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Abstract: Flexible capacitive pressure sensors have been widely used in electronic skin, human
movement and health monitoring, and human–machine interactions. Recently, electronic textiles
afford a valuable alternative to traditional capacitive pressure sensors due to their merits of flexibility,
light weight, air permeability, low cost, and feasibility to fit various surfaces. The textile-based
functional layers can serve as electrodes, dielectrics, and substrates, and various devices with semi-
textile or all-textile structures have been well developed. This paper provides a comprehensive review
of recent developments in textile-based flexible capacitive pressure sensors. The latest research
progresses on textile devices with sandwich structures, yarn structures, and in-plane structures
are introduced, and the influences of different device structures on performance are discussed.
The applications of textile-based sensors in human wearable devices, robotic sensing, and human–
machine interaction are then summarized. Finally, evolutionary trends, future directions, and
challenges are highlighted.

Keywords: capacitive pressure sensor; textile; micro/nanostructure; flexibility; wearable electronics

1. Introduction

Over the past few decades, the world has seen the stunning progress of flexible pres-
sure sensors in electronic skin [1–6], human movement [7–10], health monitoring [11–17],
and human–machine interactions [18–23]. Compared with traditional rigid sensors, flexible
sensors have the advantage of bendable and deformable substrates, which enables their
application in wearable conformal devices. Flexible pressure sensors can be classified into
many types, such as capacitive [24–28], resistive [29–33], piezoelectric [34–38], triboelec-
tric [39–48], iontronic [49–54], and optical vacuum [55–57] sensors, based on their sensing
mechanisms. Capacitive pressure sensors (CPS) have received extensive attention due to
their stability, low power consumption, high response speed, simple structure, and low-cost
scalable manufacturing process [58,59]. Commonly used flexible materials, such as poly-
dimethylsiloxane (PDMS) and Ecoflex, are easy to deform; however, because of the limited
compression range of these materials, the sensitivity of sensors fabricated from them is
still insufficient. By introducing microstructures to modify the surface of the electrode and
dielectric layer, the performance of a sensor can be significantly improved [59–61]. These
microstructures increase the compressibility of the dielectric layer, causing it to deform
under subtle pressure. In addition, voids in these structures introduce an air dielectric
layer that changes the effective dielectric constant under pressure, resulting in larger capac-
itance changes. Photolithography molds are usually used in the preparation of traditional
microstructures. This method can precisely control the shape of the microstructures, but
the manufacturing method is expensive. Some scholars use natural plants as molds to
prepare microstructures to save costs, but this method is not conducive to large-area prepa-
ration. Nanoimprint lithography is a high-resolution, low-cost method for fabricating
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large-area nanostructures, but the life of the mold needs to be further improved [62]. There-
fore, introducing sensing materials with high-performance microstructures and low-cost
manufacturing processes is critical to developing flexible pressure-capacitance sensors.
Recently, textiles have attracted the attention of researchers in the application of wearable
electronic products due to their unique advantages [63–66]. These textile-based materials
have excellent flexibility to fit the user’s body shape and have good air permeability and
abrasion resistance for long-term wearable applications. Meanwhile, a flexible pressure
sensor’s unique three-dimensional porous structure can introduce or increase the size of air
gaps and voids to improve the device’s performance. In addition, textiles are inexpensive
and easy to fabricate in a large area, making them a new material with great potential in
wearable pressure sensors.

Although the research progress of textile-based flexible pressure sensors is discussed in
some articles [67–69], a comprehensive overview of textile-based flexible capacitive pressure
sensors has not been fully reported in the literature. This work aims to fill this knowledge
gap, hoping to provide guiding ideas for improving and innovating flexible textile-based
capacitive pressure sensors. The four key contributions of this paper are presented as
follows. First, starting from the working principle of capacitive pressure sensors, the
existing textile-based capacitive pressure sensors are divided into five forms according to
the different functions of textiles in capacitive pressure sensors. Second, according to the
form of the sensor and the selected material, the preparation methods of the textile-based
capacitive pressure sensor can be summarized as weaving technology, fabric substrate
modification, and electrospinning technology. Third, textile-based capacitive pressure
sensors can be divided into sandwich, yarn, and in-plane devices. Last, the potential
applications of textile-based capacitive pressure sensors are summarized from the aspects
of human wearable devices, robot sensing, and human–machine interaction.

This paper reviews the latest developments in capacitive pressure sensors based on
textile structures. Section 2 describes the working principle of capacitive pressure sensors
and the different forms of textile-based functional layers. In Section 3, materials and
fabrication methods are discussed by considering the requirements for flexible electrodes
and dielectric layers. Section 4 describes three devices types based on functional textile
layers. Section 5 presents practical applications of textile-based capacitive pressure sensors.
Finally, in Section 6, conclusions and outlooks are also put forward. Figure 1 shows the
framework of the textile-based capacitive pressure sensor.

Figure 1. The framework of textile-based capacitive pressure sensors.
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2. Flexible Capacitive Pressure Sensors
2.1. Working Principle

Table 1 compares the advantages and disadvantages of different sensors, including
capacitive, resistive, piezoelectric, triboelectric, and iontronic sensors. Capacitive pressure
sensors are mainly composed of electrodes and dielectric layers. Generally, capacitive pres-
sure sensors use a ‘sandwich’ structure, in which the dielectric layer is sandwiched between
the upper and lower electrodes. The capacitance value C is calculated by the formula [70]:

C =
ε0εr A

d
(1)

where ε0 is the vacuum dielectric constant, εr is the relative dielectric constant of the dielec-
tric layer, A is the effective area of the upper and lower electrodes, and d is the distance
between the two electrode plates. By applying pressure, εr, A, d, and the capacitance of the
sensor change due to the elastic deformation of the soft material in the flexible capacitive
pressure sensor. The formula shows that the capacitive pressure sensor can be divided
into plate spacing, area, and dielectric change types [71]. The easiest way is to change the
distance between the upper and lower plates of the sensor. Under pressure, the distance
between the two polar plates decreases, and the capacitance of the sensor increases accord-
ingly. However, a capacitive pressure sensor with a planar structure has low sensitivity due
to the limited compression. There are three effective ways to improve the sensitivity of a
sensor [72]: (1) constructing microstructures on the surface of dielectrics or electrodes [73];
(2) adding conductive fillers to the polymer elastomer to form a composite dielectric [74,75];
and (3) introducing micropores in the dielectric layer [76]. Building microstructures on a
flexible material will help the sensor produce more significant deformation under a smaller
pressure, thereby improving the sensor’s performance. In addition, since the dielectric
constant of air is lower than that of the polymer, the discharge of air under an external force
increases the overall dielectric constant, thereby improving the sensitivity of the capacitive
pressure sensor [71]. Various microstructures are applied to electrodes or dielectric layers,
including micropyramids, micropillars, microspheres, microdomes, micropores, and other
micropatterns reversely shaped by the micro/nanostructures of natural plants [28,77–92].
Besides, fabrics and nanofiber membranes are also widely used due to their excellent
properties, such as flexibility, air permeability, and compressibility [93–96]. Collectively,
the applications of various microstructures are shown in Figure 2.

Table 1. Comparison of the advantages and disadvantages of different types of sensors.

Type Advantages Disadvantages References

Capacitive

Good stability, low power
consumption, high response speed,

simple structure, and low-cost
scalable manufacturing process

Limited sensitivity and easily
disturbed by external fields due to the

low compressibility of solid media
[58,59]

Resistive

Simple structure and working
mechanism, relatively simple

manufacturing process, and high
response speed

Large signal drift [33]

Piezoelectric

High sensitivity, fast response, low
power consumption, self-powered,

dynamic detection, simple structure,
and convenient signal acquisition

Some difficulties in the measurement
of static force, complicated

manufacturing, high cost, and the
need for material to be electrically

polarized

[15,38]

Triboelectric

Low cost, simple preparation process,
high output voltage, simple structure,
convenient signal acquisition, and low

energy consumption

Unnecessary sensitivity to static
electricity, temperature fluctuations,

and drift capacitance
[47,48]

Iontronic
The high ionic conductivity, high

interfacial capacitance, high
sensitivity, and fast response

Easily affected by ambient
temperature and humidity [53,54]
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Figure 2. Capacitive pressure sensors based on different microstructures. (Micropyramids: Reprinted
with permission from Ref. [81]. Copyright 2021 Elsevier. Micropillars: Reprinted with permission
from Ref. [80]. Copyright 2019 American Chemical Society. Microspheres: Reprinted with permission
from Ref. [82]. Copyright 2020 Elsevier. Plant templates: Reprinted with permission from Ref. [79].
Copyright 2018 Wiley-VCH. Wrinkle: Reprinted with permission from Ref. [90]. Copyright 2019
American Chemical Society. Inclined structures: Reprinted with permission from Ref. [89]. Copyright
2019 American Chemical Society. Porous foams: Reprinted with permission from Ref. [92]. Copyright
2020 American Chemical Society. Fiber membranes: Reprinted with permission from Ref. [94].
Copyright 2020 American Chemical Society).

2.2. Functional Textile Layers

According to the CPS device structure composed of the electrode and dielectric layers,
textile-based flexible capacitive pressure sensors are divided into five forms: (1) textile-
structured electrodes, (2) textile-structured dielectric layers, (3) all-textile structures, (4)
yarn structures, and (5) in-plane structures. These structures are shown in Figure 3. The
first three forms all belong to the ‘sandwich’ structure. Under pressure, the greater the
changes in εr, A, and d, the higher the sensitivity. However, the conductive fabric electrode’s
original excellent performance (such as flexibility and air permeability) is usually sacrificed
after modification, and its stability is reduced. In addition, the compressibility of the
fabric used for the dielectric layer is limited, resulting in the low sensitivity of the sensor.
To improve the performance of textile-structured pressure sensors, an increasing number
of scholars are focusing on nanofiber membranes prepared by electrospinning [97]. The
thickness, porosity, and dielectric constant of the nanofiber membrane dielectric layer
can be effectively controlled, so the sensor’s performance can be significantly improved.
However, the first three forms of capacitive pressure sensors usually require a large surface,
which is not conducive to integrating sensors in clothing. Therefore, some scholars have
prepared sensors based on yarn structures and stitched the sensors on wearable clothing
through the knitting method [98,99]. Capacitive pressure sensors based on yarn are better
and more comfortable to wear and have a bright blueprint in smart clothing; however,
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their performance needs further improvement. Table 2 summarizes the structure and
performance of different forms of textile-based capacitive pressure sensors.

Figure 3. Capacitive pressure sensors based on different functional textile layers: (a) Textile-structured
electrodes; (b) Textile-structured dielectric layers; (c) All-textile structures; (d) Yarn structures; (e) In-
plane structures.
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Table 2. Performance comparison of capacitive pressure sensors with different textile structures.

Functional Textile
Layers Electrode Layer Dielectric Layer Sensitivity Detection Limit Response Time Measuring Range Reference

Textile-structured
electrode

Conductive knit electrodes Porous silicone elastomer 0.0121 kPa−1 0.86 kPa 0–1 MPa [100]

Conductive nylon fabric Ecoflex 0.035 kPa−1

(<16 kPa)
0.801 s 0–16 kPa [101]

Silver-plated Polyacrylonitrile
(PAN) nanofibers Nylon netting 1.49 kPa−1

(<1 kPa)
48 ms 0–10 kPa [102]

Conductive cloth tape Porous PDMS 0.023 kPa−1 155 ms >200 kPa [10]

Carbonized cotton fabric (CCF)
electrodes Porous Ecoflex 0.0245 kPa−1

(<100 kPa)
0.1 s 0–1 MPa [103]

Textile-structured
dielectric layer

Fe-Zn electrodes Polylactic-co-glycolic acid and
Polycaprolactone membranes

0.863 kPa−1

(0–1.86 kPa)
1.24 Pa 251 ms 0–5 kPa [95]

PEDOT: PSS/PDMS electrodes
MXene/Poly(vinylidene

fluoride-trifluoroethylene)
(PVDF-TrFE) nanofibers

0.51 kPa−1

(<1 kPa)
1.5 Pa 0.15 s 0–400 kPa [94]

Au electrodes 3D AgNW@TPU films 1.21 kPa−1

(<5 kPa)
0.9 Pa 100 ms 0–30 kPa [104]

Cu tape Polyimide (PI) nanofiber
membranes

2.204 kPa−1

(3.5–4.1 Pa)
3.5 Pa 12.5 ms 0–1.388 MPa [105]

PDMS microcylinder arrays Polyvinylidene Fluoride (PVDF)
fiber layers

0.60 kPa−1

(0–7 kPa)
0.065 Pa 25 ms 0–50 kPa [96]

All-textile structure

PVDF nanofiber
membranes/AgNWs

Thermoplastic polyurethane
(TPU) nanofiber membranes

4.2 kPa−1

(0–0.4 kPa)
1.6 Pa 26 ms 30 kPa [106]

Fabric/Poly(vinyl alcohol)
(PVA) template-assisted silver

nanofibers (Ag NFs)
3D penetrated fabric 0.108 kPa−1

(0–2.5 kPa)
30 kPa [107]

Single-walled carbon
nanotubes/Silver paste/Spacer

fabric

Encapsulation/Polyethylene
terephthalate (PET) yarn layers 0.042 kPa−1 1000 kPa [108]

AgNW/TPU electrospun
nanofiber membranes

TPU electrospun nanofiber
membranes

7.24 kPa−1

(<0.98 kPa)
9.24 Pa <55 ms 0–50 kPa [109]

AgNW/TPU conductive
networks Micropatterned TPU nanofibers 8.31 kPa−1

(<1 kPa)
0.5 Pa 27.3 ms 0–80 kPa [110]
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Table 2. Cont.

Functional Textile
Layers Electrode Layer Dielectric Layer Sensitivity Detection Limit Response Time Measuring Range Reference

Yarn structure

Poly(styrene-block-
butadienstyrene) (SBS)/Ag

nanoparticles (AgNP)
composite-coated Kevlar fibers

Solid PDMS 0.21 kPa−1

(<2 kPa)
8 mg 40 ms 0–3.9 MPa [111]

SBS/AgNP composite-coated
Twaron fibers Microporous PDMS 0.278 kPa−1

(<2 kPa)
4 mg 340 ms 0–50 kPa [112]

Silver fibers Cotton fibers 0.0397 kPa−1

(<0.85 kPa)
3.6 Pa 0–200 kPa [98]

Silver fibers Cotton fibers 8.697 MPa−1

(<4.5 kPa)
0–130 kPa [113]
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3. Materials and Fabrication Methods for Textile Layers

A flexible capacitive pressure sensor has two main parts: flexible electrodes and
dielectric layers. Electrodes and dielectric layers based on textile structures need to be
improved in materials and preparation methods.

3.1. Materials Classification

Common textiles are usually composed of insulating materials, such as cotton and
polyester fibers. These insulating materials need to be converted into conductive fibers
through the coating, magnetron sputtering, screen printing, and other methods for sensor
structures. At present, metal materials (Ag, Cu, Ni, etc. [114,115]), carbon-based materials
(carbon nanotubes, graphene, etc. [116,117]), and some conductive polymers (poly(3,4-
ethylene dioxythiophene): polystyrene sulfonic acid (PEDOT: PSS), polypyridine (PPy),
polyaniline (PAN), etc. [118–122]) are commonly used in electrodes with flexible textile
structures. These materials have advantages and disadvantages. Metals are the most
commonly used conductive material due to their excellent ductility and conductivity. How-
ever, metal materials are rigid, limiting their application in wearable electronic devices.
Carbon-based materials have a large active area, high electrical conductivity, and good elec-
trochemical activity, but their processing is complicated, and the cost is high. Conductive
polymers have attracted the attention of researchers because of their excellent flexibility,
but their stability, conductivity, and processing need to be further improved.

The dielectric layer materials of flexible capacitive pressure sensors based on textile
structures can be roughly divided into textile and nanofiber dielectric layers. The former
type mainly includes the warp-knitted spacer type and woven structure type. Spacer
fabric is thicker, deforms more under pressure, and has a relatively high detection range.
However, the sensitivity of sensors based on textile dielectric layers is low, and the pore
structure and dielectric properties of dielectric layers are uncontrollable. Nanofiber dielec-
tric layers are nanofiber membranes with textile structures prepared by electrospinning
techniques using inorganic materials or polymer solutions. Commonly used polymer
materials are polyurethane (PU), polyvinyl alcohol (PVA), polyimide (PI), polyvinylidene
fluoride (PVDF), and PVDF copolymers [102,105,123–125]. However, nanofiber membranes
made of inorganic materials, such as TiO2 [126], are rarely used in capacitive pressure sen-
sors. In addition, the application of composite materials can improve the performance
of electrospun nanofiber membrane dielectric layers to a certain extent [94,127–129]. For
example, Yang et al. [129] verified that adding a small number of carbon nanotubes near
the percolation threshold of polymer solutions can significantly increase the dielectric
constant. Therefore, polymer nanofibers prepared via electrospinning technology have the
advantages of high flexibility, controllable structures, and good dielectric properties.

3.2. Fabrication Methods

Researchers continue to improve and innovate flexible textile pressure sensors with
the continuous development of new sensing materials and manufacturing processes. The
selected preparation methods are different depending on the sensor morphology and
material. There are currently three main methods: weaving technology, fabric substrate
modification, and electrospinning technology.

3.2.1. Weaving Technology

Metal-covered or other conductive yarn can be attached to a textile substrate by
embroidery or weaving. Seiichi Takamatsu et al. [118] developed a meter-scale large-
area capacitive fabric pressure sensor used as a floor sensor to monitor the position of
the human body (Figure 4a). In the fabric pressure sensor, two fabrics woven with strip
electrodes of conductive polymer-coated fibers were stacked vertically, and the capacitance
difference between the top and bottom strip electrodes was measured when pressure was
applied. Simge Uzun et al. [99] coated cellulose yarns with Ti3C2Tx MXenes to produce
highly conductive and electroactive yarns that can be woven into textiles using industrial
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knitting machines (Figure 4b). However, it is expensive to prepare ordinary nonconductive
yarns into conductive yarns through special treatment and then integrate them with the
clothing through weaving. Therefore, Talha Agcayazi et al. [129] fabricated capacitive
sensor networks from conductive sewing threads (silver-coated polyamide (silver) and
stainless steel (SS)) by conventional sewing processes. In this configuration, the fabric is the
dielectric, and the conductive yarn acts both as an inductive capacitive ‘electrode’ and as a
line to connect to an external front-end circuit (Figure 4c). A flexible capacitive pressure
sensor prepared by the weaving method retains the original textile structure of the clothing
and can fit the three-dimensional curved surface of the human body. Its integration into
wearable electronic products is also more flexible than the sandwich structure, which has
attracted the attention of many scholars. However, there are still many problems, such
as the design of yarn structure, optimization of sensor performance, slip under pressure,
etc. In addition, the design of the large-area woven array readout circuit remains to be
further studied.

Figure 4. Fabrication of a capacitive pressure sensor by weaving technology. (a) Vertically stacked
strip fabric electrodes of conductive polymer-coated fibers. Reprinted with permission from Ref. [118].
Copyright 2015 Springer Nature. (b) Different knitting patterns of multifunctional MXene-coated
cellulose yarns. Reprinted with permission from Ref. [99]. Copyright 2019 Wiley-VCH. (c) Seam-line
sensor network produced with silver threads. Reproduced with permission Ref. [130]. Copyright
2020 Wiley-VCH.

3.2.2. Fabric Substrate Modification

For preparing traditional textile-based pressure sensors, coating methods (magnetron
sputtering, screen printing, chemical deposition, etc.) are usually used to deposit various
advanced conductive nanomaterials on textiles, which can fabricate conductive electrodes
in capacitive pressure sensors. Li et al. [10] used nickelized polyester yarn to make a
conductive tape, and then electroplated a layer of copper onto the tape to improve its
conductivity, as shown in Figure 5a. Wu et al. [101] used magnetron sputtering to prepare
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a silver-plated conductive fabric with a twill structure, and its conductivity was as high
as 0.268 Ω·cm (specific resistance). The conductive fabric was combined with a medium
layer consisting of the elastomer Ecoflex to prepare a flexible wearable pressure sensor.
Chen et al. [131] used cotton fabric as the essential component and developed a topological
modification method with 3-genus and 5-genus structures. Topological genus structures
can form cage-like metal seeds on the substrate surface. The conductive material was
uniformly wrapped around the cotton fibers, forming a highly conductive interconnected
network (Figure 5b). Golabzaei et al. [132] sprayed PET fabric with graphite solution and
used screen printing to add PEDOT: PSS coating for improving the fabric’s conductivity.
Compared with a sample coated with graphite only (3 kΩ), the electrode resistance of the
coating after adding PEDOT: PSS could reach 300 Ω. Of course, the method of preparing
conductive fibers is not limited to the coating. Carbonized cotton fabric (CCF), converted
from cotton fabric by simple pyrolysis, has good flexibility and conductivity, which is an
ideal material for flexible pressure sensors. More importantly, the carbonization process
is scalable, low-cost, and eco-friendly. Ko et al. [103] combined a carbonized cotton fabric
(CCF) electrode with a porous Ecoflex dielectric layer, as shown in Figure 5c. The sensor
exhibited high sensitivity, which is attributed to the enhanced deformability of the medium
and the roughness of the electrode textile structure. Carbonization methods are used
for fewer applications regarding flexible capacitive pressure sensors and require further
material optimization and process design to ensure the repeatability and integrity of their
performance. The coating method is relatively simple in the modification process of
fabric substrates, and it is easy to control the reaction conditions. However, the adhesion
problem between the fabric substrate and conductive material affects the conductivity of
the fabric and destroys the original textile structure of the fabric. Therefore, to improve the
performance of flexible fabric sensors, it is necessary to find new processes or preparation
methods to modify or optimize the structure of conductive fabrics.

Figure 5. Fabric substrate is modified to prepare a capacitive pressure sensor. (a) Conductive fabric
electrodes electroplated with nickel and copper. Reproduced with permission from Ref. [10]. Copy-
right 2020 Elsevier. (b) Preparation of cotton fibers with a uniform coating of conductive materials
using a topology modification method. Reproduced with permission from Ref. [131]. Copyright 2020
American Chemical Society. (c) Preparation of a fabric capacitance sensor by combining a carbonized
cotton fabric electrode with an Ecoflex dielectric layer. Reproduced with permission from Ref. [103].
Copyright 2021 MDPI.
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3.2.3. Electrospinning Technology

Electrospinning is a direct, efficient, and scalable technology for preparing nanofiber
membranes with textile structures [133]. The nanofiber structure prepared by this technol-
ogy has a low Young’s modulus and a high surface-to-volume ratio and porosity (approxi-
mately 70%). Due to the low Young’s modulus of the fiber membrane, a large compression
deformation can be achieved under slight external pressure. Therefore, in capacitive pres-
sure sensors, electrospinning has attracted increasing attention. Wang et al. [109] used
screen printing to coat carbon nanotubes (CNTs) on a TPU nanofiber membrane as a flat
electrode, as shown in Figure 6a. The process is simple and maintains the flexibility and
air permeability of the electrode. In the deposition or printing process, it is necessary
to pay attention to the uniformity of the coating and the adhesion between the different
coatings and the textile substrate. The performance of conductive fibers can be improved
by special treatment of conductive materials or by selecting different process combina-
tions. Chen et al. [102] prepared a flexible electrode by electrospinning a palladium ion
(Pd2+)/polyacrylonitrile (PAN) solution and then electroless plating the mixed nanofiber
membrane, as shown in Figure 6b. The field emission scanning electron microscopy (FE-
SEM) image shows that the obtained conductive nanofiber membrane is covered by a
coral-like silver layer and porous, which is beneficial for achieving excellent conductivity.
Wang et al. [115] prepared a transparent copper/nickel nanonetwork based on electro-
spinning and chemical deposition, ensuring the sensor’s high bending and cycle stability.
The performance of a conductive fiber electrode prepared by electrospinning can be fur-
ther optimized by controlling the material selected, the thickness, and the porosity of the
fiber membrane.

Figure 6. Capacitive pressure sensor prepared by electrospinning technology. (a) Screen printing
technology coated CNTs on Electrospun TPU nanofiber membranes as planar electrodes. Repro-
duced with permission from Ref. [109]. Copyright 2021 MDPI. (b) Electrospinning with Pd2+/PAN
solution and electroless plating of a mixed nanofiber membrane to prepare a flexible electrode. Repro-
duced with permission from Ref. [102]. Copyright 2020 Elsevier. (c) Preparation of a dual-structure
polyurethane nanofiber membrane by electrospinning. Reproduced with permission from Ref. [134].
Copyright 2022 American Chemical Society. (d) Preparation of an MXene/PVDF-TrFE composite
nanofiber membrane and its use as the dielectric layer of a capacitive pressure sensor. Reproduced
with permission from Ref. [91]. Copyright 2020 American Chemical Society.

The dielectric layer of flexible capacitive pressure sensors can be divided into the
porous elastomer dielectric layer, the polymer film dielectric layer, and the textile-structured
dielectric layer. A dielectric layer with a textile structure has good flexibility and air per-
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meability. Most textile-structured dielectric layers are polymer nanofiber membranes,
ionic fiber membranes, or composite fiber membranes prepared with electrospinning. For
example, Li et al. [132] used electrospinning to prepare a dual-structured polyurethane
nanofiber membrane (TPU NM) dielectric layer in a flexible capacitive pressure sensor,
as shown in Figure 6c. Due to the prolific air in the dielectric layer, the designed sensor
demonstrated outstanding sensing performance with high sensitivity (0.28 kPa−1) in the
low-pressure region (0–2 kPa), fast response/relaxation (65/78 ms), and high-grade dura-
bility (1000 cycles). Sharma et al. [89] used electrospinning to prepare MXene (Ti3C2Tx)/
PVDF-trifluoroethylene (PVDF-TrFE) composite nanofiber membranes, which were used
in the dielectric layer of capacitive pressure sensors for ultralow pressure measurement
(Figure 6d). The sensor had a high sensitivity of 0.51 kPa−1, and the minimum detection
limit was 1.5 Pa. The fiber structure is an effective structure to reduce the compressive
modulus of materials further and improve the sensitivity of devices. Moreover, the synergy
of the two different materials in a composite fiber membrane can further improve the
performance of sensors.

In general, these studies suggest that in the preparation of flexible textile capacitive
pressure sensors, knitting retains the original textile structure of the clothing, making the
fabricated sensor more suitable for three-dimensional curved surfaces and more flexibly
integrated into wearable electronic products. However, the structural design and perfor-
mance optimization of the fibers or yarns used for weaving needs to be further studied, and
the problem of sensor slippage under pressure has yet to be resolved. The method of fabric
substrate modification is relatively simple, and the selection of conductive materials and
attachment methods is relatively flexible. However, the uneven coating and easy shedding
between the fabric substrate and the conductive material damages the fabric’s original
textile structure and affects its conductivity. Electrospinning can control the thickness
and porosity of the fiber membrane through parameter settings. The fiber membrane and
the coating material can be better combined through material selection, and the sensor
performance and use performance can be further improved.

4. Textile-Based Flexible Capacitive Pressure Sensors

From textiles with a simple structure and low compression performance to applica-
tions of nanofiber membranes prepared by electrospinning, the device types of textile-based
capacitive pressure sensors are mainly divided into the sandwiched devices, yarn devices,
and in-plane devices. The sandwich devices can be subdivided into the semi-textile struc-
ture and all-textile structure. The semi-textile structure means that one of the counterparts
of the sensor, either the electrodes or the dielectric layer, is a textile.

4.1. Sandwich Devices

Atalay et al. [100] designed a capacitive pressure sensor composed of two soft con-
ductive fabrics (knitted fabric and woven fabric) and two microporous dielectric layers
(sugar particles and salt crystals). They evaluated the effects of the components on the
sensor’s overall performance (Figure 7a). The study found that the conductive knitted
electrodes and higher dielectric porosity (attributed to the large sugar particles) resulted
in higher sensitivity (121 × 10−4 kPa−1). The higher the porosity of the dielectric layer,
the looser the electrode structure. Therefore, the deformation of the dielectric layer under
pressure is more significant, which is beneficial to the sensor’s performance. The simplest
way to optimize textile-structured electrodes is to use electrospinning to prepare nanofiber
membranes as substrates and convert them into conductive fibers by sputtering and other
methods. This approach optimizes the structure and thickness of the electrodes and ensures
flexibility and breathability.
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Figure 7. Capacitive pressure sensor based on the sandwich devices. (a) Combining soft conductive
fabrics (knitted and woven fabrics) and microporous dielectric layers (sugar particles and salt crystals)
to prepare capacitive pressure sensors. Reproduced with permission from Ref. [100]. Copyright 2017
Wiley-VCH. (b) Electrospinning to prepare dielectric membranes composed of insulating microbeads
within PVDF nanofibers. Reproduced with permission from Ref. [135]. Copyright 2020 American
Chemical Society. (c) All-fabric capacitive pressure sensor based on a micropattern nanofiber dielectric
layer. Reproduced with permission from Ref. [110]. Copyright 2021 American Chemical Society.

Other optimization methods can build better-structured textile dielectric layers to
improve sensor performance. Some researchers have prepared micropatterned nanofiber
membranes through process design. Jin et al. [135] used an electrospinning process to
prepare dielectric membranes composed of insulating microbeads within polyvinylidene
fluoride (PVDF) nanofibers (Figure 7b). The presence of microbeads increases the porosity,
increasing the sensor’s sensitivity (1.12 kPa−1 in the range of 0 to 1 kPa). Yu et al. [110]
prepared a high-sensitivity, ultrathin, all-fabric capacitive pressure sensor based on a
gas-permeable network with a micropatterned nanofiber dielectric layer (Figure 7c). The
sensor exhibited high sensitivity (8.31 kPa−1 at 1 kPa), a low detection limit (0.5 Pa), a
wide detection range (0.5 Pa–80 kPa), good robustness (10,000 cycles), and exceptional air
permeability. However, in previous research on capacitive devices with all-textile structures,
the performance of capacitive pressure sensors with three-layer fabrics is often low. For
example, Vu et al. [108] used a PET yarn layer as a dielectric layer and highly stretchable
printed Ag/SWCNT fabric as an electrode, and the prepared sensor had a sensitivity of
up to 0.042 kPa−1. Nanofibers prepared by electrospinning are beneficial for improving
the performance of all-textile capacitive pressure sensors, and nanofiber membranes with
micropatterns or unique structures can further improve the performance of sensors.

4.2. Yarn Devices

Clothing is made from countless fibers or yarns through weaving. Some researchers
have created yarn-structured sensors to make real-time monitoring of human health and
movement more comfortable and convenient. Ashok Chhetry et al. [107] prepared a flexible,
high-sensitivity capacitive pressure sensor by coating microporous PDMS elastomer dielec-
tric on conductive fibers, as shown in Figure 8a. The sensor consisted of a microporous
dielectric with a sensitivity of 0.278 kPa−1 (<2 kPa), a response time in the millisecond
range (~340 ms), and a dynamic range from 0–50 kPa. You et al. [136] constructed a wear-
able electronic fabric based on a stretchable capacitive sensor array woven by electrospun
nanofiber-coated yarns, as shown in Figure 8b. The fabric was electrospun to coat graphene
oxide (GO)-doped polyurethane (PU) nanofibers on the surface of nickel-plated cotton
yarn. Then, the nickel-plated cotton yarn coated with nanofibers was wound around the
elastic thread. The sensor unit had high sensitivity (1.59 N−1, <0.3 N), a wide sensing
range (0–5 N), a low detection limit (0.001 N), and a short response time (<50 ms). Zhang
et al. [113] proposed a stitch-woven structure sensor with silver fibers and cotton fibers as
the electrode and the dielectric layer of the capacitive sensor. Compared with the traditional
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sandwiched structure, a sensor with this structure can be integrated into any fabric position
without being restricted by the shape, solving the problem of pressure sensing in irregular
areas of fabric. However, compared with ordinary knitted yarns, conductive yarns have
greater rigidity, which is not favorable for torsional deformation. Moreover, the sensing
part is prone to slippage between yarn strands under pressure, which affects the stability
and accuracy of the sensors. Therefore, capacitive pressure sensors based on the yarn
structure need to be optimized for their materials and structures to reduce their stiffness
and address slippage problems.

Figure 8. Capacitive pressure sensor based on the yarn devices. (a) Coating microporous PDMS
elastomer dielectric on conductive fibers to prepare a capacitive pressure sensor. Reproduced with
permission from Ref. [112]. Copyright 2017 Royal Society of Chemistry. (b) Retractable capacitance
sensor array weaved by electrospun nanofiber-coated yarn. Reproduced with permission from
Ref. [136]. Copyright 2017 Royal Society of Chemistry.

4.3. In-Plane Devices

Among the research progress on textile-based capacitive pressure sensors, the sand-
wich structure and yarn structure are widely studied, and the in-plane structure is slowly
emerging. Ozgur Atalay [137] introduced a sensing structure that combines conductive
woven fabric and a silicone elastomer. The stretchable conductive woven fabric acts as an
interdigital electrode, creating a secure conductive network. The silicone elastomer fills
the area between the electrodes, forming a dielectric layer and encapsulating the structure
(Figure 9a). MD Abdullah al Rumon [138] used commercial stainless steel thread and a
low-cost sewing machine to prepare a low-cost, expandable tactile sensor that senses the
tactile and conjugate pressure on fabric through changes in capacitance (Figure 9b). When
a finger contacts the interdigital electrodes, the dielectric constant of the sensor increases,
thereby increasing the capacitance. Compared to the parallel plate capacitor structure,
the interdigitated electrode structure creates a more functional area due to having more
electrode arrangements. Researchers have shown that the fringing capacitance between
interdigital electrodes depends on the dielectric layer’s parametric properties and the
electrodes’ size [139]. Therefore, device performance improves by optimizing the electrodes
and the dielectric layer for interdigital electrode fabric capacitive pressure sensors.

Compared to the thicker planar structure, the looser textile structure improves the
sensor’s performance. The performance of a semi textile structure sensor that only uses
fabric as the electrodes or the dielectric layer is poor. The main reason for this may be
the fabric electrode’s poor conductivity and the dielectric layer’s poor compressibility.
This problem is better addressed by using electrospun nanofibrous membranes instead of
traditional fabrics. The researchers improved the conductivity of the conductive fibers by
choosing electrospinning materials and coating materials. The structure and thickness of
the fiber membrane can be optimized by changing the electrospinning parameters so that
the dielectric layer deforms significantly under slight pressure. In addition, the utilization
of micropatterned or specially structured nanofiber membranes can further enhance the
performance of all-textile capacitive pressure sensors. A capacitive sensor with a sandwich
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structure has the advantages of good flexibility, high sensitivity, and short response time.
However, it requires a larger flat surface and a relatively large thickness, and it still lacks
wearability compared to yarn. A sensor based on the yarn structure is easier to weave into
clothing and can better fit three-dimensional surfaces. It is difficult for the in-plane devices
to prepare stable and high-density interdigitated electrodes on fabric substrates because
fabric easily deforms and stretches.

Figure 9. Capacitive pressure sensor based on the in-plane devices. (a) Interdigital capacitive strain
sensor combining conductive braided fabric and a silicone elastomer. Reproduced with permission
from Ref. [137]. Copyright 2021 MDPI. (b) Interdigitated capacitor on fabric as a tactile sensor.
Reproduced with permission from Ref. [138]. Copyright 2021 Elsevier.

5. Applications

Capacitive pressure sensors based on the textile structure can be integrated into
various products daily, such as gloves, socks, seats, mattresses, etc., and are primarily used
in wearable devices and robot tactile interactions.

5.1. Wearable Devices

Physiological signals (pulse, blood pressure, respiration rate, etc.) play an essential role
in health monitoring. Textile-based capacitive pressure sensors can measure weak pressure
signals and have the advantages of being breathable and comfortable and fitting the human
body well. Yang et al. [106] showed a skin-type pressure sensor with high sensitivity, good
flexibility, fast response, good air permeability, and light weight, making it suitable for
low-cost, large-area production (Figure 10a). This skin-type pressure sensor can monitor
physiological signals such as human respiration and heart rate. The air permeability of
its all-textile structure and the simple preparation process provide a promising strategy
for designing air-permeable electronic skins. Wu et al. [107] successfully produced an
all-textile pressure sensor and wireless battery-less monitoring system to detect human
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movement in real-time, in which a 3D permeable fabric was sandwiched between two
highly conductive fabric electrodes as a dielectric layer (Figure 10b). Posture monitoring is
also vital in medical diagnosis and safety protection. Accurately monitoring the pressure
on various body parts (including the soles of the feet, legs, back, chest, and neck) helps
testers correct their postures in time to prevent the formation of foot ulcers, bedsores, and
other diseases. Vu et al. [108] proposed a multipurpose capacitive textile pressure sensor
for wearable electronic applications embedded in intelligent socks that can be used for
walking gait analysis in daily life activities (Figure 10c). Masihi et al. [140] combined a
porous PDMS dielectric layer and two conductive fabric electrodes to form a capacitive
pressure sensor, and used a sensor array to measure and map the pressure on a player’s
head when wearing a helmet (Figure 10d). The pressure distribution diagram helps the
user observe and adjust the proper position.

Figure 10. Pressure sensors are used in wearable devices. (a) All-textile-structured skin sensors
monitor physiological signals, such as human breathing and heart rate. Reproduced with permission
from Ref. [106]. Copyright 2017 Wiley-VCH. (b) All-textile pressure sensor and wireless batteryless
monitoring system for real-time human movement detection. Reproduced with permission from
Ref. [107]. Copyright 2019 American Chemical Society. (c) Capacitive textile pressure sensor for
walking gait analysis. Reproduced with permission from Ref. [108]. Copyright 2020 Elsevier. (d) Ca-
pacitive pressure sensing array composed of conductive fabric electrodes used to measure and map
the pressure on a player’s head wearing a helmet. Reproduced with permission from Ref. [140].
Copyright 2021 American Chemical Society.

5.2. Robotic Sensing

With the development of wearable electronic products, the application of pressure
sensors in tactile sensing has attracted the interest of many researchers. Ozgur Atalay
et al. [100] demonstrated the application of a soft pressure sensor to detect grasping force
via the integration of the sensor into a textile glove (Figure 11a). They noted that such
sensors could also be used in soft wearable robotics. Therefore, textile-based capacitive
pressure sensors have excellent prospects in robotic sensing. Ahmed Elsayes et al. [141]
fabricated capacitive tactile sensors by sandwiching a microstructured dielectric elastomer
layer between two conductive fabric electrodes. These sensors are integrated into an
anthropomorphic manipulator fabricated using rapid prototyping techniques. Lin et al. [96]
prepared a new type of capacitive pressure sensor using a double-layer dielectric structure
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composed of electrospun fibers and microcylinder arrays and used it to monitor robotic
arm grasping objects in real-time (Figure 11b).

Figure 11. Pressure sensors are used in robotic sensing. (a) Textile gloves for grip detection. Repro-
duced with permission from Ref. [100]. Copyright 2017 Wiley-VCH. (b) Real-time monitoring of a
robotic arm grasping objects. Reproduced with permission from Ref. [96]. Copyright 2021 Elsevier.

5.3. Human–Machine Interaction

Textile electronic devices may provide a suitable platform for human–machine inter-
action applications due to their superior performance and unique immersive properties,
such as light weight, flexibility, and comfort. Lee et al. [111] prepared a fabric capacitive
pressure sensor based on highly conductive fibers coated with an insulating rubber material.
The sensor was used to control unmanned aerial vehicle (UAV) quadrotors based on its
excellent performance. The four textile-based pressure sensors on the glove correspond
to the four different motions of the quadcopter (index finger: right flight; middle finger:
forward flight; ring finger: left flight; and little finger: backward flight). In the same way,
the four pressure sensors were stitched on the forearm of clothes to control a wired hexapod
walking robot. The four pressure sensors controlled the robot’s different motion commands:
back (channel 1), forward (channel 2), counterclockwise rotation (channel 3), and clockwise
rotation (channel 4), as shown in Figure 12a. Zhao et al. [104] integrated ten independent
capacitive tactile sensors on gloves. The collected capacitive signals were processed and
then transmitted to a mobile phone application via Bluetooth to perform a virtual piano
performance, as shown in Figure 12b. Talha Agcayazi et al. [130] demonstrated the applica-
tion of an all-textile capacitive pressure sensor in a smart glove for a drone’s remote control.
A 3 × 3 pressure sensor array was sewn on the back of a PET glove to serve as the remote
control for the quadrotor drone. Selecting four sensing points means that the drone moves
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in four directions (top sensing point: fly up; bottom sensing point: fly down; right sensing
point: fly right; and left sensing point: fly left), as shown in Figure 12c.

Figure 12. Pressure sensors are used for human–machine interaction. (a) The textile capacitive
pressure sensor is used for wireless control of a UAV quadrotor and hexapod walking robot. Repro-
duced with permission from Ref. [111]. Copyright 2015 Wiley-VCH. (b) Capacitive tactile sensors
are used to play a piano. Reproduced with permission from Ref. [104]. Copyright 2020 American
Chemical Society. (c) Smart gloves for the remote control of drones. Reproduced with permission
from Ref. [130]. Copyright 2020 Wiley-VCH.

6. Conclusions and Outlooks

Textile-based functional layers can introduce both porous airgaps and micro/nanostructures
to enhance the performance of flexible capacitive pressure sensors. In addition, textile-based
capacitive pressure sensors exhibit excellent flexibility, breathability, and comfort, making them
easy to integrate with clothing, and have great potential in wearable electronics. This review
presents the current research and progresses in textile-based capacitive pressure sensors. Accord-
ing to the sensing principle and device structures, the functional textile layer can be divided into
five forms: textile-structured electrodes, textile-structured dielectric layers, all-textile structures,
yarn structures, and interdigital electrode structures. Then, materials and fabrication methods for
functional textile layers are discussed by considering the requirements for flexible electrodes and
dielectric layers, including weaving technology, fabric substrate modification, and electrospinning
technology. Three types of devices with the sandwich, yarn, and in-plane structures are discussed
for textile-based sensors. Finally, the textile-based capacitive pressure sensor applications in
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human wearable devices, robot sensing, and human–machine interactions are demonstrated,
indicating its great application potential in wearable intelligent electronic devices.

Textile-based flexible capacitive pressure sensors need to achieve excellent sensing
performance (sensitivity, response time, repeat stability, etc.) and ensure that their flexibility,
air permeability, durability, and other performance meet the requirements of wearable
electronic devices. However, there are still many limitations in the fabrication process and
application of the existing devices:

1. The fabrication method needs to be further optimized. Problems such as easy peeling
and unevenness of conductive materials on the surface of the textile-based electrode
will affect their conductivity and durability. Therefore, there is a need to develop an
efficient method for fabricating textile-based electrodes. In addition, the dielectric
properties, compressibility, and stretchability of textile-based dielectric layers also
need to be further improved.

2. Although textile-based capacitive pressure sensors have many applications in smart
textile clothing, current smart clothing is not washable. Furthermore, the low-cost and
efficient fabrication of large-area textile-based capacitive pressure sensor arrays has
not been reported yet. Other aspects, such as reducing crosstalk between capacitive
signals, multimodal detection, etc., still need further research.

In the future, the way to improve the performance of sensors lies in broadening the
exploration of new materials and developing new processes. Moreover, multifunctional
integration studies of textile-based sensors can be conducted for the development of
comfortable, low-cost, multifunctional smart textile garments.
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