Review

Strain-Modulated Magnetism in MoS2

Hongtao Ren 1,* and Gang Xiang 2,*

1 School of Materials Science and Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China
2 College of Physics, Sichuan University, Wangjiang Road No. 29, Chengdu 610064, China
* Correspondence: renhongtao@lcu.edu.cn (H.R.); gxiang@scu.edu.cn (G.X.)

Abstract: Since the experiments found that two-dimensional (2D) materials such as single-layer MoS2 can withstand up to 20% strain, strain-modulated magnetism has gradually become an emerging research field. However, applying strain alone is difficult to modulate the magnetism of single-layer pristine MoS2, but applying strain combined with other tuning techniques such as introducing defects makes it easier to produce and alter the magnetism in MoS2. Here, we summarize the recent progress of strain-dependent magnetism in MoS2. First, we review the progress in theoretical study. Then, we compare the experimental methods of applying strain and their effects on magnetism. Specifically, we emphasize the roles played by web buckles, which induce biaxial tensile strain conveniently. Despite some progress, the study of strain-dependent MoS2 magnetism is still in its infancy, and a few potential directions for future research are discussed at the end. Overall, a broad and in-depth understanding of strain-tunable magnetism is very necessary, which will further drive the development of spintronics, straintronics, and flexible electronics.

Keywords: straintronics; spintronics; web buckles; thickness-dependence

1. Introduction

Since Geim et al. [1] successfully peeled off stable monolayer graphene in 2004, 2D materials have gradually entered the vision of scientific researchers. While pristine graphene is diamagnetic, introducing defects and strains is an effective way to obtain long-range magnetic ordering [2–8]. Very recently, ferromagnetism (FM) has also been found in multilayer graphene [9], graphene nanoribbons [10], graphene open-shell nanostructures [11], twisted bilayer graphene [12–15], and graphene moiré superlattice [16]. Except for graphene, MoS2 [17–21] has also attracted extensive attention. Interestingly, many experimental studies show that the defective MoS2 nanostructures [18,19,22–47] also exhibit FM.

Notably, strain engineering [3–6,48–72] is also an effective way to mediate the magnetism of 2D materials. However, most of the previous work mainly focused on theoretical calculations. We have first introduced biaxial strain into the MoS2 film through spontaneous buckling and found that biaxial strain can enhance its room-temperature FM (RTFM) [72–74]. As a whole, an extensive and in-depth understanding of strain-mediated magnetism in MoS2 is needed, which would provide new avenues for spintronics and straintronics.

Here, we will give an overview of the timeline of strain-modulated magnetism in MoS2 (Figure 1). We first review theoretical progress in various MoS2 systems, such as nanoribbons (NRs) [17,48,49,51,75–82], hydrogenated [53,67] or nitrogen-doped [70,83] systems, defective systems [27,57,60,61,63,84–94] and 3d transition metal ion-doped systems [55,58,68,88,95–103]. Then, we outline the methods of introducing strain, such as using pre-stretched substrates [104,105], bending flexible substrates [106–114], utilizing lattice mismatch [115,116] or thermal mismatch [72,73,113,117–121], alloying [122],...
creating buckles [72,73,104,105,114,121,123,124], using patterned substrates [125–130], bubbles [131–133], atomic force microscopy (AFM) tip [134,135], or piezoelectric stretching [136]. Among all the methods, creating buckles is suitable for detecting and studying the magnetism conveniently. Furthermore, we emphasize the roles played by web buckles, which induce biaxial tensile strain. Despite some progress, the study of strain-dependent MoS2 magnetism is still in its infancy and a few potential directions for future research are discussed at the end.

Figure 1. Timeline showing key developments of strain-modulated magnetism in MoS2. Black font represents the theoretical progress; yellow font represents the experimental progress.

2. Progress in Theoretical Calculations of Strain-Mediated Magnetism

2.1. Nanoribbons

Similar to ZnO [80,137,138] and graphene [4,10] NRs with zigzag-terminated edges, zigzag MoS2 NRs also exhibit FM [17,80] independent of NRs width and thickness due to the edge atoms. In contrast, armchair NRs show non-magnetism (NM). Interestingly, introducing adatoms can enhance the net magnetic moment of armchair NRs, but the FM of zigzag NRs is inhibited by the defects caused by adatoms [75]. Because the edge atoms are passivated, their spin polarization at the Fermi level is suppressed. Furthermore, an external static electric field can also reduce the energy gap of armchair NRs [76]. In detail, this electric field will drive metal-insulator phase transformation, which modulates or even suppresses FM.

In addition, monolayer and bilayer MoS2 are also sensitive to tensile strain but cannot produce the long-range magnetic order in Figure 2. However, the magnetic moment in zigzag NRs is nearly doubled by 10% strain [51], as shown in Figure 2B, which may be related to the magnetic coupling from different edge atoms. As shown in Figure 2B–E, the variation is generally not monotonous [48,49,51].
Interestingly, applying tensile strain and an electric field in the zigzag direction can cause the reversible modulation of FM [48]. The applied strain is within the elastic limit of the material, which achieves the reversibility of regulation. Even for zigzag Janus MoS$_2$ NRs, the magnetism shows a multi-stage change with the increase in strain, which is closely related to the electronic phase transition. After the electric field is applied again, the magnetism can be regulated more effectively [81].

However, this modulation is obviously different from that of the zigzag MoS$_2$ NRs shown in Figure 2E–G. Indeed, the difference in local spin density distribution determines the different modulation results of zigzag MoS$_2$ NRs and zigzag Janus MoS$_2$ NRs.
2.2. Hydrogenated or Nitrogen-Doped Systems

Even after applying the biaxial tensile strain from about −8% to 8%, pristine monolayer and bilayer 2H-MoS$_2$ [49] are NM, indicating that no spin polarizations are aligned to form FM. However, other dichalcogenides materials, such as pristine VS$_2$ and VSe$_2$, exhibit FM [50], and the FM will increase rapidly when the strain increases from −5% to 5%. Metallic materials such as pristine 1T-MoS$_2$ [33,37,41,67,139,140], VS$_2$ [50,141,142] and VSe$_2$ [50,141–145] monolayer are more likely to form spontaneous magnetization.

In addition, the contribution of V atoms to magnetism is much greater than that of S or Se atoms [50]. In contrast, unstrained NbS$_2$ and NbSe$_2$ monolayers [52] are NM but can produce between 0.50 and 0.61 µB per unit cell after applying 5% biaxial tensile strain. This novel magnetic behavior of NbS$_2$ and NbSe$_2$ monolayers is related not only to the bond length increased by strain but also to the metallic properties.

In fact, the self-exchange of populations between 4d orbitals of Nb atoms can lead to spin splitting [52,56]. Overall, V or Nb 4d states contribute mainly to the metallic state near the Fermi energy level [50,52,56]. By applying strain, the Curie temperature of the materials may be raised above room temperature [52], which will accelerate the spintronic application of 2D magnetic materials. However, MoS$_2$, WS$_2$, MoSe$_2$, and WSe$_2$ have no intrinsic magnetism [52] due to their characteristic band structures.

Hydrogen atoms [53,67] can modify the electronic structure of pristine 2H-MoS$_2$, but cannot produce spontaneous magnetism under <3% tensile strain [53], as shown in Figure 3A. With the increase in biaxial tensile strain, the magnetic moment and stability will be enhanced, as shown in Figure 3B. When the strain reaches 6.6%, the supercell obtains the most stable FM state, and the magnetic moment reaches 0.57 µB per unit cell. In addition, its Curie temperature (T$_c$, ~232K) is much higher than that of the transition metal (TM)-doped system (T$_c$, ~40K) [84].

![Figure 3. Strain-dependent magnetism in hydrogenated monolayer MoS$_2$. (A) Contour plots of the spin density of hydrogenated monolayer 2H-MoS$_2$ under the biaxial tensile strain of 6%. (Reprinted/adapted with permission from Ref. [53]. Copyright 2013, American Physical Society). (B) Energy difference per Mo atom for 2H-MoS$_2$H and the magnetic moment of Mo 4d orbitals per Mo.](image-url)
as a function of strain (Reprinted/adapted with permission from Ref. [53]. Copyright 2013, American Physical Society). (C) Monolayer 1T-MoS₂ model without and with hydrogen adsorption (Reprinted/adapted from Ref. [67] with permission from the Royal Society of Chemistry). (D) The function of magnetic moments of Mo atom in 1T-MoS₂ as tensile strain (Reprinted/adapted from Ref. [67] with permission from the Royal Society of Chemistry). Note that: The 2H phase structure with space group Pm2 has hexagonal symmetry and the primitive unit cell of the single-layer has three atoms. The S atom is with trigonal prismatic coordination around Mo atoms; The 1T phase is also with hexagonal symmetry and the primitive unit cell of the single-layer has three atoms. In the 1T phase with space group Pm1, the S atom is with octahedral coordination around Mo atoms.

However, 1T-MoS₂ and 1T-MoS₂:H show FM behaviors, as shown in Figure 3C. Unlike 2H-MoS₂, the relationship between magnetic moments and strain is linear, as shown in Figure 3D [67]. The crystal field makes a great contribution to the magnetism of the system.

Similarly, the biaxial tensile strain can also modulate the magnetism of nitrogen-doped 2H-MoS₂ [70]. When the strain gradually increases to 17.09%, a single nitrogen doping structure (NMo₄S₇) shows different magnetic phases. However, the magnetic moment of a dense nitrogen doping structure (NMo₅S) steps from 0 up to 1 μB under 14% strain. In detail, unpaired electrons doped with nitrogen atoms will induce magnetic order. When the doped nitrogen atoms are too dense, the magnetic order will be weakened. However, the biaxial tensile strain has a good modulation effect on these two structures.

2.3. Defective Strained Systems

Inspired by the magnetism caused by conductive electrons in defective graphene. Many research groups tried to introduce single vacancies into the MoS₂ monolayer [57,94]. Experimentally, atomic single vacancies [91] (V_Mo: mono-molybdenum vacancy; V_S: mono-sulfur vacancy; V₂S: disulfur vacancy), vacancy complexes (V_MoS₅: vacancy complex of Mo and nearby three sulfur; V_MoS₆: vacancy complex of Mo nearby three disulfur pairs) and antisite defects [61,63] (S₂Mo: an S₂ column substituting a Mo atom; Mo₂S: a Mo atom substituting an S column; Mo₂S₂: a Mo atom substituting an S₂ column) have been observed in CVD (chemical vapor deposition)-grown MoS₂ monolayer by atomic-resolution annular dark field (ADF) imaging on an aberration-corrected scanning transmission electron microscope (STEM) [86]. Through first-principles calculations shown in Table 1, it is found that pristine [60,94] and single vacancy [57,60,94]-MoS₂ monolayer are NM. Notably, when 19% biaxial tensile strain is applied to the pristine MoS₂ monolayer, 4×4 supercells produce a magnetic moment of 5 μB. However, the uniaxial strain cannot cause a magnetic phase transition regardless of the applied direction.

Table 1. Strain-dependent magnetism of single-layer MoS₂ with various defects.

<table>
<thead>
<tr>
<th>System</th>
<th>Supercell Size</th>
<th>Maximum Strain</th>
<th>Magnetic Moment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine</td>
<td>4 × 4</td>
<td>11%</td>
<td>0 μB</td>
<td>NM (0–11%), biaxial</td>
</tr>
<tr>
<td>Pristine</td>
<td>4 × 4</td>
<td>20%</td>
<td>5 μB (19%)</td>
<td>NM (0–20%), biaxial</td>
</tr>
<tr>
<td>Pristine</td>
<td>4 × 2√3</td>
<td>20%</td>
<td>0 μB</td>
<td>NM (0–20%), x-axis</td>
</tr>
<tr>
<td>Pristine</td>
<td>4 × 2√3</td>
<td>20%</td>
<td>0 μB</td>
<td>NM (0–20%), y-axis</td>
</tr>
<tr>
<td>V_Mo [94]</td>
<td>4 × 4</td>
<td>11%</td>
<td>>2 μB (7–11%)</td>
<td>NM (<7%), biaxial</td>
</tr>
<tr>
<td>V_Mo [60]</td>
<td>4 × 4</td>
<td>20%</td>
<td>2.02 μB (14.5%)</td>
<td>NM (<6.5%), biaxial</td>
</tr>
<tr>
<td>V_S [60]</td>
<td>4 × 2√3</td>
<td>20%</td>
<td>2.02 μB (7.5–20%)</td>
<td>NM (0–7.5%), x-axis</td>
</tr>
<tr>
<td>V_Mo [60]</td>
<td>4 × 2√3</td>
<td>20%</td>
<td>2.02 μB (7.5–20%)</td>
<td>NM (0–7.5%), y-axis</td>
</tr>
<tr>
<td>V_S [57]</td>
<td>6 × 6</td>
<td>10%</td>
<td>2.0 μB (9%)</td>
<td>NM (<9%), biaxial</td>
</tr>
<tr>
<td>V_S [60]</td>
<td>4 × 4</td>
<td>20%</td>
<td>4.07 μB (14.5%)</td>
<td>NM (<8%), biaxial</td>
</tr>
<tr>
<td>V_S [60]</td>
<td>4 × 2√3</td>
<td>20%</td>
<td>~2.07 μB (20%)</td>
<td>NM (0–15%), x-axis</td>
</tr>
</tbody>
</table>
Interestingly, unstrained MoS₂ monolayers with Vₘₖ [60,94], Vₜ [57,60], Vₛ [57,60,94], Vₘₘₖ [60], Vₘₘₘₖ [57], S₂Mo [61] and Moₖ [61] are NM, as shown in Figure 4, while unstrained MoS₂ monolayers with Vₘₖ [46,60,146], Vₘₘₖ [57] and Moₖ [63] are magnetic. In detail, the charge transfer and Mo atoms around the defects contribute mainly to magnetism. Furthermore, spin reorientation and the largest magnetic moment occur in the Vₛ-MoS₂ monolayer [60], as shown in Figure 4A,B, which is related to magneto-crystalline anisotropy. With the increase in the tensile strain, FM-NM-FM phase transformation has been observed in Vₛ-MoS₂. Li et al. [91] have also drawn the magnetic phase diagram caused by strain and external electric field, as shown in Figure 4C,D. After applying strain, the charge sulfur vacancy defect shows rich magnetic responses.
Since Zhou et al. [86] and Jin et al. [147] found the antisite defects in the MoS$_2$ monolayer by STEM imaging in 2013, researchers have been trying to understand their magnetic characteristics in Figure 4E–H. In detail, the defect is an intrinsic structural defect. After applying 8% biaxial tensile strain, the system will produce long-range magnetic order [61]. Overall, the spin density is mainly distributed in the sulfur atom and
its nearest or second neighbor, the Mo atom. However, the antisite-doped monolayer exhibits a high spin state under the biaxial strain from −7% to 4%. With the further increase in tensile strain, magnetism will vanish. The position of the antisite atom is related to the magnetism of the system. In addition, it is found that strained Vs can greatly improve the hydrogen evolution activity of MoS2 basal planes [148]. The sulfur vacancy will become a new active site and tune the adsorption-free energy of the hydrogen atom.

2.4. 3d Transition Metal (TM) Ion-Doped Systems

Doping engineering [149–157] is a traditional way to control the properties of materials, especially for 2D materials. Recently, it has been confirmed experimentally [149,150,158–162] that 3d TM doping can induce ferromagnetism in nonmagnetic MoS2, which can be combined with strain engineering to tune the magnetism, as shown in Table 2.

Table 2. Strain-dependent magnetism of TM-doped single-layer MoS2.

<table>
<thead>
<tr>
<th>Dopant</th>
<th>Supercell Size</th>
<th>Maximum Strain</th>
<th>Magnetic Moment/µB Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>V [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>0 µB (−20–20%)</td>
</tr>
<tr>
<td>V [100]</td>
<td>4 × 4</td>
<td>5%</td>
<td>0.81 µB (0%) AFM (3% or −2%)</td>
</tr>
<tr>
<td>Mn [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>1.0 µB (0%) 0 −20%; 2.8 µB (20%)</td>
</tr>
<tr>
<td>Mn [55]</td>
<td>4 × 4</td>
<td>6%</td>
<td>1.0 (1%) 3.0 µB (6%), biaxial</td>
</tr>
<tr>
<td>Mn [98]</td>
<td>4 × 4</td>
<td>−10%</td>
<td>1.0 (−10–9%) be almost independent on the size of</td>
</tr>
<tr>
<td>Mn [98]</td>
<td>5 × 5</td>
<td>−10%</td>
<td>1.0 (−10–9%) supercell, no matter under a tensile or</td>
</tr>
<tr>
<td>Mn [98]</td>
<td>6 × 6</td>
<td>−10%</td>
<td>1.0 (−10–9%) compressive strain</td>
</tr>
<tr>
<td>Mn [98]</td>
<td>Unit cell</td>
<td>9%</td>
<td>1.0 µB (0–3%) 3.0 µB (4–9%), biaxial</td>
</tr>
<tr>
<td>Fe [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>2.0 µB (0%) 0 −20%; 4.2 µB (20%)</td>
</tr>
<tr>
<td>Fe [58]</td>
<td>4 × 4</td>
<td>6%</td>
<td>2.04 µB (0%) 4.0 µB (3.5–6%), spin reorientation</td>
</tr>
<tr>
<td>Fe [68]</td>
<td>Unit cell</td>
<td>9%</td>
<td>2.0 µB (0–5%) 4.0 µB (6–9%), biaxial</td>
</tr>
<tr>
<td>Co [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>5.0 µB (15%) 0 −20%; 3.3 µB (20%)</td>
</tr>
<tr>
<td>Co [68]</td>
<td>Unit cell</td>
<td>9%</td>
<td>3.0 µB (0–7%) 3.4 µB (8%), biaxial</td>
</tr>
<tr>
<td>Ni [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>5.0 µB (10%) 0 −20%; 2.0 µB (20%)</td>
</tr>
<tr>
<td>Ni [68]</td>
<td>Unit cell</td>
<td>9%</td>
<td>4.0 µB (0–8%) 3.7 µB (9%), biaxial</td>
</tr>
<tr>
<td>Cu [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>5.0 µB (0%) 0 −20%; 0 µB (20%)</td>
</tr>
<tr>
<td>Zn [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>3.0 µB (10%) 0 −20%; 0 µB (20%)</td>
</tr>
<tr>
<td>Cr [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>0 µB (−20–20%)</td>
</tr>
<tr>
<td>Ti [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>0 µB (−20–20%)</td>
</tr>
<tr>
<td>Sc [88]</td>
<td>5 × 5</td>
<td>20%</td>
<td>0 µB (−20–20%)</td>
</tr>
</tbody>
</table>

Interestingly, TM-doped systems show different magnetic responses. Except for V, Cr, Ti, and Sc atoms [88], the TM-doped systems without strain are nonmagnetic, and no matter how much biaxial strain is applied, there will be no long-range magnetic order. Arguably, Ma et al. [100] reported that V-doped monolayer MoS2 exhibits magnetic half-metal at zero strain. After 2% compressive strain or 3% tensile strain is applied, the system will change from an FM state to an antiferromagnetic state.

Notably, the magnetic properties of Co/Ni/Cu/Zn-doped molybdenum disulfide show nonlinear changes with strain. After applying 20% compressive strain, the system is nonmagnetic. When the applied tensile strain reaches a specific value, the system will obtain a high spin state (5 µB for the Co-doped; 5 µB for the Ni-doped; 5 µB for the Cu-doped; 3 µB for the Zn-doped). However, the magnetic moment will reduce to 0 under 20% tensile strain, except for the Co-doped system (3 µB).

The linear monotonicity of magnetism with strain has also been found in Mn-doped and Fe-doped MoS2 systems, which is similar to those of 1T-MoS2 and 1T-MoS2H. In detail,
the systems are NM under a 20% compressive strain. Applying 20% tensile strain, the systems have obtained high spin states (2.8 µB for Mn-doped; 4.3 µB for Fe-doped).

In general, strain engineering is an effective method to control the magnetism of the TM-doped molybdenum disulfide system.

3. Experimental Progress of Strain-Mediated Magnetism

3.1. Methods of Applying Strain

Since the experiments revealed that 2D materials can withstand up to 20% strain, strain-modulated magnetism has gradually become an emerging research field. However, it is difficult to apply strain directly in suspended 2D materials in Table 3.

Table 3. The range and types in strained MoS$_2$ systems by different inducing methods. HOPG: highly oriented pyrolytic graphite; PMN-PT: [Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$]$_{0.7}$-[PbTiO$_3$]$_{0.3}$. δ$_{mem}$: the deflection of the membrane.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Substrates</th>
<th>Layers</th>
<th>Ranges</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-stretches substrate</td>
<td>Gel-film [104]</td>
<td>3–5 L</td>
<td>0.2–2.5%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>Polycarbonate [106]</td>
<td>1–2 L</td>
<td>0–2.2%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>Polymer [107]</td>
<td>1, few</td>
<td>0–0.8%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>Ag-coated PET [108]</td>
<td>20–80 nm</td>
<td>0–0.02%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>PET [109]</td>
<td>1 L</td>
<td>−0.7–0.7%</td>
<td>Uniaxial</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>PVA [110]</td>
<td>1 L</td>
<td>0–1.49%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>Polyimide [111]</td>
<td>1–2 L</td>
<td>0–0.32%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>Polyimide [112]</td>
<td>2 L</td>
<td>0–1.19%</td>
<td>Biaxial</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>PDMS [113]</td>
<td>1 L</td>
<td>0–4.8%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Flexible substrate</td>
<td>PDMS [114]</td>
<td>2–10 L</td>
<td>−2.2%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Lattice mismatch</td>
<td>Si/SiO$_2$ [115]</td>
<td>1 L</td>
<td>−1.24%</td>
<td>Intrinsic tensile</td>
</tr>
<tr>
<td>Lattice mismatch</td>
<td>HOPG [116]</td>
<td>1 L</td>
<td>−1.76%</td>
<td>Anisotropic tensile</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>Si/SiO$_2$ [113]</td>
<td>1 L</td>
<td>−1.0%</td>
<td>Intrinsic tensile</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>Si/SiO$_2$ [117]</td>
<td>1 L</td>
<td>0.4%–0.6%</td>
<td>Intrinsic tensile</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>Si/SiO$_2$ [118]</td>
<td>1 L</td>
<td>−0.76%</td>
<td>Intrinsic tensile</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>Si/SiO$_2$ [119]</td>
<td>2 L</td>
<td>−0.34%</td>
<td>Intrinsic compressive</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>Sapphire [117]</td>
<td>1 L</td>
<td>0.15%–0.2%</td>
<td>Intrinsic tensile</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>h-BN [117]</td>
<td>1 L</td>
<td>−0.8%–0.2%</td>
<td>Intrinsic tensile</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>Mo [117]</td>
<td>1 L</td>
<td>−0.8%–0.2%</td>
<td>Intrinsic tensile</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>PDMS [120]</td>
<td>1 L</td>
<td><0.2%</td>
<td>Biaxial compressive</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>Al$_2$O$_3$ [72,73]</td>
<td>60 nm</td>
<td>−0.29–0.45%</td>
<td>Biaxial compressive</td>
</tr>
<tr>
<td>Thermal mismatch</td>
<td>m-quartz [121]</td>
<td>1 L</td>
<td>∼0.776%</td>
<td>Uniaxial compressive</td>
</tr>
<tr>
<td>Alloying</td>
<td>Mo${2/3}$Se${2/3-x}$ [122]</td>
<td>1 L</td>
<td><4%</td>
<td>Biaxial tensile</td>
</tr>
<tr>
<td>Creating buckles</td>
<td>Gel-film [104]</td>
<td>3–5 L</td>
<td>0.2–2.5%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Creating buckles</td>
<td>PDMS [114]</td>
<td>2–10 L</td>
<td>−2.2%</td>
<td>Uniaxial</td>
</tr>
<tr>
<td>Creating buckles</td>
<td>PDMS [105]</td>
<td>2–10 L</td>
<td>−1–2%</td>
<td>Uniaxial compressive</td>
</tr>
<tr>
<td>Creating buckles</td>
<td>Al$_2$O$_3$ [72,73]</td>
<td>60 nm</td>
<td>−0.45–1.7%</td>
<td>Biaxial</td>
</tr>
<tr>
<td>Creating buckles</td>
<td>m-quartz [121]</td>
<td>1 L</td>
<td>0.14–1.58%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Creating buckles</td>
<td>Au films [123]</td>
<td>1 L</td>
<td>−1.16–2.04%</td>
<td>Uniaxial</td>
</tr>
<tr>
<td>Creating buckles</td>
<td>Si/SiO$_2$ [124]</td>
<td>10–21 nm</td>
<td>0.32–1.11%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Patterned substrate</td>
<td>Hole Si$_3$N$_4$ [125]</td>
<td>2 L</td>
<td>∼1.8%</td>
<td>Biaxial tensile</td>
</tr>
<tr>
<td>Patterned substrate</td>
<td>Rippled Si/SiO$_2$ [126]</td>
<td>4 L</td>
<td>∼0.5%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Patterned substrate</td>
<td>SiO$_2$ nanocones [127]</td>
<td>1 L</td>
<td>∼0.556%</td>
<td>Biaxial tensile</td>
</tr>
<tr>
<td>Patterned substrate</td>
<td>SiO$_2$ nanopillars [128]</td>
<td>1 L</td>
<td>∼2%</td>
<td>Uniaxial tensile</td>
</tr>
<tr>
<td>Patterned substrate</td>
<td>Cone-Al$_2$O$_3$ [129]</td>
<td>2 L</td>
<td>∼0.04%</td>
<td>Tensile/compressive</td>
</tr>
</tbody>
</table>
Patterned substrate | Pyramid-Al$_2$O$_3$ [129] | 2 L | ~0.05% | Tensile/compressive
Patterned substrate | ZnO rods [130] | 1 L | 0–0.6% | Periodic biaxial
Bubbles | PDMS [131] | 1, few | 2.9–3.5% | Biaxial tensile
Bubbles | h-BN [132] | 1 L | ~2% | Gradient tensile
Bubbles | Si/SiO$_2$ cavity [133] | multi- | ~0.8–1.5% | Biaxial, >5.6%
AFM tip | Si/SiO$_2$ [134] | 1–3 L | δ_{mem}: ~33 nm | Isotropic
AFM tip | Si/SiO$_2$ [135] | 1 L | 4.7×10^{-5} F | Isotropic
Piezoelectric substrate | PMN-PT [136] | 3 L | 0–0.2% | Biaxial compressive

In 2013, Andres et al. [104] created wrinkles in few-layer MoS$_2$ by pre-stretching the gel-film substrate, resulting in uniaxial tensile strain up to 2.5%. In the same year, uniaxial tensile strain (0–2.2%) was also applied in the MoS$_2$/polycarbonate system by using four-point bending equipment [106]. Since then, many research groups have tried to apply strain through a variety of flexible substrates, including polymers [107], polyethylene terephthalate (PET) [108,109], polyvinyl alcohol (PVA) [110], polyimide (PI) [111,112] and polydimethylsiloxane (PDMS) [113,114].

In addition, the researchers have found that the intrinsic tensile strain (0.15–1.37%) was also introduced in CVD grown-monolayer MoS$_2$ [113,115,117–119,122]. This intrinsic tensile strain is caused by the mismatch of thermal expansion coefficients [72,73,113–117,121]. Interestingly, whether through flexible substrate [104] or thermal mismatch [72,73], the strain state of MoS$_2$ materials can be further mediated by creating buckles [72,73,104,105,114,121,123,124].

Recently, it has also been experimentally found that the strain can be introduced into the materials through patterned substrates such as holey Si$_3$N$_4$ [125], rippled Si/SiO$_2$ [126], SiO$_2$ nanocones [127], SiO$_2$ nanopillars [128], pyramid/cones Al$_2$O$_3$ [129], ZnO nanorods arrays [130], nanodots arrays, and so on. During the transfer of MoS$_2$ samples, bubbles [131–133] are often formed to introduce large strains into the samples. Notably, most of the methods required additional equipment to provide external stimulation, such as an AFM tip [134,135], an electromechanical device [74], or a focused laser beam [136]. Because scanning superconducting quantum interference device (SQUID) needs to be conducted in a cryogenic temperature and vibration environment, it is difficult to detect the strained material system. So far, material systems that can spontaneously form buckles [72–74] are more suitable for magnetic study.

3.2. Spontaneous Formation of Web Buckles

Spontaneous buckling [163,164] is frequently observed in the film system of traditional materials. When the residual strain in the film reaches its critical value, it will drive the film to delamination from the substrate and from spontaneous wrinkles [72–74]. Interfacial adhesion [73,165] is one of the key factors in determining whether buckling is formed or not. Relatively low adhesion is conducive to the formation and propagation of buckles. Because there is no hanging bond on the surface of 2D materials such as MoS$_2$, the van der Waals (vdW) force is the interaction between the material and the substrate, and its interface adhesion is relatively low. Since then, MoS$_2$ films are very likely to become the perfect platform for understanding the phenomena of spontaneous buckling [73].

Recently, our group prepared ultra-smooth MoS$_2$ films [72,73] by polymer-assisted deposition (PAD), as shown in Figure 5. When the thickness of the film is about 400 nm, its roughness is about 1 nm. In the laboratory environment, MoS$_2$ films will also spontaneously form buckles due to external disturbance. Inspired by this experimental observation, we have used a tungsten probe close to the touch film to apply a point load. Once the probe touches the film, web buckles will be formed and further spread to the whole film surface. The formed large-area film with web buckles is very suitable for the
SQUID test. Surprisingly, there is no obvious damage to the web buckle’s structure after the magnetic test.

Figure 5. Formation of large-area web buckles. (A) Schematic illustration of the growth of a MoS\(_2\) thin film with PAD and the triggering of buckles by a probe touching. (B–G) In situ observation of large area web buckles formed on an as-grown MoS\(_2\) thin film with a thickness of 370 nm. Scale bar, 100 µm. (H,I) Propagating distances and velocities of buckles along four different branches as labeled in (G), as a function of time, respectively. (J) AFM 3D topography of a buckled MoS\(_2\) thin film with a thickness of 230 nm. Scale bar, 20 µm. (K) Two height-profile lines crossing the middle of a telephone cord (line A) and a node position (line B) as shown in the inset. (L,M) Statistical histograms of lengths and widths of buckles. Reprinted/adapted with permission from Ref. [73]. Copyright 2019, American Chemical Society.

3.3. Web Buckle-Mediated RTFM

Strain engineering [6,49,51,52,56–58,61,72,73,166] is a straightforward way to mediate the magnetism of MoS\(_2\). However, most of the previous work [48–53,55,57,58,60,61,63,67,70,81,88,90,91,94,97,98,100] mainly focused on theoretical calculations. In the experiment, it was very difficult to apply biaxial strain directly to 2D materials. In order to clarify the strain-mediated FM in MoS\(_2\), the following problems must be solved: (1) how to quantitatively determine the strain in the system experimentally; (2) how to select two suitable strain states to study their ferromagnetism; (3) how to measure ferromagnetism in different zones of web buckles.

Since Ferrari et al. [167] successfully measured the uniaxial and biaxial strain in graphene samples in 2009, Raman spectroscopy has become a powerful tool to characterize the strain deformation of two-dimensional materials. Soon after 2013, the strain-tunable energy gap was studied in mono-, bi-, and tri-layer MoS\(_2\) [104,106,136,168,169]. Notably, Yagmurcukardes et al. [170] studied how the strain modulated the Raman characteristics of single-layer materials by first-principle calculation. Therefore, we used Raman spectroscopy to quantify the strain in web buckles (Figure 6) [72–74]. In detail, it is estimated by Raman mapping that about 68% of the region in the flat film has strain variations.
In order to clarify the strain-dependent ferromagnetism, we selected flat films and buckled films to test, as shown in Figure 7. After buckling, the saturation magnetization at 300K increases to 7.5 times that before buckling. This is because the biaxial tensile strain induced by web buckles produces the generation of more defects such as Vs. The enhancement of magnetism may be related to the decrease in compressive strain and the increase in defects.
So far, we cannot distinguish the magnetism from different buckled areas. Although traditional magnetic force microscopy can be obtained, we believe that there are too many impurity signals to identify the information in the samples. Hopefully, the newly emerging magnetic imaging technologies will provide technical support for further research.

4. Conclusions and Outlook

In this review, we have summarized the recent developments in strain-dependent magnetism in MoS$_2$. First, we reviewed the progress of the theoretical study. Then, we compared the experimental methods of introducing strain and their effects on the ferromagnetism. We emphasized the roles played by web buckles since they could induce biaxial tensile strain conveniently for further tests, including magnetic measurements. Obviously, despite some progress, the study of strain-dependent MoS$_2$ magnetism is still in its infancy.

Although RTFM has been enhanced experimentally by biaxial strain [72] induced by web buckles, the magnetism contributions from different zones cannot be distinguished experimentally. Since most conventional magnetic probes [171] require the sample area to be at the millimeter level, magnetic testing of the micron wrinkled area is a great challenge. Very recently, magnetic imaging techniques have emerged as important tools for investigating 2D materials, such as magnetic force microscopy (MFM) [172–178], SQUID [179,180], magneto-optical Kerr effect (MOKE) [181,182] and scanning nitrogen-vacancy center microscopy (SNVM) [183–187]. These techniques make it possible to detect the magnetism of the wrinkled area.

Since the modulation effect of uniaxial strain on the properties of materials is weaker than that of biaxial strain, whether the RTFM of molybdenum disulfide can be regulated by uniaxial strain has always been a mystery, which is worthy of further exploration. In addition, the substrates commonly used in experiments are isotropic, so it is relatively
easy to introduce isotropic strain (such as biaxial strain) into 2D materials. Recently, anisotropic substrates such as m-quartz [121,188] have been used in experiments, which provides a new idea for introducing uniaxial strain into MoS₂. We believe that the regulation of uniaxial strain on FM can be explained clearly by combining nanoscale magnetic detection instruments.

Overall, an extensive and in-depth understanding of strain-mediated magnetism in MoS₂ is needed, which would provide new avenues for spintronics [189–197] and straintronics [198–202].

Author Contributions: Writing—original draft preparation, H.R.; writing—review and editing, H.R. and G.X.; supervision, G.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant No. 52172272), Shandong Province Natural Science Foundation (Grant No. ZR20210340767), and Doctoral Scientific Research Foundation of Liaocheng University (Grant No. 318052054).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

