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Abstract: In-sensor computing can simultaneously output image information and recognition results
through in-situ visual signal processing, which can greatly improve the efficiency of machine vision.
However, in-sensor computing is challenging due to the requirement to controllably adjust the
sensor’s photosensitivity. Herein, it is demonstrated a ternary cationic halide Cs0.05FA0.81MA0.14

Pb(I0.85Br0.15)3 (CsFAMA) perovskite, whose External quantum efficiency (EQE) value is above 80%
in the entire visible region (400–750 nm), and peak responsibility value at 750 nm reaches 0.45 A/W.
In addition, the device can achieve a 50-fold enhancement of the photoresponsibility under the same
illumination by adjusting the internal ion migration and readout voltage. A proof-of-concept visually
enhanced neural network system is demonstrated through the switchable photosensitivity of the
perovskite sensor array, which can simultaneously optimize imaging and recognition results and
improve object recognition accuracy by 17% in low-light environments.

Keywords: memristor; perovskite; machine vision; photosensitivity; neural network; in-sensor computing

1. Introduction

As an essential branch of artificial intelligence (AI) technology, intelligent machine
vision has been extensively applied in scientific, industrial, and consumer markets and has
produced giant economic efficiency [1–3]. Traditional von Neumann architecture computers’
processing and memory blocks are physically separated [4,5]. When processing high-
throughput computing tasks, separate memory and computing modules will frequently
access and read data. Due to the different operating frequencies of the computing modules
and memory modules, this process reduces the speed of processing tasks and increases
energy consumption [6,7]. These drawbacks are particularly prominent in dealing with
machine vision tasks because the conversion of image or video signals is accompanied by a
large amount of data transmission and calculation [8].

Bioinspired neuromorphic in-memory or in-sensor digital/analog computing engi-
neering, with high energy efficiency and low energy consumption, endow them as a
potential candidate computing solution [9]. Modern image sensors on the basis of solid-
state semiconductor technology could dependably capture the optical information thanks
to the predefined photoresponsivity and internal chemical profile of silica-based materi-
als [10,11]. Unfortunately, the fixed photoresponsivity makes it impossible to implement
in-situ digital/analog computations in sensors. Therefore, traditional complementary
metal-oxide-semiconductor (CMOS) image sensors require complex peripheral circuits
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to realize the in-sensor computing, which is a massive challenge for the manufacturing
process. At the same time, the fill factor of the sensor decreases rapidly, as the physical
space of the photosensitive area is taken up by the circuit, which makes the silicon-based
device lose the advantages of high-fidelity imaging. Meanwhile, it dramatically reduces the
imaging quality because of the circuit occupying the physical space of the photosensitive
area [12].

The new principle device with intrinsic and tunable photoelectric properties displays
a better development prospect in the near- and in-sensor bioinspired computing [13,14].
Interestingly, memristors with non-volatile and adjustable resistance and photoresponsivity
could enable massively parallel sensing, storage, and computation with low power con-
sumption [15]. In view of that, photosensitive memristors are expected to break through the
bottleneck of traditional CMOS image processing technology, thereby improving the energy
efficiency of the vision system while avoiding ineffective data transmission [16]. More
significantly, the development of photoelectric memristors and integrated circuit requires
the synchronous promotion of the intelligent materials, device structure, and architecture.

The materials of photosensitive memristors mainly include oxide materials [17], pho-
tochromic materials [18], perovskite materials [19], and two-dimensional materials [20].
Among them, organometallic halide perovskites have obvious advantages of large spectral
absorption range, excellent charge separation and transfer, and superior photoresponsiv-
ity [21]. The broadband visible light response of perovskite permits the true-color imaging
of examined targets, while the electric-field-induced ion migration of perovskites endows
the non-volatile reconfiguration of internal potential profile and materials composition
and further provides switchable photovoltaic responsivity. Therefore, perovskite-based
device arrays can simultaneously possess high-fidelity adaptive imaging and real-time
visual information processing.

From the device aspect of view, two main types of devices can realize the above-
mentioned functions. One is a three-terminal sensor-computing integrated device with
gate control, which can usually achieve more state control and higher amplitude control.
However, the complexity and power consumption of three-terminal devices are relatively
high [22,23]. The other is a sandwich-like two-terminal device that adopts the ion migration
to regulate the photoresponsivity, while fewer adjustable states and range make it difficult
to meet the higher-precision computing requirements [24]. Therefore, more in-depth
research is required at the material and device structure levels to enhance the reliability,
polymorphic regulation, and linearity of memristors, in order to promote the application of
photoelectric memristors in the near- and in-sensor bioinspired computing.

This study presents a ternary cationic halide Cs0.05FA0.81MA0.14 Pb(I0.85Br0.15)3 (CsFAMA)
perovskite in-sensor computing device that exhibits full-visible-spectrum photoresponse
behavior and reconfigurable photosensitivity behavior. The external quantum efficiency (EQE)
value is above 80% in the entire visible region (400–750 nm), and the peak responsibility value
at 750 nm reaches 0.45 A/W. In order to solve the problem that the memristor photoresponse
has a small adjustable range and cannot be maintained, we propose a hybrid modulation
method of ion migration and readout bias. With this method, the tuning range can be over
50 times while the photoresponsivity is non-volatile. In addition, a proof-of-concept visually
enhanced neural network system is demonstrated through the switchable photosensitivity
of the perovskite sensor array, which can simultaneously optimize imaging and recognition
results and improve object recognition accuracy by 17% in low-light environments. The
visually enhanced neural network of in-sensor computing provides a promising strategy for
future machine vision with excellent fidelity and efficiency.

2. Experimental Section
2.1. Materials Synthesis and Characterization

Methylammonium iodide and formamidine iodide (FAI, 99.999%) were provided by Great-
cell Solar company. CsI (99.999%), PbI2 (99.999%), PbBr2 (99.999%), N, N-dimethylformamide
(DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.8%), and chlorobenzene (CB, 99%) were purchased
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from Sigma-Aldrich (St. Louis, MO, USA). Perovskite device based on CsFAMA perovskite
film was fabricated with a configuration of ITO/CsFAMA/Au. The pre-patterned indium tin
oxide (ITO) substrates were completely cleaned in deionized water, acetone, and isopropanol
for 15 min, respectively. The CsFAMA precursor perovskite solution with a concentration of
1.4 mol/L was prepared in nitrogen-filled glovebox through dissolving 0.07 mol CsI, 1.134 mol
FAI, 0.196 mol MAI, 1.085 mol PbI2, and 0.315 mol PbBr2 in DMF:DMSO = 4:1 (volume ratio)
and stirred for 12 h. Subsequently, the substrate was treated with 15 min UV-ozone in plasma
cleaner and ready for perovskite preparation. Afterward, 40 µL precursor solution filtered using
0.45 µm polytetrafluorethylene (PTFE) syringe filter was spin-coated to UV-treated ITO with the
speed of 1000 and 4000 rpm for 10 s and 60 s, respectively. During the last 30 s of the spinning
process, the substrate was treated by 180 µL anti-solvent chlorobenzene. Subsequently, the
as-prepared layer was further annealed at 100 ◦C for 20 min, forming the final perovskite film.

2.2. Device Fabrication and Mensuration

ITO/CsFAMA/Au sandwich-like devices were acquired through depositing round-
shape Aurum (Au) electrode through radio-frequency magneto sputtering with a metal
shadow mask (TRP-450 system, Shenyang, China). The thickness and diameter of gold
electrodes are 150 nm and 100 µm. The current–voltage curves of the devices were measured
using a Keithley 4200 (Cleveland, OH, USA) semiconductor parameter analyzer with a
vacuum probe station. Commercially LED lamps with white, blue (405 nm), green (532 nm),
and red (655 nm) emissions were utilized as the light sources. The illuminating parameters
can be controlled via a DORI RH-D12 single-chip microcontroller and a RXN3505M DC
power supply unit, and calibrated through a Li-250A Light Meter (LI-COR, Inc., Lincoln,
NE, USA). All electrical and optoelectronic measurements were carried out in the dark
chamber of probe station to exclude the influence of the environment lights.

2.3. The Image Preprocessing Method

We randomly select a picture from the labeled faces in the wild home (LFW) face
database as a demonstration. We convert the image from RGB to a single-pass grayscale
image through OpenCV. At the same time, the photoresponse current of 0.05–12.75 nA was
linearly mapped to the gray value of 0–255. Since the real response current will exceed the
predetermined range, Python is used to define the value less than 0.05 nA as “0” and the
value greater than 12.75 nA as “255”. The incident light intensity corresponding to each
pixel can be converted by the photocurrent, and then we reduce the overall light intensity
by 50% to simulate a weak light environment. Then, demonstrate the imaging effects of
different light sensitivities in a low-light environment.

2.4. The Neural Network Construction Method

The function simulation in this work is implemented in the Python 3.6 environment.
The databases used include TensorFlow, keras, Numpy, OpenCV, and Matplotlib. Using
TensorFlow 2.5 version to build a single-layer perceptual network, we convert the image
from RGB format to grayscale format through OpenCV. The relationship between light
intensity and photocurrent response is mapped by Numpy. The Fashion-MNIST dataset
is extracted from the Keras library [25]. The generation of pictures in low light is mainly
realized by Numpy and Matplotlib. The visualization of neural network calculation results
is achieved by TensorFlow and Matplotlib.

3. Results and Discussion

Considering the need for intrinsic device properties for in-sensor computing, we
propose an organometal halide perovskite structure with reconfigurable ion migration and
tunable photoelectric activity. Perovskites inherit the ABX3 structure of their inorganic
components, allowing superior flexibility for compositional design. Moreover, the corner-
sharing BX6 octahedra form an extended anionic framework, while the A site organic
cations occupy the central cavity space [26–28]. The ionic radius and electronegativity of
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the cations give rise to a certain tilt in the crystal structure, which leads to changes in the
band structure and lattice symmetry of perovskites [29–31]. Additionally, the incorporation
of organic formamidinium (FA+) or methylammonium (MA+) monovalent cations, and the
weak interaction with iodide anions, create indirect band gaps in perovskites. It broadens
the light absorption range of perovskite materials [32–35].

As shown in Figure 1a, the cross-section scanning electron microscope (SEM) shows
that the devices of ITO/perovskite/Au were successfully fabricated with thicknesses of
150 nm, 300 nm, and 500 nm, respectively (Specific details are presented in Experimental
Section). The EQE spectrum of CsFAMA-based photodetector was measured to acquire
the photoresponse performance [36]. The EQE spectrum ranging from 350 to 850 nm
was measured using a QE-R-Model of Enli Technology (Shanghai, China), and the light
intensity at each wavelength was calibrated by a standard single-crystal Si cell. As depicted
in Figure 1b, the EQE value is above or close to 80% in the entire visible region (400–750 nm),
indicating the efficacious photon-to-current conversion rate over a broad spectral scope.
More significantly, the responsibility (R) of CsFAMA device could be acquired from the
EQE spectra by the following:

R =
EQE × λ

hc
e

=
EQE × λ

1240
(A/W) (1)

where λ and c is the wavelength and light speed, e is electron charge, and h is the Plank
constant. Interestingly, the excellent responsiveness of the CsFAMA device to incident
light, with its peak responsibility value at 750 nm reaching 0.45 A/W, is comparable to that
of the existing silicon-based detectors. The schematic diagram of overall device structure
is depicted in the inset of Figure 1c. In the DC swept voltage mode, the device displays
evident bipolar resistive switching behavior and a storage window close to two orders of
magnitude, demonstrating a device’s high plasticity in polymorphic modulation (Figure 1c).
Two stable resistance states (high resistance state (HRS) and low resistance state (LRS)) can
be acquired by regulating the limiting current during the set process and the cut-off voltage
during the reset process. When the applied voltage rises from 0 V to 3 V, the resistance
will change from HRS to LRS. When applying voltage rises from 0 V to −3 V, the device
will also change from LRS to HRS. It is worth noting that the electrical stimulation will
not change the existing state of the device as the operating voltage is within −0.5 V to
0.5 V, which proves that the bias voltage can enhance the photocurrent without changing
the existing state of the device. At the same time, the retention test of the device at room
temperature suggests good stability in both high and low resistance states (Figure 1d).

Moreover, the influence of illumination on the current–voltage curve of device is
displayed in Figure 2a. As the bias voltage is scanned from 0.2 to 0.5 V, the light-dark
ratio is close to 103, whereas the light-dark ratio is greater than 30 during scanning from
−0.2 V to −0.5 V. Moreover, the photoelectric ratio detection rate and light-dark ratio are
positively correlated parameters, and a higher light-dark ratio provides the hardware basis
for high-definition imaging. Consistent with the full visible spectral absorption behavior,
the ITO/CsFAMA/Au device exhibits sensitive photoresponsivity to blue (405 nm), green
(532 nm), and red (655 nm) illumination. As depicted in Figure 2b, with the increment of
optical power from 1 to 16 mW/cm2, excellent linearity of photocurrent (read at −0.5 V)
versus light density could be acquired for all RGB stimulations. From the inset of Figure 2b,
it can be observed that the photoresponse current can still distinguish the devices with
the 0.05 mW/cm2 increment of optical power density. In view of that, a single-pixel
incorporating three CsFAMA photovoltaic devices for individual RGB sensing can detect
16 million combinational colors for true-color imaging.
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ristor; (b) external quantum efficiency (EQE) spectra and photoresponsivity (R) of CsFAMA-based
devices; (c) DC I–V characteristics of the ITO/CsFAMA/Au memristor displaying switching behavior
and the inset shows the structure of the device array; (d) room-temperature retention performance of
the ITO/CsFAMA/Au memristor.
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Figure 2. (a) Current–voltage characteristic curve under 16 mW/cm2 light and dark state, respec-
tively; (b) photocurrent responses of ITO/CsFAMA/Au device read at 0.1 V, under blue (405 nm),
green (532 nm), and red (655 nm) illuminations with different optical powers for 5 s in the inset
picture, the photoresponse of the device is shown at 1.00 mW/cm2 and 1.05 mW/cm2, respectively;
(c) photovoltaic characteristics and (d) photoresponsitivies of the Cs0.05FA0.81MA0.14 Pb(I0.85Br0.15)3

(CsFAMA) device obtained under white light irradiation of 16 mW/cm2, after being subjected to
1 V constant voltage stressing at for different periods (1–9 represent different bias stimulation times
ranging from 0 s to 80 s in 10 s increments), respectively.
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In perovskite-based two-terminal devices, the photoresponsivity can be controlled
non-volatilely by changing the ionic state inside the devices [37,38]. According to the
resistance-to-transfer curve of the device in Figure 1c, the device internal will undergo
significant ions migration resulting in the resistance state change when the bias voltage
exceeds 1 V. As such, the extensive ion migration range is beneficial for storage. However,
a significant resistance change is not allowed in the modulation of photosensitivity because
the resistance change would adversely lead to the increase of dark current. Therefore, the
modulation voltage is set at 1 V, which can ensure the migration of ions in the device, but
not very fast and violent.

More significantly, the ions with low activation energy in perovskite such as mono-
valent organic cation (MA+, FA+) and halogen anion (Br−, I−) have appropriate diffu-
sion/drift coefficient and mobility. By applying the bias voltage, the ions migration would
change the chemical composition and generate an additional ion field to finely tune the
photovoltaic characteristics. As shown in Figure 2c, after each bias stimulation with the
increment of 10 s, current–voltage characteristics were tested under the illumination of
16 mW/cm2. Significantly, the relationship between photovoltaic properties and pho-
tocurrent responses of the devices changes regularly with the duration of the electrical
stimulation. Due to the logarithmic coordinate used for the ordinate, the current value
takes the absolute value. The actual current value is positive to the right and negative to
the left of the lowest point. As the modulation bias duration increases, the current shifts to
the right, and the photoresponse current increases. It means that the ion migration results
in changes in the photovoltaic and photoconductivity performance of the device. Therefore,
the photoresponsivity of the device could be regulated by applying a bias greater than
1 V. The adjustable photoresponsivity device can operate a simple multiplication by using
the “light intensity”, “photoresponsivity”, and “response current” as “input”, “weight”,
and “output”, respectively. However, it is still difficult to realize the modulation of more
photoresponsivity states through ion migration because the change of dark current will
affect the accuracy of the photoresponsivity calculation. We propose a hybrid modulation
approach that modulates the device photoresponsivity by combining varying readout
voltages and modulating ion mobility. Specifically, we employed ion mobility to achieve
nonvolatile photosensitivity modulation, and then enhance the photosensitivity of the
device by increasing the readout voltage. As shown in Figure 2d, the ion migration within
the device can tune the photoresponsivity of the device. When the readout voltage is
−0.05 V, the photoresponsivity control range is between 0.08 A/W and 0.82 A/W. When
the readout voltage is −0.5 V, the photoresponsivity control range is between 0.61 A/W and
4.66 A/W. With a fixed readout voltage, the ion migration within the device can increase
photoresponsivity about 10-fold. Alternatively, the photoresponsivity can be improved
by a factor of about 50 through hybrid modulation of ion mobility and readout voltage.
Considering the linearity of the photoresponsivity and the conditions of ion migration, the
readout voltage cannot be increased indefinitely. Here we set the maximum read bias to
−0.5 V. Because it is easy to realize the multi-level regulation of the bias voltage by using
the digital to analog converter (DAC) module, the hybrid modulation method not only
increases the control range of the photoresponsivity of the device but also increases the
number of states of the photoresponsivity [39–41]. With regard to photoresponsivity as the
weight of the neural network, the use of hybrid modulation can easily make the accuracy
of the weight reach 8 bits, which can further endow the in-sensor computing with more
accurate results.

For perovskite thin films, exposure to optical illumination directly generates the bound
excitons that further dissociate into free holes and electrons due to its small bandgap [42,43].
The built-in potential barrier or the external bias voltage can make the free electrons and
holes move directionally to the electrode to generate the photocurrent. Therefore, adjusting
the built-in potential barrier or the external bias voltage is the two main ways to adjust the
photoresponsivity [44].
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To clearly understand the mechanism of the control of photoresponsivity, a schematic
diagram was depicted in Figure 3a–c. As the initial state of the two-terminal device,
photoexcited free electrons and holes do not migrate directionally due to the absence of
electron and hole transport layers. In this state, the bias voltage dominates the direction
of free electron and hole migration. Driven by a larger bias voltage, the charge carriers
would migrate to the anode and cathode, respectively, and generate a built-in ionic field
of opposite polarity to the bias voltage (Figure 3b). After removing the bias voltage, most
of the ions will stay in place due to the migration barrier of ions, thus preserving the
ion field. Additionally, the migration of ions will inevitably lead to the generation of
defects (e.g., interstitial defects and replacement defects) and results in the change of
chemical compositions and these changes are irreversible even removing the bias voltage.
Meanwhile, the photoexcited free electrons and holes can move directionally to generate
current even without the bias. Therefore, the photoresponsivity of the device can be
changed non-volatilely by a large bias voltage. More importantly, the duration of applying
the large bias voltage can control the size of the ion field, thereby realizing the multi-
level adjustment of photoresponsivity (Figure 3c). As displayed in Figure 3d–f, different
photoresponsivity and I–V curves are obtained through applying 1 V bias voltage for 0, 40,
and 80 s, respectively. As shown in Figure 3d, the photoresponse current of the photosensor
is relatively low as a whole owing to no ion migration occurring, while the response current
increases rather linearly with light intensity. Theoretically, the initial states with high
linearity are best suited for light–input neuromorphic computations. As shown in Figure 3e,
due to the ion field generated after 40 s bias being applied, the photoresponse current
increases significantly under the same illumination and bias voltage, and the linearity
of the current response curve begins to decrease. Moreover, the above phenomenon is
further enhanced as more prolonged bias stimuli enhance the ion field (Figure 3f). The
imaging quality of the device under different photoresponsivity was also simulated. Here,
we artificially define the mapping relationship between current and image gray value
under standard conditions to facilitate the visualization of functional simulations (Specific
details are presented in the Experimental Section). The measured data from three devices
with different photosensitivity are prepared as a look-up table relating bias voltage, light
intensity, and response current. By extracting the light intensity and response current data
of three devices, the imaging effects of different photosensitive devices under low light are
simulated. To exclude the influence of bias voltage, the readout voltage is uniformly set
to 0.2 V. It can be seen from Figure 3g–i that, in a low-light environment, the higher the
intrinsic photoresponsivity of the device, the easier it is to obtain more explicit images and
more details.

The traditional artificial visual system depends on the CMOS-based image sensor and
a control system to convert the optical signal into voltage spikes [45–47]. Then, the data
are transmitted to the computer for neural network function calculation. In the face of
high-definition video tasks, data transmission will seriously affect the computing speed
and increase power consumption [48]. Machine vision involving in-sensor computing
enables faithful capturing of the visual information from the environment and provides
in-situ efficient image processing capabilities, which can significantly reduce the data
shuttle between the computing and sensor unit [49]. It is significant for practical user-end
applications with fast responding and decision-making, such as instant detection and
dodging of on-road objects during automatic drive.
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Figure 3. (a–c) Schematic diagram of energy band structure in different ion distribution states of
perovskite; (d–f) I–V curves of the ITO/CsFAMA/Au photodetector under white light irradiation
with different optical intensity through applying 1 V bias for (d) 0 s; (e) 40 s; (f) 80 s; (g–i) imaging
simulation results of CsFAMA photosensitive array under different photoresponsivity. This figure
is from labeled faces in the wild home (LFW) (http://vis-www.cs.umass.edu/lfw/, accessed on 20
March 2022).

As shown in Figure 4a, we propose an AI vision scheme that can simultaneously
image and recognize dynamic accommodation. Two adjacent pixels of the image sensor
are responsible for imaging (blue pixels) and computation (orange pixels), respectively.
Although the division of labor is different, the device structure and preparation process are
entirely the same, which is expected to reduce the process complexity of chip manufacturing.
In terms of imaging, the device will not be subjected to a large bias voltage to ensure the
consistency of photoresponsivity. In the weak light environment, the readout voltage can
adjust the photoresponsivity to enhance imaging quality. In terms of in-sensor computing,
the device photoresponsivity modulated by ion field is employed as the weight of a neural
network. Compared with changing the photoresponsivity through readout voltage, this
method can non-volatilely save the weight of the neural network and reduce the average
power consumption of the entire sensor chip. Similarly, in the low-light environment,
the readout voltage can be adjusted synchronously with the imaging unit to improve the
image recognition accuracy. In this way, the in-sensor computing chip can dynamically
adjust the imaging, recognition, and calculation results according to the light intensity of
the environment.

Figure 4b shows the specific algorithm flow diagram. The skeleton of the network adopts
a single-layer perceptual network, where the network weight bits are 7840 (28 × 28 × 10).
Fashion-MNIST is employed as the training set and test set of the network, of which the
number is 10,000 and 50,000, respectively [25]. Additionally, the back propagation algorithm is
utilized for 10 epoch training to update the neural network weights [50]. When the computer
performs neural network functions, the weights are updated and stored with 8-bit precision.
However, for the realization of artificial neural network hardware algorithms, such high
weights are difficult to achieve through precise voltage regulation [51,52]. Since the device can
achieve more than eight photosensitive states, we adopt two components as the neural unit
responsible for the positive and negative weights, respectively. In this way, the device finally
can map 16 states. In the neural network, the weights will be quantized to 4-bit precision to
simulate the working state of the in-memory computing chip in a more realistic manner.

http://vis-www.cs.umass.edu/lfw/


Nanomaterials 2022, 12, 2217 9 of 12
Nanomaterials 2022, 12, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 4. (a) Schematic diagram of the vision-enhanced in-sensor computing neural network; (b) 

schematic flowchart for the supervised learning simulation with artificial neural network for high-

fidelity imaging and image identify. 

Based on the mapping relationship constructed by the look-up table built in Figure 

3d, a series of test images are generated to simulate the adjustment of the image in weak 

light by the bias voltage and the change of the recognition rate of the neural network (Spe-

cific details are presented in Experimental Section). As shown in Figure 5a, neither the 

imaging information nor the recognition results are ideal when the applied light is too 

weak. The neural network recognizes “Ankle boot”, “Pullover”, and “Trouser” as “San-

dal”, “Shirt”, and “T-shirt”, respectively. When the readout voltage is 0.2 V, the image 

becomes more precise, and only “Ankle boot” is mistaken for “Sandal” in the above three 

pictures. All pictures can be accurately identified with the continuous increment of 

readout voltage to 0.4 V. To further explain the experimental results, the neural network’s 

confusion matrix of recognition results when the read bias is 0.1 V and 0.4 V have been 

shown in Figure 5b,c, respectively. Under the 0.1 V bias voltage, the overall recognition 

rate is 70%, while the recognition accuracy rate reaches 87% under 0.4 V bias voltage, 

which is pretty close to the theoretical highest recognition rate (92%) of a single-layer neu-

ral network. We believe that sensor-computing integrated devices based on perovskite 

materials can provide a promising pathway for implementing the proposed adaptive im-

aging and in-sensor neuromorphic pattern recognition missions. 

 

Figure 4. (a) Schematic diagram of the vision-enhanced in-sensor computing neural network;
(b) schematic flowchart for the supervised learning simulation with artificial neural network for
high-fidelity imaging and image identify.

Based on the mapping relationship constructed by the look-up table built in Figure 3d,
a series of test images are generated to simulate the adjustment of the image in weak
light by the bias voltage and the change of the recognition rate of the neural network
(Specific details are presented in Experimental Section). As shown in Figure 5a, neither
the imaging information nor the recognition results are ideal when the applied light is
too weak. The neural network recognizes “Ankle boot”, “Pullover”, and “Trouser” as
“Sandal”, “Shirt”, and “T-shirt”, respectively. When the readout voltage is 0.2 V, the image
becomes more precise, and only “Ankle boot” is mistaken for “Sandal” in the above three
pictures. All pictures can be accurately identified with the continuous increment of readout
voltage to 0.4 V. To further explain the experimental results, the neural network’s confusion
matrix of recognition results when the read bias is 0.1 V and 0.4 V have been shown in
Figure 5b,c, respectively. Under the 0.1 V bias voltage, the overall recognition rate is 70%,
while the recognition accuracy rate reaches 87% under 0.4 V bias voltage, which is pretty
close to the theoretical highest recognition rate (92%) of a single-layer neural network.
We believe that sensor-computing integrated devices based on perovskite materials can
provide a promising pathway for implementing the proposed adaptive imaging and in-
sensor neuromorphic pattern recognition missions.
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Figure 5. (a) The relationship between imaging results and recognition accuracy under different bias
readout voltages. The images are adapted with permission from [25]; (b,c) confusion matrix diagram
of the in-sensor computing neural network at 0.1 V and 0.4 V bias voltage, respectively.

4. Conclusions

This work presents a ternary cationic halide CsFAMA-based perovskite in-sensor
computing device that displays full-visible-spectrum photoresponse capability and re-
configurable photosensitivity behavior. As expected, the experimental results show that
the photoresponsivity of the device can be increased more than 50 times by adjusting the
degree of internal ion migration and the setting of the readout bias. It is noted that the
sensor can achieve high-definition imaging of the target object in low light by adjusting
the overall light responsivity. In terms of in-sensor computing, simple computing tasks
can be performed by independently adjusting the photoresponsivity of each element in
the array. At the same time, the accuracy of neural network is significantly improved by
adjusting the readout bias voltage under weak light. The in-sensor computing showcased
in this contribution provides a promising strategy for future machine vision with excellent
fidelity and overall efficiency.
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