Wang et al. [139] showed the use of super-elastic graphene ripples for the development
of flexible strain sensors. A buckling approach of graphene powder and graphene ribbons
was used to form the resultant stretchable elastomeric substrates.

The mechanical cleavage method was used to form the graphene samples, followed
by using a lithography technique to pattern the silicon dioxide (SiO2) substrates. Then, the
samples were treated with certain techniques such as spin-coating, oxygen plasma etching,
and e-beam lithography techniques. The graphene was transferred on the PDMS films
which were formulated over a wide range of pre-strains. The prototypes operated on the
nanoscale periodical buckling process subsequent to releasing of strain. This was followed
by performing metal deposition of titanium and gold with thicknesses of 1.5 nm and 30 nm,
respectively. Finally, these graphene ripples were transferred on PDMS substrates, along
with the removal of the polymethyl methacrylate (PMMA) layer to form the final sensors.
The shape of these ripples changed with respect to the pre-strain of the original shape and
substrates. These strain sensors were operated as novel flexible electronic devices.
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Another example related to the fabrication and implementation of graphene-based
strain sensors can be seen in the work done by Yang et al. [131]. The sensors consisted
of composite films that consisted of layers formed using Ti3C2Tx, graphene, and PDMS
as processed materials. The working principle of these sensors was based on two layers
that included a flexible graphene/PDMS nanocomposite and a Ti3C2Tx dominated brittle
layer. A synergy was maintained between the top and bottom to obtain a high and steady
response during strain-sensing applications. An anode coverage electrochemical process
was used to synthesize graphene particles. The technique involved the use of graphene
and platinum foils with defined dimensional specifications. The intermediate results were
purified in water and dried at a temperature of 50 ◦C to obtain the conductive nanomaterial.
The composite films consisting of Ti3C2Tx and graphene were formed via developing
suspensions with different weight percentages of each of these nano-elements. Finally,
the strain sensors were fabricated by initially pre-polymerizing PDMS on molds having
sizes of 80 × 15 × 1 mm3. Then, the conductive thin stripes were transferred to the PDMS
substrates and cured at a temperature of 50 ◦C for an hour. The prototypes had a gauge
factor (G.F.) of 190.8 and 1148.2 for low and high strain ranges of 0–56% and 52.6–74.1%,
respectively. The sensors also displayed high cycling stability for over 5000 cycles, in
addition to high linearity of R2 > 0.98 and a LOD of −0.025%.

2.2. Reduced Graphene Oxide-Based Devices

The flexible wearable sensors developed using rGO and PDMS have been very effi-
cient due to their high mechanical strength, molecular barrier abilities, and high electrical
conductivity. These materials can provide high stability, durability, and repeatability of the
responses. The high surface area of rGO is advantageous for electrochemical applications as
they assist in the adsorption of the target molecules. Xu et al. [124] depicted the fabrication
of flexible enzymatic biosensors to detect glucose molecules in sweat. The 3D proto-
types were formed using nanocomposites that consisted of rGO-coated silica nanospheres.
Figure 3 [124] illustrates the schematic diagram of the fabrication steps of rGO-based
nanocomposites and flexible glucose biosensors. After preparing GO using the modified
Hummers method, the final samples were dialyzed for a week and frozen to obtain the
solid GO powder.
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(B) flexible glucose biosensors [124]. Reproduced from Xu, M., Zhu, Y., Gao, S., Zhang, Z., Gu, Y. and
Liu, X., 2021. “Reduced graphene oxide-coated silica nanospheres as flexible enzymatic biosensors
for detection of glucose in sweat”. ACS Applied Nano Materials, 4(11), pp. 12442–12452.

The nanocomposites were formed by assembling rGO nanosheets on the surface of
SiO2 nanospheres using two separate processes. Initially, the electrostatic interaction and
in situ reductions by tannic acid techniques were employed, followed by the dropping
of the rGO/SiO2 nanocomposites, glucose oxide, and Nafion solution on the conductive
substrates to form the resultant sensing area of the prototypes. The conductive substrates
were formed using CNTs film and PDMS. After the pre-polymer and curing agents of PDMS
were mixed, they were coated on plexiglass substrates using a 60 µm coating wire rod. The
electrical conductivity of these PDMS substrates was increased by coating, pressing, and
curing of the CNTs film on them at 80 ◦C for four hours. The specific area of these biosensors
with increased sensing and recognition sites exhibited excellent dynamic characteristics
such as a good linear detection range of 0.1–9 mM. The sensitivity and LOD of the sensors
were 60.8 µA·mM−1·cm−2 and 3.7 µM, respectively.

Another example of the use of rGO/PDMS-based wearable sensors for electrochemical
sensing applications can be shown in work done by Moon et al. [140]. Stretchable, room-
temperature operable, chemiresistive gas sensors were formed by using nanohybrids
comprising of rGO and vertically grown zinc oxide (ZnO) nanorods. These nanorods were
grown on stress-absorbable, elastic 3D micropatterned PDMS substrates. The fabrication
process was carried out by depositing thin alumina substrate on the PDMS substrates.
These alumina layers were modified using different chemicals to increase the adsorption
capability of GO nanosheets. Then, GO solutions were deposited on the modified alumina
substrates to form the sensing area of the prototypes. Finally, interdigitated electrode
designs were formed on which chromium/gold metals were deposited using e-beam and
thermal evaporation processes. The thickness of the chromium and gold layers were
7 nm and 63 nm, respectively. Then ZnO nanorods were deposited on the GO to enhance
their adsorption capability, followed by functionalizing the former nanomaterial using
(3-aminopropyl) triethoxysilane (APTES)-based aqueous solutions. The deposition of ZnO
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nanorods on the substrates was done using the hydrothermal method, after which, the
samples were sealed with Teflon tape and heated at 85 ◦C for 17 h. The gas sensors were
used at room temperature to detect low concentrations of nitrogen dioxide gas. Other
than certain attributes such as high sensitivity, and rapid response and recovery times, the
prototypes were able to detect the gas with a LOD of 40 ppb.

Apart from the electrochemical sensing applications, the rGO/PDMS-based sensors
have also been used for strain sensing applications. One of the interesting works can be
shown in the research done by Jiang et al. [132], where highly compressible and sensitive
pressure sensors were developed using 3D porous rGO fiber fabrics (rGOFF). Figure 4 [132]
illustrates the fabrication of these rGO/PDMS-based pressure sensors. After synthesizing
GO using the improved Hummers method, these nanomaterials were chemically treated to
form chemically expanded graphite. Then, the samples were incubated at a temperature
of 35 ◦C for four hours. The obtained GO fibers having a length of around 4–6 mm were
treated with vacuum filtration method and were dried at 60 ◦C for 3 h. The GO fabrics were
then reduced to form rGOFF using hydrazine hydrate vapors at 95 ◦C for 12 h. The rGOFF
was finally placed on the petri dishes on which PDMS was poured, degassed, and cured
to form the composite-based prototypes. The samples were then cut into specific sizes
and connected to aluminum foil via silver conducting resins. The final step involved
drying them at 60 ◦C for 3 h to solidify the glue before using them for characterization
and experimental purposes. The interfused fiber-to-fiber interfaces assisted the sensors in
generating efficient performances. While the sensors were able to respond to a wide range
of strain ranging between 0.24% and 70%, the G.F., LOD, and response time were 1668.48,
1.17 Pa, and 30 milliseconds, respectively. The change in response of the prototypes was
detected in terms of relative resistance to detect the mechanical changes happening due to
loadings and compressions.
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One of the interesting works highlighting the development of highly stretchable and
ultrasensitive wearable strain sensors using rGO and PDMS processing materials can
be shown in [141]. The prototypes were formed using template-induced assembly and
polymer coating processes. Hydrothermal assisted synchronous reduction and assembly of
GO sheets over copper mesh was initially made after preparing the GO using the modified
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Hummers method. Then, selective coating of PDMS over copper mesh/rGO was done
by dividing the latter into three areas via the etching technique. Then, the samples were
vacuum dried at 120 ◦C for 2.5 h for polymerization reaction of the PDMS monomers on
the rGO/copper mesh. Further selective etching of the copper mesh was done by treating
them chemically for 12 h, then washing them with deionized (DI) water and drying them
in the air. The chemical treatment assisted in oxidizing the copper ions with the help of iron
ions. Some of the attributes of the sensors were long-term durability and high selectivity
for various disturbances. The sensors had a high G.F. of 630 under 21.3% applied strain.
The sensors also showed high selectivity for bending and twisting angles of 180◦ and 90◦,
respectively, and external temperature ranging between 30 and 63.5 ◦C.

2.3. Graphene Nanoplatelets-Based Devices

After the graphene and oxide form, graphene nanoplatelets (GNPs) have been the third
most common form that has been widely used to integrate with PDMS polymer for forming
wearable sensors. The size of the particles was less than a micron and each one had a density
between 0.2 and 0.4 g/cm3. Wiederoder et al. [142] developed chemiresistive sensors using
polymers and GNPs to detect gas at specified concentrations. GNPs were mixed with
polycaprolactone (PCL) via airbrush deposition technique, followed by optimizing the
parameters for sensing performance. The ratio of GNP and PCL was optimized between 3
and 21 wt %, where the maximum sensing performance and signal-to-noise (SNR) ratio
were obtained at 15 wt % and 18 wt %, respectively. The sensors were formed using
a PDMS mask that had a diameter of 6 mm. The masking of the electrodes was done
using PDMS, followed by placing them below an immobilized airbrush on a hotplate. The
temperature of the hotplate was adjusted to 30 ◦C. The final steps included dispensing
the GNP/PCL mixture on the substrates using short-duration sprays. The volume used
for coating purposes was fixed between 50 and 250 µL. Some of the advantages of the
sensors are the high robustness and repeatability of the responses. The detection of ethanol
vapors was carried out in terms of relative resistance with respect to deposited GNP/PCL
volume. With the mixtures being developed with a concentration of 18 wt % GNP, an
enhanced response in terms of output and SNR were obtained at deposited amounts
of 150 µL and 200 µL, respectively. Another interesting example showcasing the use of
GNP for electrochemical sensing applications can be seen in [143]. Polymer electrolyte
membrane fuel cell catalysts were developed using composites that consisted of platinum
nanoparticles (Pt NPs), GNPs, and silicone rubber as processing materials. Two different
types of GNPs having surface areas of 181 m2/g and 745 m2/g were used with and without
Pt NPs. Initially, pyrolysis of GNPs was done by mixing them with melamine at a 1:1
molar ratio. Then, the samples were heated for a specified time, followed by cooling them
naturally. The microwave irradiation technique was used to load these supportive Pt NPs.
It was carried out at a power of 800 W for a min. Finally, the solutions were cooled down
again and centrifuged at a speed of 7000 RPM for 15 min. The last step included drying
the samples at a temperature of 100 ◦C in the drying oven. The electrochemical activity
of these GNPs/Pt NPs was carried out on various catalyst binders, including PDMS and
conventional Nafion solution and PDMS. The performance of the PDMS-based sensors was
better than the Nafion one at a particular voltage of 0.6 V. The current densities of the two
varied substrates were 531.8 mA/cm2 and 437 mA/cm2, respectively.

Apart from electrochemical sensing applications, the GNP/PDMS-based sensors have
also been used as strain sensors. For example, Rinaldi et al. [144] developed flexible
and highly flexible sensitive pressure sensors based on PDMS foam-coated with GNPs.
Some of the advantages of these multilayered structures include low cost, softness, and
high mechanical flexibility. Figure 5 [144] shows the fabrication steps of these sensors.
Initially, the formation of colloidal suspensions of multilayered GNPs was done using
the thermal expansion process. It included using a muffle furnace at 1150 ◦C for 5 s.
The formed agglomerated nanofillers were re-dispersed to form stable precipitation by
sonicating them for 30 min. This was followed by forming PDMS foams and infiltrating
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them with the multilayered GNPs. A direct template technique was used to form the PDMS
foams. In order to induce solvent evaporation, the infiltration process was done inside
an environmental chamber at 110 ◦C to induce solvent evaporation. Several cycles were
carried out to infiltrate 0.25 mL of suspension after optimizing the multilayered GNPs
with respect to the PDMS foams. While these prototypes have been used as piezoresistive
pressure sensors, various experiments were conducted to detect the responses of the sensors
with respect to different loads. The sensitivity was 0.23 kPa−1 for a corresponding applied
pressure of 70 kPa. The prototypes detected compressive stress of 10 kPa and a pressure
variation of around 1 Pa.
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nanoplatelets”. Sensors, 16(12), p. 2148.

Another interesting example related to the use of GNPs/PDMS-based wearable sen-
sors for healthcare applications can be seen in the work done by Baloda et al. [133]. A few
of the attributes of these flexible resistive strain sensors are excellent sensitivity and high
stretchability. An optimization process was carried out to determine the weight percentage
of GNP to be mixed with PDMS substrates. After a value of 40 wt % was chosen, the
manual printing process was carried out to directly coat the substrates via paintbrush. The
samples were then cured at a temperature of 90 ◦C for 90 min. Apart from PDMS, some of
the other nanomaterials with which GNPs were successfully integrated were PET, PI, and
carbon fiber. The prototypes were operated to detect human motions such as wrist pulse
measurement, finger bending movement, and flexible pipes. The sensors were also tested
to detect their capability of detecting arterial blood pressure and as wearable diagnostic
electronic devices. When stretched up to 65%, the sensors showed a G.F. of 62.5.

2.4. Graphene Quantum Dots-Based Devices

Apart from the above-mentioned graphene physiochemical structures, another type
of graphene that has also been integrated with PDMS to form efficient wearable sensors
is graphene quantum dots (GQDs). The variation in the graphene form has led to the
formation of highly robust prototypes due to the strong interfacial bonding with the PDMS
substrates. Some of the attributes of these materials are ultra-small size, non-toxicity, bio-
compatibility, and excellent chemical and thermal stability [145]. One of the interesting
works is shown in [126], where GQDs/PDMS-based wearable sensors have been developed
for quantifying the ovarian cancer biomarker CA-125. The sensors used chemiluminescence
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resonance energy transfer process to record the antigen from the samples that consisted
of an equal ratio of human blood plasma and phosphate buffered saline (PBS) buffer.
The sensors formed on amino-modified glass chips were salinized with 3-aminopropyl-
trimethoxysilane layer and GQDs. The electrostatic attraction was used to immobilize
the GQDs confined in the PDMS stencils. The GQDs-attached APTMS layer was capable
of capturing the antibody that was specific to the CA-125 antigen. Covalent bonds were
formed between the GQDs and antigen through the conjugation of amides. Bovine serum
albumin was used during the reactions to place the unreacted sites on the glass templates.
The increased amount of captured antigens simultaneously increased the concentration
of antibodies bound near the GQDs. This leads to an increase in the amount of energy
transfer, thus leading to chemiluminescence quenching. The sensors displayed a linear
range from 0.1 U/mL to 600 U/mL and a high coefficient of determination (R2) of 99.6%.
The prototypes have a LOD of 0.05 U/mL and an SNR of 3. Ye et al. [146] showcased the
development of electrochemical biosensors for rapid and sensitive detection of bacteria
response of antibiotics using nanoporous membranes. The prototypes were developed by
integrating the PDMS chamber using bio-functionalized nanoporous alumina membrane.
The chambers were divided into upper and lower parts, where two platinum electrodes
were inserted in both the chambers to operate as working and reference electrodes, respec-
tively. The GQDs present in the sensors were modified using anti-salmonella antibodies
and were immobilized on the salinized nanoporous alumina membranes for the detection
purposes. The response of the sensors was measured in terms of impedance during the
capturing of the bacteria by antibodies on the membrane. There was change in the shape
and size of bacteria during the functionalization of antibiotics on the Salmonella bacteria for
a few minutes. These nanoporous membranes were able to detect the target bacteria within
30 min. The operating range of the sensors was between 1 nM and 100 µM. With R2 values
of 0.9423 and 0.9348, the sensors showed a LOD of 1 pM and 40 pM for the antibodies
enrofloxacin and ampicillin, respectively. The change in impedance was around from 1.7%
to 10% and from 1.5% to 8.3% for the enrofloxacin and ampicillin antibodies, respectively.

Regarding the strain-sensing applications of these GQDs/PDMS-based wearable
sensors, Zhang et al. depicted the GQDs/PDMS-based strain sensors [134]. While the
substrates of the prototypes were formed using PDMS, the sensing area was formed by
mixing CNTs and GQDs at defined ratios. After curing the PDMS substrates, they were
cut into rectangular shapes of specific dimensions. Copper wires were then attached to the
substrates to use as bonding pads. Finally, the mixture of CNTs/GQDs was placed on the
sensing area and attached to the prototypes using uncured PDMS. The average diameter of
the chosen GQDs was between 15 and 20 nm. The CNTs and GQDs were mixed by adding
the two aqueous solutions at five different mass ratios. Then, the mixture was dried on
the centrifuged tubes at a temperature of 80 ◦C. The presence of both the nanomaterials
in the sensing area increased the effective conductive pathways of the strain sensors.
The dynamic change in the conductive pathways led to a tunneling mechanism in the
composites, thus increasing the G.F. range of these sensors. The response of the prototypes
was determined in terms of relative resistance with respect to the applied strain. The G.F.
of these sensors had a range from 0 to 841.42. Another example related to this category can
be shown in Xu et al. [147]. Triboelectric electronic skins were fabricated and employed as
self-powered, smart, and artificial fingers. Some of the attributes of these sensors include
light weight, high transparency, and high mechanical stretchability. Micro-gaps induced
certain characteristics such as pressing, stretching, folding, and twisting. Figure 6 [147]
shows the schematic diagram of the basic structure of these electronic skins (e-skins).
After the patterning of the PDMS films was done, spin-coating of a photoresist film having
a thickness of 5 µm was done on glass substrates. Then, the photolithography process was
used to form uniform line arrays having both linewidth and a gap of 100 µm. The patterned
photoresist was used as a mold to subsequently form the patterned PDMS films.
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Finally, free-standing PDMS film was formed by annealing the film at 120 ◦C for an
hour. Then, silver nanowires were deposited on the oxygen plasma-treated PDMS film to
form the bottom electrode array. Then, the blade coating of the GQDs was done on the
surface of the silver nanowires film, followed by annealing the samples at a temperature of
90 ◦C for 20 min. The step included covering the samples with another layer of free-standing
PDMS films coated with a GQDs-patterned silver nanowire network. The second layer
acted as the top electrode array for these triboelectric sensors. The application of pressure
of 30 N obtained an output short-circuit current density range between 10 and 20 mA/cm2.

3. Challenges of the Existing Sensors

Although a lot of work has been done on developing graphene/PDMS-based sensors
and using them for wearable sensing applications, there are still some issues that need to be
addressed in the current scenarios. From the fabrication point of view, the formation of ho-
mogenous aqueous solutions with graphene or its by-products still needs to be addressed.
Although certain solvents—such as methyl ethyl ketone (MEK), N, N-dimethyl acetamide
(DMA), and N, N-dimethyl formamide (DMF)—can form homogenous solutions [148],
the presence of these solvents disrupts the mechanical integrity of graphene overall electri-
cal conductivity of the electrodes. The absence of the bandgap in graphene decreases the
control on the following current. This can cause a problem, especially when the graphene
electrodes are used as switches to control the current follow. Although the formation of
nanocomposites might be helpful for certain wearable sensors, certain limitations—such as
component stability, structural integrity, uncertain cytotoxicity, and mechanical instability—
decrease the performance of the prototypes [149]. Due to the hydrophobic nature of PDMS,
it is difficult to deposit additional layers on them. Thus, inducing selectivity on PDMS-
based sensors is still an issue for the glucose-based electrochemical sensors. The highly
deformable nature of PDMS can interfere with the electrochemical sensing applications of
these sensors. The change in current due to the respective ions can be erroneous because
of the bending of the sensors. The agglomeration of different graphene nanomaterials in
the PDMS matrix is another area to be worked upon. Due to the difference in the phys-
iomechanical structure of the aforementioned graphene nanomaterials, it is difficult to
standardize the percolation threshold of these nanofillers.

Integrating these flexible wearable sensors with wireless communication protocols
should be encouraged to execute the experiments in real-time situations rather than con-
trolled environments. The consideration of flexible printed circuit boards (FPCBs) [150,151]
should include formation of fully flexible smart-sensing systems. In addition to the inte-
gration of certain communication protocols—such as radio-frequency identification tags
(RFID) [152,153] and medical internet of things (IoT) protocols [154,155]—to these wearable
sensors, the data traffic should be reduced by big data and the simultaneous optimization
of the sensor monitoring network [156]. The need for multifunctional wearable sensors is
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another matter to address in the current era. Apart from the fact that they can provide mul-
tiple measurements [157], they can also increase the compactness and structural integrity of
the system. The reduction in the number of sensors while maintaining the multi-parametric
detection capability can help in the subsequent reduction in the consumption of input
power and convenient processing of sensed signals. From an application point of view,
wearable sensors can be used to form cartouche systems for using them as point-of-care
(POC) devices. The use of these wearable sensors should be increased with elderly people
to determine the presence of any abnormality and increase life expectancy. A transparency
and privacy of the collected data should be kept between the patients and monitoring unit
to ensure the trust between the two parties under consideration. Along with the rectifi-
cation of these above-mentioned problems, further work should be done to devise novel
graphene/PDMS-based wearable sensor experimentation on several kinds of biomedical,
environmental, and industrial applications.

4. Conclusions

The paper illustrates the work done on graphene/PDMS-based sensors for wearable
sensing applications. These sensors have included graphene and PDMS as processing
materials due to their biocompatibility, biodegradability, and excellent mechanical char-
acteristics. In addition to that, graphene also has excellent electrical properties that also
assisted the prototypes in achieving enhanced performances. In addition to graphene
and PDMS, the adjoining of other biocompatible nanomaterials and polymers forms the
resultant multilayered and multifunctional wearable sensors. The wearable sensors have
been used as electrochemical and strain-sensing prototypes to detect the physiological
signals and parameters, respectively, of the human body. When used for rehabilitation
purposes, these sensors can determine and improve the cognitive behavior of human beings.
The embedding of these wearable prototypes with various communication protocols and
proper scrutiny of the sensed data would help determine the critical data from the big data.
The real-time application of these sensors, if done, can assist in dealing with physiological
and psychological problems of a wide section of society.
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