
 

 
 

 

 
Nanomaterials 2022, 12, 2646. https://doi.org/10.3390/nano12152646 www.mdpi.com/journal/nanomaterials 

Review 

Digital Innovation Enabled Nanomaterial Manufacturing;  

Machine Learning Strategies and Green Perspectives 

Georgios Konstantopoulos 1, Elias P. Koumoulos 2,* and Costas A. Charitidis 1 

1 RNANO Lab—Research Unit of Advanced, Composite, Nano Materials & Nanotechnology,  

School of Chemical Engineering, National Technical University of Athens, GR15773 Athens, Greece;  

gkonstanto@chemeng.ntua.gr (G.K.); charitidis@chemeng.ntua.gr (C.A.C.) 
2 Innovation in Research & Engineering Solutions (IRES), Boulevard Edmond Machtens 79/22,  

1080 Brussels, Belgium 

* Correspondence: epk@innovation-res.eu 

Abstract: Machine learning has been an emerging scientific field serving the modern multidiscipli-

nary needs in the Materials Science and Manufacturing sector. The taxonomy and mapping of na-

nomaterial properties based on data analytics is going to ensure safe and green manufacturing with 

consciousness raised on effective resource management. The utilization of predictive modelling 

tools empowered with artificial intelligence (AI) has proposed novel paths in materials discovery 

and optimization, while it can further stimulate the cutting-edge and data-driven design of a tai-

lored behavioral profile of nanomaterials to serve the special needs of application environments. 

The previous knowledge of the physics and mathematical representation of material behaviors, as 

well as the utilization of already generated testing data, received specific attention by scientists. 

However, the exploration of available information is not always manageable, and machine intelli-

gence can efficiently (computational resources, time) meet this challenge via high-throughput mul-

tidimensional search exploration capabilities. Moreover, the modelling of bio-chemical interactions 

with the environment and living organisms has been demonstrated to connect chemical structure 

with acute or tolerable effects upon exposure. Thus, in this review, a summary of recent computa-

tional developments is provided with the aim to cover excelling research and present challenges 

towards unbiased, decentralized, and data-driven decision-making, in relation to increased impact 

in the field of advanced nanomaterials manufacturing and nanoinformatics, and to indicate the 

steps required to realize rapid, safe, and circular-by-design nanomaterials. 
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1. Introduction 

The modern needs of science move towards sustainable design and the re-use of ma-

terials in order to expand the life-span, reduce the environmental impact of the composite 

components, as well as to use resources wisely. More specifically, ontology-assisted prod-

uct lifecycle management has stepped up to support the materials design and manufac-

turing, usage and maintenance, and end of life management including recycling, disposal, 

and reuse [1,2]. Specifically, the reuse of materials can maximize the benefit at societal and 

environmental levels via the utilization of the excess of carbon dioxide [3,4]. Moreover, 

Nanotechnology plays a leading role in advancing technologies in several sectors from 

the natural sciences to interdisciplinary engineering fields, including a societal impact by 

the creation of new and attractive job positions, the financial growth, and the improved 

quality of life. It is estimated that by the end of 2022, the total market value of nanomateri-

als will exceed $90.5 billion worldwide, while the demand for commercial and consumer 

nano-enhanced products demonstrated a growing trend in recent years [5]. 
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Modern societal and industrial needs require proper management of the produced 

data to address the ambition and evolution of Industry 4.0 and human-oriented Industry 

5.0 program in Europe, Society 5.0 program in Japan, and Made in EU 2025 program in 

China [6–8]. Nanoinformatics field growth has been more challenging than its predeces-

sors (cheminformatics, materials informatics), requiring multidisciplinary scientific teams 

to solve multiscale problems with many variables affecting the structure–property rela-

tions. In order to monitor nanomaterial data in real-time, a demanding infrastructure is 

required, including functional devices with sensors and/or actuators, which provide an 

interface with machine intelligence [9]. These systems are expected to serve real-world 

applications in the near future, such as buildings, vehicles, and even whole cities, which 

will communicate within a power grid. Another field of nanoinformatics and machine 

intelligence expected to flourish is the wearable electronics to support biomedical and 

medicine research where lot of data are produced, e.g., human–machine interfaces, on-

body biosensors, and artificial skins, as well as the fields of medical diagnosis and moni-

toring of health will benefit from those technologies [10]. For instance, a smart tattoo, 

smart bandage, and clothing biosensors have already demonstrated proof-of-concept de-

tection of biomarkers, such as lactase, glucose, electrolyte ions, alcohol level, hydration 

status, and for the evaluation of, e.g., wound status to prevent potential local infection 

[11]. 

In the field of nanomanufacturing, the establishment of novel predictive models is 

challenging and requires scalable, fast, and accurate data acquisition to increase the im-

pact in the production. One common limitation is related to data or failed results which 

are not accessible or methods applied may suffer from irreproducibility [10], and this is 

evidenced when researchers publish or reproduce a work with contradictory/different 

outcomes. This is attributed to a lack of documentation, while the failed results instead of 

being lost can be key for AI to enhance the interpretation of algorithms, i.e., establish cost 

factors/criteria and optimize next experiments. As it is indicated, the need for standard-

ized, curated, and accessible data is emerging to guide informed predictions [12]. 

Especially, progress in data-driven manufacturing and evidence-based decision sup-

port systems includes digital metrology for the real-time assessment of the production 

quality. Ontology can be the engine to organize and connect the process and materials 

metadata, which is a key enabler for AI to realize its prospect. Currently, MASON ontol-

ogy has been used for establishing semantics, towards zero-defect manufacturing [13,14]. 

The use of ontology-assisted co-simulation and cognitive digital twin is a main driver for 

the future of manufacturing utilizing real-time data for status monitoring, fault diagnosis, 

and performance prediction [15]. The need for standardization and semantics has been 

highlighted in the materials characterization field, and data exchange procedures have 

also been major topics of workshops and forums of experts [3]. A characterization data 

structure, “CHADA”, has been developed for the proper documentation of (characteriza-

tion) experiments facilitating the organization of data, in cooperation with standardiza-

tion organisations (CEN). “CHADA” is going to be further developed under the umbrella 

of European Materials Characterization Council (EMCC) to provide interoperability by 

developing EMMO-compliant domain ontologies [16]. Interoperability was also the 

dogma in the Materials Genome Initiative, as well as doing, recording, and sharing science 

[3,17]. In this way, the challenge of high-quality data acquisition suitable for use in pre-

dictive modelling tools can be addressed [18]. The European Materials Modelling Council 

(EMMC) published in their Roadmap the orientations in modelling and AI activities re-

garding the process optimization and the engineering of (nano-)materials, which require 

structured data to maximise their impact and support the European industry transition in 

accordance with digitalization and Green Deal policies [19]. Moreover, the Nanoinformat-

ics Roadmap 2030 focuses on the coordination of data capture, preservation, and dissem-

ination in order to facilitate the accessibility of open data on nanomaterials and envisages 

structuring databases which will be continuously enriched with data which can be used 
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by computational modelers for establishing structure–property/activity/toxicity relation-

ships as well as to enhance relevant regulatory actions [5,20]. 

Nowadays, several modelling approaches use known theoretical principles and the-

ories, with the most common methods being the classic molecular dynamics (MD) simu-

lations, density functional theory (DFT), Monte Carlo, finite element analysis (FEM), the 

phase field method, and the Boltzmann equation of transport [21], which have often been 

used to model the mechanical properties and thermal conductivity [22]. The use of exper-

imental data in these methods is often limited to the input parameters (also due to time-

constraints), while one advantage of machine learning is that the output parameters can 

feed in addition the same or other machine learning models. Although simulation seems 

to limitations, AI can deliver a robust approach for combining scientific excellence and 

sustainability, due to the capacity to utilize data in large-scale and reduce the bias in the 

prediction of materials behavior, impact, and properties by identifying unseen patterns, 

while models from chemistry, physics, biology, etc. can be included to increase the preci-

sion and reduce variation from batch to batch in a closed-loop laboratory [23]. 

Relevant progress in computational science has been a key enabler for advancing the 

Edisonian approach for materials development, which often embraces high cost, risk, and 

time for the computation/experiment iterations [24]. Understanding nanomaterials in 

depth has been the motivation to collect key materials descriptors to support the univer-

sality of the computational models [25]. Tensile strength, elongation at break, thermal and 

electrical conductivity, Young’s modulus, porosity, (eco-)toxicity indexes [10,26], topol-

ogy, crystallography, aspect ratio, zeta potential, surface energy, chemical structure, and 

protein corona fingerprint have been common descriptors used to establish structure–

property–response relationships [27–29]. Coming with a single and robust model chal-

lenging [28], and requires time investment to collect, curate, and analyze the data. This 

represents a unique challenge for the future of predictive modelling and nanoinformatics, 

which raises the degree of complexity for feature extraction, processing, and engineering 

[30]. In this direction and towards the rational design of materials via data-driven tools, 

several initiatives have come to provide the most prominent, the U. S. Materials Genome 

Initiative [3,17]. 

Regarding model development, the best-case scenario is to have a verified model 

concerning the correctness and reliability, and to focus on the validation of the model pre-

dictions based on the training dataset, in order to avoid high levels of complexity and 

possible overfitting of the derived model [12,17,23,31,32]. Cross-validation is a common 

procedure to optimize the prediction metrics and achieve similar fitting accuracy to un-

seen datasets, but it should be noted that sampling is important, as both the training and 

validation datasets should be representative of the data [27,32–34]. The repeated learning 

test and k-fold cross-validation have been shown to be the most promising approach to 

reduce the computational costs in this matter [35]. Consequently, the digitalization of pro-

cesses and their characterization represent a key ingredient for the success of addressing 

the interoperability requirements in order to have usable and comparable data, and to 

accomplish the ambition of a closed-loop laboratory (Figure 1) for the design and selection 

of suitable (nano)materials [3,23]. 
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Figure 1. Schematic representation of a closed loop laboratory. Manufacturing, materials modelling 

and characterization can provide the data to correlate via data-driven AI empowered models the 

optimization of the next experiments in a closed-loop of information flow. 

Beyond process control, AI and machine learning hold a lot of promise to bridge this 

gap with their empirical character, as till today rapid characterization tools have been ex-

ploited with high accuracy for the discovery of materials and immunotherapies, materials 

reinforcement/failure/toxicity mechanism recognition, structural characterization, phase 

detection and quantification, and anomaly detection [3,25,31,33,34,36–43]. While machine 

learning and AI are already well established in the fields of statistics, economics, and bio-

informatics, their utilization in nanotechnology is relatively new [44]. 

Another concern when using computational methods is the quality of data generated 

by characterization, especially in real-time, and monitoring, e.g., the volatile waste 

streams, transfer of nanomaterials via the air or toxicity in cell cultures, where measure-

ment (in-)sensitivity can be disastrous for ecosystem and human well-being. The most 

prominent machine learning models contain the quantitative structure–activity relation-

ships (QSARs) and nanostructure–activity relationships (QNAR) concerning the toxico-

logical effect prediction of engineered nanomaterials using compartment-based mathe-

matical models for toxicokinetic, toxicodynamic, in vitro and in vivo dosimetry, and en-

vironmental fate. EU reports, projects, and nanosafety clusters have assessed their ap-

plicability for regulatory purposes and to provide proper REACH guidance [21,45–47]. All 

these methods have been established for years, and the developed regulations/standards or 

SOPs satisfy the reproducibility and interoperability needs for the consolidated reporting of 

properties and behavior, while also satisfy the demand for safe nanomaterials by design. 

These methods have been used to map the profile of nanomaterials and their impact on both 

humans and the environment based on the characterization of morphology and physical 

properties [46,48], using the knowledge from fundamental research outcomes and mining 

new research and existing databases, which is facilitated when there is access to open data 

[49]. 

Another area to focus on is the storage of the produced process/characterization data, 

in order to maximize the impact of the experiments. Often, the volume of the generated 

data may seem large in materials science, but it may not concern computer scientists. Of 

higher concern is the ability to manage the extent of data and the useability across multiple 

domains [17]. A database plays a critical role, to digitalize the material development and 

automate tasks using modern AI tools. Un-/semi- and supervised learning includes the 

common techniques in solving classification and regression problems, while reinforce-

ment learning algorithms demonstrate the utility to create programs by adjusting the 
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model parameters, accuracy, and sensitivity via a “reward” system. This is often the ulti-

mate goal, due to the fact that stored data demonstrate an incremental trend with time 

and the developed models should be constantly updated [10,31]. Another factor is that 

existing data usually have not been annotated and costly man-made annotation processes 

have to be followed in order to ensure that data are well-structured for the efficient estab-

lishment of predictive models [38]. Among datasets, different descriptors/features (rows 

or columns) are evidenced, and often one consideration is the “dimensionality curse”, 

which can lead to overtraining and induce bias in the developed models based on their 

observation frequency, and their ability to reveal hidden relationships in a family of ma-

terials is affected [12,27]. Some impressive demonstrations of machine learning include 

models to detect potential Heusler compounds and properties. Numerous descriptors 

have been utilized (22 descriptors) and performed predictions within over 400,000 classes 

in as short as 45 min [31]. 

So far, a lot of technical progress has been made in the field, as well as in document-

ing the recent progress and outcomes in the field. Below, a table summary (Table 1) is 

provided to present the landscape of reviews covering machine learning topics across dif-

ferent domains/fields to better position the scope of this review and the concepts covered 

in the following sections, which are connected to applications and implications for nano-

manufacturing. 

Table 1. Landscape of recent reviews covering machine learning topics across different do-

mains/fields of nanomanufacturing and machine learning applications. 

Title Scope Refs 

Research and Development in Carbon Fibers 

and Advanced High-Performance Composites 

Supply Chain in Europe: A Roadmap for 

Challenges and the Industrial Uptake 

• Novel materials and optimized processing 

• Characterization and modelling 

• Environmental and economical circularity 

[4] 

Machine learning the ropes: principles, appli-

cations and directions in synthetic chemistry.  

• Preprocessing, feature engineering, machine learning algo-

rithms, databases 

• Combinational simulation and machine learning for new 

material discovery 

• High-throughput screening with machine learning 

• Summary of recent progress in property prediction, mate-

rial discovery, inverse design, corrosion detection 

[12] 

Virtual metrology as an approach for product 

quality estimation in Industry 4.0: a systematic 

review and integrative conceptual framework 

• Virtual metrology and Industrial application 

• Selection criteria and overview of limitations 
[13] 

Big data and machine learning for materials 

science 

• Big data (including sensor based) and machine learning 

• Materials discovery and quantum chemistry 

• Trends, proposed future developments, practical limita-

tions and cost of big data production by sensor systems 

[17] 

EU US Roadmap Nanoinformatics 2030 

• Data collection and curation 

• Metadata and ontologies 

• Nano(bio)informatics, machine learning and statistical 

modelling 

• Impact, challenges, and milestones 

[20] 

Materials discovery and design using machine 

learning 

• Typical machine learning approaches and applications 

• Limitations, routes for overcoming challenges and future 

orientations 

[21] 

Advancing Biosensors with Machine Learning • Chemometrics for different biosensors types and data [26] 
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• Machine learning models advantages and limitations 

Knowledge gaps in immune response and im-

munotherapy involving nanomaterials: Data-

bases and artificial intelligence for material 

design 

• Nanomaterial technologies and immunotherapy 

• Nanobioinformatics and databases 
[37] 

Role of Artificial Intelligence and Machine 

Learning in Nanosafety 

• Modelling of biological and environmental profiles of na-

nomaterials—computational nanosafety 

• Summary of machine learning methods and descriptors 

• Practical applications 

[45] 

Toward computational and experimental char-

acterisation for risk assessment of metal oxide 

nanoparticles 

• Metal oxide nanoparticles 

• Cytotoxicity and risk assessment 

• In silico studies with QSAR models and machine learning 

[47] 

Machine Learning for Advanced Additive 

Manufacturing 

• Theoretical design expectations 

• Practical manufacturing capabilities 

• AI for AM 
[50] 

Machine learning in additive manufacturing: 

State-of-the-art and perspectives 

• Barriers for AM and inconsistent product quality 

• Machine learning algorithms in design and in process for 

AM 

• Data security 

[51] 

NanoEHS beyond toxicity—focusing on bio-

corona 

• Environmental health 

• Safety of nanomaterials and laboratory factors affecting 

toxicity profile 

• Biomolecular interactions at molecular level 

• High-throughput screening with machine learning of ma-

terials properties towards greener design and statistical 

modelling 

[52] 

A review of machine learning for the optimi-

zation of production processes 

• Optimization in a wide range of processes and product 

quality 

• Data generated in production, machine learning and con-

straints  

[53] 

Machine learning for chemical discovery 
• Curated datasets for chemical discovery 

• Breakthroughs and challenges 
[54] 

Nanomaterial Databases: Data Sources for 

Promoting Design and Risk Assessment of 

Nanomaterials 

• Review of databases for nanomaterials and comparative 

analysis 
[55] 

In silico design and automated learning to 

boost next-generation smart biomanufacturing 

• Automated smart biomanufacturing (adaptive and rapid 

design) 

• In silico tools, screening and prototyping in industry 

[56] 

Practices and Trends of Machine Learning Ap-

plication in Nanotoxicology 

• Data pre-processing and machine learning model develop-

ment 

• Progress in nanoinformatics for nanotoxicology domains 

and in silico prediction 

[57] 

A review of the applications of data mining 

and machine learning for the prediction of bi-

omedical properties of nanoparticles 

• Data mining and machine learning in nanomedicine—pre-

diction of properties and activity 

• Progress and challenges in nanoinformatics 

[58] 

This review focuses on the need to establish digitalized mapping between materials 

descriptors that arise from different characterization/simulation methods and relate the 
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chemical structure to nanomaterials options to favor the growth of dedicated properties 

profile and even to tune their production parameters to improve sustainability. In Section 

2, the motivation is to introduce progress and challenges in discovering new materials by 

enabling shortcuts to rapid and safe-by-design routes, incorporate experimental parame-

ters in order to enhance decision-making, and select the process parameters to produce 

nanomaterials to serve specific applications [45,49]. In addition, in Section 3, the improved 

capabilities for exploration of materials space and their corresponding digital representa-

tions are discussed and the key enabling steps to realize more flexibility in the production 

standards applied for selection of suitable nanomaterials, without the need to consider 

chemistry/physicochemistry or other complex theories in materials science, but using pre-

vious knowledge/experience documented in corresponding datasets [12,49]. Another im-

portant mission of machine intelligence is in the field of the development of safe and en-

vironmentally friendly nanomaterials. Hence, in Section 4, a threefold pattern in the pre-

diction of their biological activity profile is presented based on data-driven representa-

tions, which could be prone to the availability of data and bias due to the applied proce-

dures for sample preparation (contamination, purification), including biological systems 

containing human/algae cells, as well as in the bionanomaterial–cell interfaces. As pre-

sented in Section 5, the foundation for this scope is data mining, management, and cura-

tion to enrich new or existing databases, as it is commonly accepted that the catalyst for 

AI is the accessibility to structured and big data [59,60]. Consequently, the existing meth-

ods can be supported by the computational theory that focuses on data, which holds a lot 

of promise to greatly reduce the computational and experimental pressure for innovation. 

At the end of this review, the prospects of AI for the fields of nanotechnology, materials 

science, and nanoinformatics are summarized along with the conclusions of this study. 

2. In Silico Materials Development 

Nowadays, a key enabler in the coordination and management of the efforts towards 

materials development are the in-silico machine learning methods [3]. This includes the 

development stage, including the establishment of structure and property relationships, 

the simulation of the use-phase, as well as the prediction of the life- and cost-cycle for the 

raw materials use to improve the management of resources, the application lifespan, and 

the management of the wastes in the end-of-life. Knowledge of chemistry may also pro-

vide insights in surface modification of nanomaterials and their incorporation in reac-

tion/transfer mechanisms for the reinforcement of interfaces in composite materials to 

serve advanced applications [23]. Concerning that the computational power is almost dou-

bled every two years according to Moore’s law (expected to be valid till the end of 2025), it 

is accepted that machine learning has what it takes to take predictive modelling to the next 

level and support the decision-making process driven by data [3]. In the world of data, we 

know the needs that are intended to serve in different application fields, and nanostructures 

can be tailored in order to satisfy by design that the produced nanomaterial will comply 

with the high standards for commercial use of the produced material, while the impacts on 

health and the environment are also addressed during the production phase. 

Machine learning efforts have been implemented on several occasions in order to 

accelerate the development of (bio-)materials in a bottom-up approach, such as in the case 

of peptides, and have been promising as enabling mechanisms to reveal and discover new 

therapeutics using deep learning to fight severe diseases such as cancer [39]. This multi-

disciplinary field requires a lot of coordinated effort from scientists with different back-

grounds in order to make sure that the predictive models are able to be validated by the 

theory and scientific principles and deliver what they promise, which requires the develop-

ment of unbiased and scalable algorithms [3]. Especially, the computer programs should be 

optimized and provide an interface to ensure a user-friendly environment, the utilization of 

many different types of data, and to overcome dependencies on languages used, file for-

mats, versions of packages, and enable the communication of real-world data with machine 
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intelligence (Figure 2). The accuracy of the in-silico materials development can be improved 

by ensuring the quality of data [18], in close cooperation with the research scientists. 

 

Figure 2. Illustration of machine learning contribution to nanotechnology and nanoinformatics field 

for nanomaterials design and selection based on data-driven analytics. 

The main challenge of traditional trial and error materials development is the time-

to-market which may take up to 10–20 years for their exploitation, while computational 

methods can efficiently reduce this timeframe to as short as 18 months [21,61]. The tradi-

tional material discovery method though, cannot adapt to the demand for large-scale and 

innovative fabrication of high-performance materials. A flagship project towards materi-

als design is the USA “Material Genome Initiative” (MGI) was funded in 2011 [61,62]. A 

first systematic and mass effort on the collection of materials data was performed. “Mate-

rial Genetic Engineering and Support Platform” is another project introduced by Vhina in 

the same direction, with the ambition to build a high-throughput computing platform. 

Several initiatives have since been established, which are dedicated to digitalization and 

automation in the material synthesis field, such as the Materials Platform for Data Science, 

Materials Project, Materials Data Facility, Novel Materials Discovery, Materials Cloud Ar-

chive, and other platforms for automated flow nanomaterial synthesis [3,10,21,23].  

2.1. Sustainable Design, Engineering, and Discovery of Innovative Nanomaterials 

In the past, the high-throughput screening of nanomaterials has been performed with 

molecular simulations or ab-initio calculations for the theoretical determination of their 

properties based on their chemical structure [63]. One current limitation is the efficiency 

when exploring the nanomaterials design space. The pluralism of nanomaterials and their 

corresponding functional properties could challenge the scientific community for years. 

Currently, there are many materials options which lack an application-oriented character, 

while any structured experimentation pathways have limited chances to lead to new 

knowledge and new nanomaterials invention. Even with the AI, design rules, and best 

candidates, the number of instances depends on the amount of data, while big data 
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handling requires efficient algorithms since new obstacles can be introduced due to time 

and memory/processor demand.  

More specifically, for the case of metal organic frameworks (MOFs), the design pa-

rameters and functionalization strategies should be optimized in order to identify syn-

thetic paths for producing MOFs with an engineered distribution of active metallic sites 

within the porous network to deliver improved encapsulation efficiency and catalytic 

properties [64]. Predictive models due to their accuracy can efficiently assist the screening 

process considering that the hypothetic structural combinations are in the scale of mil-

lions, as well as the manufacturing parameters that can realistically enable their synthesis. 

However, deployment to all possible MOF structures is restricted in the case of molecular 

simulations, due to the high-computational cost. In the era of high-throughput nano-

materials design, machine learning has shown the potential to overcome such deficiencies 

with expensive calculations without a potential cost in the proper establishment of struc-

ture–property relationships. This is an enabling mechanism to aid the exploration of novel 

nanomaterials in unchartered chemical space and to identify the best candidate materials 

tailored to the application requirements [63]. The main bottleneck in this case, and for 

machine learning in general, is the access to enough and to high-fidelity data in order to 

enhance the innovation potential and identify hidden patterns, which contribute to the 

accuracy in future predictions. Since accessibility to high-quality data is satisfied, the im-

pact of machine learning can be evidenced in critical areas, e.g., wise management of re-

sources, time, and energy use, which contributes to the sustainability and viability of 

nanostructures development at the industrial level. 

Machine learning has found success in nanoengineering, and more specifically, arti-

ficial neural networks (ANNs) were utilized by Li et al. in the modelling of pulse electro-

deposition for composite Ni–TiN coatings to tune the nanogranular structure. The data 

were obtained from 45 different steel substrates to predict the sliding wear resistance of 

coatings with an error in the region of 4.2%. It was shown by the authors that a bigger 

grain size of TiN is evidenced when selecting a lower current density and a prolonged 

pulse interval, while the optimum wear resistance is obtained for the average crystallite 

sizes in the region between 39 and 58 nm [65]. In another study involving the physico-

chemical profile of TiO2 nanoparticles, the zeta potential prediction was enabled by 

ANNs. The temperature, pH, ionic strength, and mass content of aqueous dispersions 

were studied, with pH being the most influencing descriptor. Thus, the constructive 

model was regarded as a step beyond currently applied statistics, and more towards re-

search on space exploration considering a wide range of conditions in silico, which due to 

technical and time constraints cannot be experimentally validated, but can offer a guid-

ance on the next experiments. The impact in different industries, such as pigments and 

pharmaceuticals production, minerals processing, and construction, can be realized by 

tailorizing the synthesis or the manufacturing parameters towards an increased zeta po-

tential value to favor the minimization of nanoparticle agglomeration events and to im-

prove the sustainability of production when nanoparticles are used as reinforcements [66]. 

Of course, the utility of ANNs for structural design and process optimization has an 

imminent impact in the exploration of the design space. However, it is process specific. 

Such algorithms can be enabling as soon as they are shared, but what cannot be shared 

with success are the models developed by training on limited amounts of data. Overtrain-

ing, which is connected to the excellent fitting of known data, is limiting when the model 

is deployed to new data, and what is required to go beyond that is the ability to access 

thousands of data. In this way, the resources used for training a model can reduce the time 

investment for new users seeking to use an already developed model to explore amongst 

a rich design space since the model can be reused due to generalizability and speed criteria 

which will be met. 

Graphene research is another bright engineering field due to the ability to tune mul-

tiple factors at nanoscale, such as defects, edges, vacancies, corners, dopants, reconstruc-

tions, and adsorbates, which determine the remarkable properties of graphene in the form 
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of optical transparency, electronic, mechanical and thermal properties. In theory the per-

fect graphene does not enable to utilize the bandgap functionality in transistors, which is 

facilitated by the engineering of a bandgap up to 0.3 eV by introducing Stone–Wales and 

vacancy-type defects, or to control reactivity and induce local charge by controlling the 

density of π-electrons. Motevalli et al. in their study modelled graphene oxide template 

structures to increase the insights in the frequency of defects and broken bonds based on 

structural features, which significantly affect the strength and the conductive properties 

of this modern nanomaterial. The dataset contained 20,000 different electronic structures, 

which were obtained by simulation, and machine learning was used to establish a predic-

tive Bayesian network model using 829 structural features, while 223 features out of them 

were proved sufficient to achieve the development of an accurate model. For instance, in 

the case of graphene oxide the size, shape, edges and corners can be correlated to the dis-

tribution of broken bonds. The distribution of hydrogen atoms was found to be repre-

sentative of the lattice rupture, while the presence of oxygen functional groups is con-

nected to actual number of broken bonds. Moreover, the presence of ether and hydrogen 

was shown to affect the integrity of the carbon lattice, which can be used to enhance the 

impact properties and overall performance. Their methodology was optimized by the in-

corporation of the density functional tight binding (DFTB) method on a training set con-

sisting of 20,396 instances. The modelled graphene oxide templates represent a surface 

varying from 320 Å2 to 2457 Å2, several functional groups (epoxide, ether, hydroxyl) at 

various compositions, and morphologies (triangular, rectangular, rhombic, hexagonal). 

This analysis corresponds to over 8,500,000 possible adsorption sites, and the model 

demonstrated generalization ability for developing transfer learning functionality to other 

nanomaterials with known structure, which emphasized the significance of the utilization 

of machine learning models in engineering/design decisions of graphene structures, as 

well as the contribution to nanoinformatics [67]. 

In another case, machine learning has been used for the revelation of intrinsic elec-

tronic properties of graphene and rapid identification of the desired electronic properties 

by correlating the nanoscale features of graphene with or without undergoing functional-

ization treatment and represented by a structural footprint. The dataset is structured by 

622 material options of computationally optimized graphene and the electron affinity (EA), 

energy of the Fermi level (EF), electronic band gap (EG), and ionization potential (EI) pa-

rameters have been modelled by Fernandez et al. demonstrating a high accuracy metric 

of R2~0.9 [62]. The benefit of this approach is the ease of acquiring the experiment struc-

tural properties of graphene by characterization (surface area, geometry, edge type, aspect 

ratio), while often the characterization of the electronic properties is challenging, espe-

cially when graphene is produced at scale. In this study, the relevant electronic properties 

were acquired using DFTB simulation, while graphene structures were consisted of 16 to 

2176 carbon atoms. GA optimization was applied to choose the best hyperparameters and 

features combinations to access a universal solution of the developed model, until the fit-

ness score remains unchanged for 90% of the generations. This in-silico, high speed 

screening approach can facilitate future research by reducing the experimental time and 

investment required to gain deep insights in graphene nanostructures, especially when 

there is access to virtual libraries containing experimental data. 

Machine learning has been also deployed for the precise prediction of crystallo-

graphic orientations at nanoscale to assist the experimental design and the lithographic 

preparation of those structures. In this case, Fernandez et al. used the electronegativity 

values of graphene nanoflakes with an absolute error lower than 0.5 eV and their molec-

ular graph information to facilitate the rapid prediction of the energy gap and the deter-

mination of the topology of the nanoflakes accordingly. Such models can be used to mod-

erate the control of molecular connectivity and edge characteristics and can find applica-

tion beyond graphene structures with other 2D nanomaterials, and effectively support the 

screening process, as well as defining the correlation of functional and structural proper-

ties, especially when there is access to libraries with relevant data. In this study, the most 



Nanomaterials 2022, 12, 2646 11 of 57 
 

 

accurate predictive model was established with support vector machines (SVM), opti-

mized using a genetic algorithm (GA) in the background procedure, with a topological 

resolution distance of 1–42 atoms [44]. 

The present status of graphene research and machine learning is currently guided by 

the simulation data, which can provide fundamental insights in the structure property 

relations offering larger training datasets which can feed the data-driven models and re-

veal properties relation which could not be traceable by human alone. The main concern 

is that the simulation methods generate data in a structured way while real materials pro-

duction can introduce a manufacturing footprint, including structural defects and pres-

ence of randomly distributed heteroatoms affecting their properties. This is currently lim-

ited by the throughput, scale, and limitations of current characterization techniques which 

cannot provide the experimental validation of the simulated structures. Thus, it is chal-

lenging to actually connect graphene structure and manufacturing considering also the 

fact of the statistical character of graphene powders and films produced, which currently 

are sampled to extract any structure and property information. However, still, the map-

ping of intrinsic features of nanomaterials generated in-silico can provide a solid basis to 

push innovation and sustainability by identifying the best candidates for nanomaterials 

application and improving the resources allocation of goal-oriented experiments. 

In-silico models for carbon nanodots (CDs) were developed by Han et al. to support 

the parameter optimization, which is a challenging task for these sophisticated materials 

which serve special applications due to their exotic properties, such as Fe3+ ions sensing 

in solutions. In this case, the research bottleneck is identified in the quality of the process 

parameters, which often suffer from noise and their wide exploration space, which cannot 

be handled by a single researcher. Machine learning can address this challenge with suc-

cess and assist the screening of high-quality CDs, due to its effective prediction, optimi-

zation, and fast acquisition of results capability. This study focused on the hydrothermal 

synthesis, which is well-established, and the prediction of the process-related fluorescent 

quantum yield (QY) was based on several descriptors, such as EDA volume, mass of pre-

cursor, reaction temperature, temperature ramp, and reaction time out of 391 experiments. 

More specifically, the XGBoost-R algorithm guided the experimentally verified synthesis 

of CDs out of 702,702 available combinations, exhibiting a strong green emission with QY 

up to 39.3%. The more important features for the engineering of CDs were shown to be the 

mass of the precursors and the volume of the alkaline catalysts in order to achieve high-QY 

and successfully bridge the gap between theory with the experiment, while even chemical 

descriptors incorporation can further support advanced research in the future and general-

ize the machine learning model [68]. By providing the framework and sharing the methods 

and algorithms, there is the potential to cover the engineering aspects of the aforementioned 

graphene development approaches. 

In another case, nanomaterials were in silico designed by Dewulf et al. to provide 

feedback to the bioinspired in vitro synthesis of high porous silica as a green alternative 

to the conventional synthesis. The bioinspired synthesis is characterized by the short re-

action duration, the mild conditions at room temperature, and the use of an eco-friendly 

precursor (sodium metasilicate pentahydrate), which satisfy a viable and scalable ap-

proach able to offer promising deployment at industrial scale. In this case, the best-case 

scenario is that an agreement of predictive modelling and experiment occurs. Practically, 

what is needed is to provide a machine learning basis that beyond predictions can follow 

the experimental sequencing, apply automated corrections and crossvalidations to im-

prove the model, and propose new experiments. 

Furthermore, the sustainability of the process can be further supported by such a 

design of experiments by performing global sensitivity analysis in order to support the 

resource-efficient product and process development. In their approach, they used a facto-

rial materials design 23 to improve reaction yield and surface area, which included the 

parameters of precursor concentration, pH, and reactant concentrations in the form of sil-

icon to nitrogen ratio, in combination with optimization using a central composite design, 
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leading to a yield of 90 mol%, while the highest surface area value that was obtained was 

400 m2 g−1. Since the aforementioned properties are critical factors to ensure the successful 

commercialization of the materials, regression analysis was implemented along with 

global sensitivity analysis using the Sobol’ index in order to further improve the process. 

A central composite design and multivariate analysis were used to model the experimen-

tally determined outcomes to assist the rapid identification of interactions and parameters 

that are correlated with physicochemical properties with high precision, using a wide pa-

rameter and experimental space. The main parameters involved in this machine learning 

approach were Si precursor concentration, pH, and the Si to N ratio to predict the reaction 

yield and the surface area. It was shown that Si precursor concentration and Si:N ratio de-

termine the precipitation occurrence. An optimization regarding the reduction of the effort 

spent in experimental verification was realized by using a sequential design in order to ef-

ficiently perform pre-screening and screening, and subsequently the optimization of the ex-

periments [69]. 

Finally, in silico materials development has been demonstrated for organic structure 

directing agents (OSDAs), where eight different models were utilized using evolutionary 

algorithms. The dataset was consisted of 1,000,000 trial molecules, which were generated 

by MD. Machine learning was used for the prediction of the stabilization energy in com-

parison with the respective output of MD in order to decide on the synthetic pathway. 

The actual number of the compounds with a stabilization energy below −15 kJ/(mol Si) 

was conducted using ANN supported by an optimization generic algorithm, which re-

sulted in a lower number of molecules. The training dataset was consisted of stabilization 

energies for 4781 which are going to be developed on putative zeolite, which were ob-

tained through computationally intensive MD calculation, resulting to the in-silico gener-

ation of 469 exceptionally stable structures. Thus, an effective strategy for the design of 

OSDAs was proposed for zeolite beta with high correlation to the MD results [70]. 

In order to go beyond the in-silico materials design and design space exploration, 

machine learning should utilize real world experimental data, satisfying the data quality 

standards. Another challenge is connected to the speed of experimental data acquisition 

and the amount of data analysis by each measurement which is dependent on human 

resources. Machine learning advances can efficiently automate the extraction of materials 

properties, e.g., in the case of carbon nanotubes (CNTs) to measure the diameter of a 

greater amount of instances compared to a single user, and for effectively increasing the 

statistical sample, and thus robustness of the derived data. 

2.2. Contribution of High-Resolution Characterization Coupling with Machine Learning and 

Computer Vision to Structure High-Quality Materials Datasets for Materials Development 

Machine learning comes to bridge the gap of high-quality materials information ac-

quisition form high resolution techniques at high throughput by utilizing methods to sup-

port and detect the target features and properties that can be used for the in-silico devel-

opment of materials or for the prediction of unknown properties of new or existing mate-

rials. Computer vision is also a tool that should not be excluded, noting that image anal-

ysis could deliberate automated processing of the recognition of key mechanical proper-

ties (stress-strain plots), and extraction of the mechanical properties of produced materials 

similar to a human analyst. The most prominent machine learning libraries for computer 

vision are Torch, Theano, Caffe, TensorFlow, and Keras [17]. Already, scanning electron 

microscopy (SEM) has been used for identifying the successful synthesis of nanomaterials, 

to evaluate material quality by the observation of its surface, to investigate the (de-)bond-

ing of hybrid structures, as well as the shape and distribution of the dimensions, and sev-

eral efforts have been made to develop image vision AI models to support the automatic 

classification and annotation of images from different materials built on existing databases 

(over 150,000 images) with accuracy almost 90% [38].  

Sophisticated focused ion beam (FIB) characterization also uses digital image corre-

lation for obtaining insights about the stress gradients and for imaging soft materials such 
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as filled reinforced polymer nanocomposites [71]. AI coupling with this technique has led 

to effective image-processing to achieve a super-resolution of 3D images and to reduce 

the observation times, by demonstrating superior restoration as the asymmetric resolution 

is increased. Moreover, images from X-ray spectroscopy surface mapping (EDX, EBDS) or 

Raman mapping are utilized for further image analysis, e.g., in clustering to identify the 

materials microstructural composition, which could be relevant to martensitic transfor-

mation and phase nucleation monitoring for steels thermal processing via elemental 

maps, for the examination of the bonding state in composites and hybridization of the 

bonds in the interfaces.  

Another interesting high resolution imaging technique, scanning tunnelling micros-

copy (STM) [72], was coupled with deep learning, which was utilized for automatic par-

ticle recognition, while the model “ParticlesNN” was deployed online as an open source 

tool to facilitate the extraction of nanoparticle information. The main benefits provided 

are the ability to handle images containing noisy data, to perform statistical processing in 

the form of histogram and tables for all the identified nanoparticles. The “ParticlesNN” 

web service also provides the flexibility to classify particles in the micrometer scale (with 

lower resolution limit than the technique used for establishing the machine learning mod-

els), while the input images can be derived from different instruments, such as SEM, due 

to the similarity of the image output. Thus, it is possible to maximize the output of an 

imaging technique and support the increased accuracy, quality of the material descriptors, 

and the number of annotated instances, to feed the machine learning models and establish 

a statistically representative connection between structure and properties.  

Machine learning was used by Lee et al. in order to overcome the characterization 

techniques challenge of sensitive and accurate characterization at nanoscale. Single parti-

cle inductively coupled plasma mass spectrometry (spICP-MS) is a prolific method in this 

field and outperforms other conventional techniques used, such as dynamic light scatter-

ing (DLS), which was used to acquire data on Au nanoparticles size distribution and meas-

urement of their concentration with the highest possible precision. K-means clustering 

was used to process the raw data for the improved discrimination of the signal, removing 

the background noise and quantitatively resolve different size groups with a resolution 

lower than 2% by mass and 20 nm by nanoparticle [73]. 

Current efforts are limited though in the information extraction from nanoparticles 

with circular crosssections and spherical shapes. Machine learning can unlock maximum 

potential when deployed on imaging and other shape-specific characterization techniques 

when more geometries can be identified and conditional functions assess critical materials 

structure features, i.e., inner and outer diameter, length, curvature, deviation from circu-

lar shape, etc. Moreover, current analysis is often limited to 2D information, which in case 

spherical particles can be extrapolated to 3D information. However, 3D information is of-

ten needed to describe nanomaterials with complex geometries. 

Horwath et al. used computer vision and ETEM images to improve the image seg-

mentation capabilities in an automated way and deploy a model suitable for nanomaterial 

detection which is limited only by the resolution of the characterization technique and not 

by the machine learning model ability to identify and localize features. In their approach 

to this common segmentation task, deep learning regularization of the input datasets was 

shown to be the key factor to establish an effective model rather than developing an ar-

chitecture with convolutional neural networks (CNN). This is connected to the selection 

of boundary pixels, which requires the sematic information distributed in the image, 

which may be lost by increasing the variance of the intensity histograms [74]. The 

knowledge of data features, as well as hypothesis-oriented design of the predictive model, 

were shown to address common challenges in materials science informatics, while class 

imbalance, overfitting, and accessibility to sufficient amounts of data limit the prediction 

efficiency. The proposed architecture is quite simple, consisting of a single convolutional 

layer, which satisfied an efficient computational performance in regard to accuracy and 

the ability to quantify results, while the model kept the prediction standards close to the 
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state-of-the-art (SoA), by adopting suitable metrics that evaluate the limitations induced 

by several descriptors. Interoperability of the developed model is also satisfied by the fact 

that computer vision models are not limited by the acquisition characterization technique, 

but by the instrument resolution limits. 

Similarly, Ilett et al. introduced the ilastik tool for object classification, which can be 

tailored to a wide range of parameters that can be used to deconvolute particles by mi-

croscopy images [75]. This tool includes a function of detection of different particles even 

in agglomeration state and corresponding quantification features which could be used to 

monitor nanomaterials stability and obtain more insights in the interpotential dynamics 

and the tendency to agglomerate, which is a critical aspect in nanomanufacturing. Thus, 

machine learning was introduced to provide in that case the capacity to overcome the 

time-consuming manual process for identifying the agglomeration tendency and pro-

jected shape of agglomerates, as well as to overcome the limitations of DLS characteriza-

tion, which as discussed above is prone to missing the agglomeration events since a cir-

cular shape of nanomaterials is assumed in all cases. In addition, it has been argued that 

DLS information on colloidal stability can be limited since the suspensions studied with 

this method are stable colloids. 

In summary, with the exploitation of high-resolution computer vision and other ma-

chine learning models, it is possible to detect the production footprint in regards to the 

(nano-)materials properties and provide the actual characterization mapping over a wide 

range of instances. By using previous knowledge in terms of characterization output and 

images it is possible to automatically extract high number of materials parameters and 

high-quality data, which can be used for training to extrapolate the prediction to multiple 

material features. 

Several approaches include randomization of the parameters of the process to 

achieve the suitable material properties, which requires access to a large variety and un-

biased data. Usually, particle swarm optimization (PSO) and GA have been shown to ef-

ficiently support the design of the experiments and support the optimization tasks using 

the minimum number of experiments with this data-driven approach. Thus, machine 

learning can efficiently help scientists to obtain high-throughput information from char-

acterization techniques and to utilize previous raw research or metadata to reveal unfore-

seen physical/chemical properties, topologies, and stability (agglomeration tendency), 

high quality features, and the inner structure of materials with high precision [12], which 

enhances the innovation potential. 

2.3. Optimizing Formulations and Composition in Nanocomposite Materials Engineering and 

Additive Manufacturing to Improve Performance and Support Applications 

Additive manufacturing (AM) has raised a lot of attention in recent years due to its 

prominent technological role in shaping and (nano-)manufacturing complex metal-, pol-

ymer-based, and nano-reinforced components to serve demanding engineering applica-

tions with the unmatched benefits of providing zero waste “bottom-up” scalable manufac-

turing solutions for complex architectures. AM can be realized in desktop microfactories 

with many benefits, such as reduced needs for additional tools to be used, functional parts 

can be delivered without the need to assembly, and with minimum requirement of down 

time, products can be customized and meet the societal needs [76–80]. The role of nanotech-

nology in this field lies in customizing and engineering the material and nanocomposite 

properties by the utilization of nanoreinforcements, such as graphene and nanofibers, with 

high reactivity, surface area, conductivity, sensing capabilities, and modified surface chem-

istry, which can introduce multiple functionalities at the multiscale level [77]. 

One main research priority remains to replicate the properties of conventionally used 

materials with more sustainable material options. Current established research has shown 

how carbon nanomaterials (graphene, graphene oxide, CNTs, carbon black nanoparticles) 

can be used to formulate AM nanocomposites with improved tensile properties, thermal 

stability, conductivity, and radiofrequency-induced heating capability, and to broaden the 
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application field of the developed materials. Moreover, it is strongly regarded by the com-

munity of AM that the vast amounts of domestic waste could be managed by efficient and 

sustainable upcycling strategies to lead the manufacturing of products with added value 

by incorporating nanotechnology to the feedstock formulations [81]. For instance, poly-

mer nanocomposites have the potential to support adequate performance in many fields 

of application with specific needs for wettability, elasticity, durability, and conductance. 

AM process may be hindered though, due to the rheological behavior/clogging/homoge-

neity of mixing at high mixing ratios of nanomaterials, which may be required to reach, 

e.g., a workable conductivity, stiffness, etc. [82]. 

AM digital character can lead the digital nanomanufacturing era empowered by AI. 

The AM workflow involves the materials/object virtual and reverse design (layers struc-

ture, composition, nano-fillers, architecture, aesthetics) from the smallest volume of refer-

ence in the form of droplets, powder, wire to fabricate flexible and lightweight compo-

nents. The AM process digitalized character offers the opportunity to fully digitally con-

trolled operations that can be advanced and accelerated with the use of smart, high-pre-

cision, data-driven tools and metrology to introduce online and real-time process and on-

demand adaptation capabilities, and tackle current variation in product quality, thus in-

creasing confidence and reducing unpredictability concerns [50,78,79]. 

In order to bridge the gap of current manufacturing technologies and smart factories, 

AM infrastructures should enable to go beyond the current SoA; (i) regarding the depend-

ence solely on feedstock screening operations for process assessment, and (ii) the “open-

loop” system operation and introduction of sensor systems for online feedback measure-

ment to enable smart process self-adaptation (control, quality assessment, calibration, 

monitoring) supported by AI. In this direction, Banadaki et al. proposed correlations feed-

stock-sensor data-process parameters-characterization data by establishing a schema for 

interactive and scalable machine learning development to support the reliability of the 

process in a cost-effective manner, and to improve the end-products from AM [83]. In this 

scope, it is essential to incorporate (open and interoperable) ontologies in order to facili-

tate the knowledge management of AM digitalized and structured data and support the 

AI to reveal and discover reasonable and currently unseen/new knowledge [84]. Already 

relevant progress has been realized by Granta additive manufacturing, Senvol Database, 

and Senvol ML, which is expected to evolve and flourish in the next decade. 

Amongst the applications of AM, the ambition and the challenges that are expected 

to be confronted in the next years are related to bio-based applications from the fabrication 

of drug delivery devices/sensors to the manufacturing of polymer-based synthetic tissues 

and organs reinforced with nanomaterials. A strategic benefit in this direction is the ability 

of AM techniques to combine precursors with different properties to represent the human 

physiology, which often requires hard and soft segments (both cellular and acellular) as-

sembly to sustain the stresses induced in human body environment. Several techniques 

have been adopted in this field, including selective laser sintering, stereolithography, 

fused deposition modelling, and bioprinting (extrusion-assisted, laser, droplet, ink) [77]. 

Engineered bio-compatible materials for slow-release medicines and tissue engineering 

can perform occasionally even better than natural materials, and thus AM can have a great 

impact in the field by providing easily accessible, low cost, and faster address the market 

needs for health care technologies across the globe [81]. The next generation in miniatur-

ized sensor devices has been realized in the AM industry, with recent trends in developing 

a lab-on-a-chip (LOC), to track (bio)chemical processes in the clinical diagnostics sector 

and perform fast and easy assessment. Other benefits of this technology include the re-

configurability, modularity, portability, compactness, low power consumption and elec-

tronic noise, embedded computing capability, and the highly localized topology, which 

promises the analysis of a specified point of care with improved sensitivity and minimum 

resources. Engineering the LOC devices enables the control of microfluidics, which is key 

for the electrokinetic or micropumping control of fluidic transportation and efficient sep-

aration when examining liquid samples with high precision in several conditions; when 
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the flow is continuous, or droplet-wise sampled. Thus, this is an important technology for 

biomedicine advancement following the automatic continuous tracking, which can be 

used for online feedback and adjustment of multi-material AM processes and provide tai-

lor-made microfluidic micro-electromechanical systems (MEMS) [85]. 

In a different bio-based application, Zafeiris et al. used AM and 3D CAD representa-

tions to fabricate hydroxyapatite/chitosan scaffolds with controlled porous network to fa-

cilitate the cell attachment and cultivation requirements to enable the functionality of tis-

sue growth and the proper transfer capability for nutrients to reach the cell cultures. The 

direct ink writing method was used to enable the realization of the regeneration of bone 

tissue and successfully develop scaffolds mimicking a proper extracellular matrix [76]. 

Another study case of biomimetism with the use of machine learning in AM contains 

rapid design solutions among a vast design space in the field of biomimetic design. As an 

input simulated metamaterials and stored data have been used by Gu et al. in order to 

develop a self-learning algorithm to identify the best candidates for the production of 

high-performance hierarchical materials with highly defined microstructural patterns. 

Compared to conventionally used FEM for the prediction of mechanical properties it was 

shown that machine learning can induce a shortcut to long computational requirements 

from 5 days to less than 10 h and up to 30 s for training of the algorithms, which are able 

to screen at high-throughput (billions of designs per hour) [86]. 

In addition, and beyond healthcare industries, AM can serve a range of applications 

in automotive, energy, aerospace, due to its unique engineering features, with one main 

identified bottleneck regarding the surface integrity. An intelligent and digitally con-

trolled methodology was developed by Li et al. who introduced a sensor-based (accel-

erometers, infrared temperature, thermocouples), data-driven ensemble model for the 

surface roughness prediction [87]. With regards to the wider industrial exploitation of 

AM, product quality assurance, processing defects, access to materials libraries, and de-

sign for AM remain limiting factors. Machine Learning as standalone or combined with 

physics modelling can be the catalyst in this direction, especially by the scope of discov-

ering/generating and predicting the performance of AM metamaterials, namely, elas-

tic/shear modulus and Poisson’s ratio in an automated manner based on the desired prop-

erties (virtual experiments). What is more, machine learning can assist the on-demand and 

reverse process adaptation to improve quality control during manufacturing, assist the 

precise control of printing topology, including melt-pool geometry for DED processes, 

and enhance the feedstock screening at a pre-manufacturing planning level. Another im-

portant quality parameter of the engineered AM products concerns the mesoscale poros-

ity, which is process dependent and highly related to the mechanical performance. A nul-

lified porosity is the ultimate objective in metal AM to achieve full dense structures in 

order to obtain adequate fatigue properties, while in biological or energy absorption ap-

plications a controlled porous architecture is required. A machine learning paradigm for 

the latter case is to correlate porosity with manufacturing parameters using neural net-

works (NN) or an adaptive-network-based fuzzy inference system [51]. 

The role of machine intelligence has risen to support the advancement of AM pro-

cesses and materials evolution dedicated also to different sectors. By using data-driven 

predictive modelling, it has been possible to identify and correlate the microstructure of 

materials to thermal stresses for metal components. CNNs have been successfully utilized 

to establish such structure–property relations. Bhutada et al. demonstrated the identifica-

tion capability amongst six different microstructures by utilizing feature extraction via k-

means clustering on images and subsequently image vision models were established to clas-

sify each microstructure with over 97% accuracy. The correlation with the principal, hydro-

static, and other stress tensors was conducted via regression among the six microstructures, 

which enabled quantitative comparisons of internal stresses of model-based predictions and 

experimental values with high confidence. Another outcome regarded the NN model rep-

resentation as a reduced order microstructure, which can be used in conjunction with FEM 

to successfully predict thermal stress on an 3D printed components [88]. 



Nanomaterials 2022, 12, 2646 17 of 57 
 

 

AI has also found application in online and real-time video monitoring (single shot 

detector) of the fused filament fabrication (FFF) process. The detection of stringing defects 

generated during printing was enabled by the development of deep convolutional NN, 

which established the connection of the defect patterns with the printing parameters with-

out a need for machine or camera calibration, in order to enable the fast online adaptation 

of the process. Successful case studies in the powder spreading stage via computer vision 

have been published also on the automated classification of unwanted phenomena and 

anomalies (splatter defects, delamination) for the live monitoring of power bed process 

[50,89]. Parameters, such as the size of the printed device, distance to the print area, and 

camera resolution, have an effect on the precision of the computer vision, and by using AI 

it is possible to adapt the parameters in order to eliminate print errors [89]. 

Laser-based AM is another (nano-)manufacturing method that is competitive due to 

the capacity of rapid prototyping at reduced cost and the ability to work on flexible and 

curved substrates, providing the advantage of forming wearable electronics with the in-

volvement of nanotechnology. Especially for metal AM, nanomaterials can tackle the chal-

lenge of the feedstock supply and quality requirements regarding the size distribution 

and uniformity, but size and shape still affect the success of nanomanufacturing [90]. Real-

time and intelligent control of the AM process is essential in this scope to minimize the 

defects created during printing and save energy by mitigating the need for post-annealing 

treatments after fabrication, while the throughput is increased [50,90]. Another case is the 

utilization of a focused laser beam for the optical printing of nanomaterials dispersed in 

proper solvents on different surfaces [90]. 

Self-organizing maps (SOMs) represent another machine learning method which has 

been used for assessing the AM profiling accuracy compared to digital CAD models to 

establish relations with the parameters of processing such as extruder temperature and 

infill percentage that may lead to deviations. Such a causal relationship establishment was 

outshined by the authors as an imminent measure to efficiently adapt the process and 

improve the quality. The universality of this method is connected to the commonality of 

the features correlated, which can bring intelligence and new design rules to all AM meth-

ods that confront such qualitative challenges [91]. 

It is clear that machine learning holds a lot of promise for the establishment of data-

driven supervising tools in a closed-loop AM process. Especially, SoA powder bed print-

ers lead to variation in the mechanical properties from experiment to experiment. Auto-

mation in defect recognition via image analysis with NN has been outlined by Razaviarab 

et al. as a gamechanger in smart AM automated adjustment of processing parameters, 

which is expected to limit the wastes produced and reduce the effort and energy wasted 

[50,92]. 

The proceedings in the field of AM seem to be encouraging regarding the adoption 

of attractive and intelligent tools in the production lines. The main concern remains con-

cerning the willingness of AM machine manufacturers and software developers to open 

channels and enable deep adaptations up to software/firmware since intelligent algo-

rithms have to be incorporated directly to the digital ecosystem to enable process adapta-

tion and real-time control, as well as product optimization. 

As it has been shown already, ANNs dominate in a considerable amount of publica-

tions due to their unique ability to solve complex real-life engineering problems beyond 

AM, by the utilization of previously measured characterization data and due to the ability 

to achieve significant time savings [41]. The interpretability of ANNs in decision making 

has been popular in data science, commonly by solving the inverse problem, where the 

experimental data are correlated to the microstructure and functionalities of nanomateri-

als to gain new insights by using first-principles-based tools to accelerate the time-to-mar-

ket of novel nanomaterials/nanocomposite materials/systems [93]. The attractiveness of 

this method is in its simplicity based on the previous experience based on characterization 

results, without the consideration of a sound theory, which cannot be substituted by ma-

chine learning, but used complementarily [94]. For instance, an ANN predictive model 
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was developed to predict the pool boiling heat transfer coefficient (HTC) and design re-

frigerant-based nanofluids containing CNTs, ΤιΟ2, nanodiamond, and Cu with correla-

tion coefficient (R2) of 0.9948 and overall mean square error of 0.0153. In this case, data 

were mined from literature papers resulting in a dataset unfolding 1342 different experi-

ments, and seven descriptors were included, namely heat flux, saturation pressure, base 

fluid thermal conductivity, nanoparticle thermal conductivity, nanoparticle concentra-

tion, lubricant concentration, and nanoparticle size. The pool boiling HTC of refrigerant-

based nanofluids was determined over wide ranges of operating conditions and the best 

functionality was demonstrated by using a simple one hidden layer architecture with 19 

neurons, while tansig (hidden layer) and purelin (output layer) were used as transfer func-

tions [95]. 

In another study, Demirbay et al. used a multi-layered feed-forward neural network 

(FFNN) to predict electrical conductivity in polyesterene (PS) doped film coatings rein-

forced with multi-walled CNTs (MWCNT) to improve electrical conductivity. The dataset 

describing the formulation features contained the concentration of surfactant, initiator, 

MWCNT, molecular weight, particle sizes of PS latex. Training regulation was performed 

using a Bayesian backpropagation algorithm. In this case, the ideal topology of the FFNN 

was evaluated using several metrics, such as mean squared error (MSE) and the determi-

nation of coefficient (R2). The optimal architecture of the network was consisted of eight 

nodes in the hidden layer using a log-sigmoid transfer function for the training, which 

was confirmed by the R2 value in the training phase, and with the MSE value in both 

training and testing. The relative importance-based sensitivity analysis also showed that 

the concentration of MWCNTs influenced to a greater extent the conductivity results. Fi-

nally, a mathematic model was used to introduce training weights and reduce bias in the 

predicted results, which were in agreement with the experimental values [41]. Therefore, 

an explicit mathematical function was established for the prediction of the conductivity 

using weights and bias values. 

Ashrafi et al. in their study of concrete nanoformulations used a feed-forward back-

propagation network with a specific architecture containing 22 nodes and one hidden 

layer to acquire the force–deflection curve and the 28-day compressive strength. The re-

sults were in accordance with the experimental output, while two additional methods 

were proven to provide even better prediction efficiency, namely standard deviation nor-

malization and the Levenberg–Marquardt algorithm [96]. 

Ιn the study of Huang et al., the interesting effects of CNTs reinforcement of cement 

composites were investigated. More specifically, flexural and compressive strength were 

predicted using ANN and support vector machine (SVM) models, which were trained 

and tested on literature data in a sample of 114 experiments. Several aspects of modelling, 

such as the size, the quality of the dataset, experimental factors, and undefined parame-

ters, strongly influence the mechanical properties. All parameters seem to lead in devia-

tions of the predicted and actual values. Among the parameters used in this investigation 

the authors revealed that the length of CNTs has the highest impact on the output values 

of the compressive strength. Regarding the flexural strength, curing temperature was 

shown to be the most influential parameter. Both outcomes support the formulation de-

sign and the selection of nanomaterials to achieve the desirable optimization of the me-

chanical properties. More insights about manufacturing, namely sonication energy and 

time, additive, curation humidity, and other experimental descriptors, may enhance the 

predictive ability of the established model [97]. 

Another demonstration of ANN capability was used to utilize 75 different material 

coefficients to model the microhardness of metal-ceramic nanocomposite coatings in or-

der to select the proper combination of non-investigated experimental parameters (factor 

model—limited by the variation range of the coefficients) and deliver the desired proper-

ties with high accuracy. This model contributed to the data-driven optimization of the 

nanogranular structure of a wide variety of nanocomposites, including FeCoZr–Al2O3, Fe–

Al2O3, Co–Al2O3, Ca–SiO2, Co–CaF2, Fe–SiO2, and Co–MgO2 [94]. 
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The main argument in the establishment of structure–property relations with NN 

architectures is that the number of layers, number of nodes, and the type of the network 

(recurrent, convolutional, feed-forward. Etc.) may not be generalizable. For instance, 

when studying the mechanical properties of nanoreinforced composites with CNTs, tita-

nium nanotubes, or Ag wires, factors, such as the different surface modification, length, 

weight concentration, catalysts used in the production phase, diameter, surface energy, 

mechanical properties, and conductivity, may require a larger number of hidden layers 

and more complex architectures to legitimate the relation of nanomaterial used to the 

composite performance or target property. Currently, in the framework of scientific re-

search and publications, this is unsustainable as it requires severe investment and re-

sources to perform all experimental procedures in regard to synthesis and testing. The 

research community can assist the needs for more systematic and structured information 

by sharing their data to open databases and facilitate the development of usable models. 

Currently, it seems that data sharing is the resource that is actually reusable, rather 

than the actual machine learning model and this is problematic due to the fact the re-

sources and computational energy spend in training cannot be reused, which also has an 

environmental impact. The inverse condition was thought to be the norm since the main 

discussion has concerned the generalizability and universality of models; the open models 

are as generalized and as fast as possible, providing a framework of assessment tools for 

knowledge exploration, as well as enhanced and decentralized decision-making. How-

ever, cooperation and sharing are required to realize actual progress in this direction. 

3. Optimization of Materials Synthesis Using High Throughput Screening Evolution-

ary Algorithms—Reverse Engineering 

A special field of process design is reverse engineering, which will have a key role in 

the Digital era of Industry 4.0 and the next generation of human-oriented transition of 

Industry 5.0. Materials are defined by their properties and their performance under oper-

ating conditions, which are highly dependent on the manufacturing parameters. Rational 

material design is an ultimate goal in the fields of modern materials science and engineer-

ing. Finding the ideal conditions to tailor materials properties, or for reproducing a mi-

metic design (often it is the case for bioinspired computation) for candidate/substitut-

ing/greener materials, is expected to overtake the market. Knowledge and experience 

gained on industrial materials development can feed with special features machine learn-

ing algorithms and demonstrate the functionality to search beyond the knowledge space. 

Currently, this is a demanding process, and effort is spent amongst these communi-

ties to compile extensive datasets of materials properties in order to improve accessibility 

to resources containing materials properties, which are key to establish design rules and 

intelligent tools. Previously developed rules or models demonstrated a semi-empirical 

character and were based on human intuition and knowledge, while machine learning 

can take materials design to the next level by combining automation, accuracy, and rapid 

calculations. Digitalization of materials and processes is expected to support a variety of 

new applications, while actual advances in data analytics and routine methods are ex-

pected to maximize the impact of raw data to identify quantitative descriptors for nano-

materials to support the optimization problem [21]. 

What is expected to make the difference with machine learning is the ability to take 

the most out of non-crisp information. Experimental information, especially at laboratory 

level contain most of times granular information, such as temperature and the convention 

for performing the experiment at laboratory temperature (could vary from summer to 

winter season and during daytime), which is usually not as precise or reproducible in 

regards to the strict requirements set by the scientific community (fuzzy-probability-gran-

ular information). This information is often not regarded in the traditional decision-mak-

ing process, as it would limit fairness and accuracy of the approach [98]. Thus, machine 

learning and predictive modelling can give a competitive benefit on this case by taking 
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advantage over granular information, which is inevitable in several cases, and success-

fully support a realistic representation of any specific problem. 

The optimization in materials synthesis often is a challenging task, and machine 

learning models should be supported by optimization algorithms to settle on a general-

ized representation of the material and solve the task with a universal solution. In this 

scope Figure 3 summarized the end-to-end nanomaterial development aspects. GAs are 

commonly used to serve the optimization needs and resemble the Darwin’s theory; in this 

case the more accurate model survives to the next generation. For instance, innovation in 

the field of chemical compounds utilizes the known compounds by attributing a mutation 

factor. In the next generation, the novel compounds are evaluated for their properties, and 

since a weakness is identified oriented by the application field and user defined rules 

(output of the model), the compound is disregarded and the rest is used to produce the 

next generation, which inherits part of their properties. Thus, it is possible to achieve 

shortcuts in experimentation, while key properties, such as conductivity or hardness, can 

be optimized [17]. 

 

Figure 3. In silico high-throughput material screening and optimization to accelerate materials di-

rect and inverse design. 

Another functionality of machine learning regards the possibilities to adapt to lim-

ited access of data and address optimization concerns, which may be the case in academic 

research, where often there is limited access to data concerning the manufacturing and 

characterization of materials. Moreover, experimental applications in materials optimiza-

tion typically corresponds to small batches in the scale of mg–g, which is understood to 

limit the process scalability, due to the constraint that mass transfer parameters cannot be 

deployed to larger volumes of production [61]. Model averaging and bootstrapping have 

been two prominent methodologies to handle problems where only a small dataset is 

available, which is a data-oriented limiting factor regarding model development, which 

leads to simplified models [30]. Model averaging enables the building of powerful algo-

rithms by the combination of different simple models, which can be in the form of a ‘com-

mittee’ or an ‘ensemble’ model. Ensemble-based algorithms are extremely flexible, less 
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prone to over-fitting and outlier sensitivity, and are more amenable to tuning, but are 

more computationally demanding than ridge regressors [26,30]. 

The predictions of model averaging aim to combine models with predictive efficiency 

beyond random chance, leading to a more objective model, which is mostly implemented 

through ‘bagging’ in the case of decision trees random forest algorithms, which can reduce 

the model sensitivity to the noise of data during the training phase. Another method used 

in literature is Bayesian model averaging, which is mostly applicable to linear models by 

using a weighted average of each prediction based on accuracy. ‘Stacking’ of models is 

another methodology to combine models, where each prediction is fed to another ‘second-

level’ model, which utilizes the best capabilities of each model used for stacking, which 

has been shown to well mitigate model-specific overfitting [45]. In this way, machine in-

telligence can overcome model overfitting concerns and generalize, combining the flexi-

bility of adding a large number of models and avoiding ‘missing out’ on the predictive 

capabilities of each individual algorithm [32]. For example, Barnard et al. in their study 

utilized a dataset consisted of 5 features about the shape of gold nanoparticles (GNPs). 

4000 different synthetic routes were used to optimize the development of these nano-

materials, and 70 different models were developed [30]. In this case, strong correlation of 

the features resulted in an overfitting issue, which can be handled by leaving out the cor-

related feature, or by any of the abovementioned averaging/bootstrapping/stacking pro-

cedures. 

However, one main bottleneck commonly confronted is related to feature extraction. 

Selecting the appropriate descriptors by implementing a Pearson parametric correlation 

map ensuring that informed predictions can be objective and trusted, towards the devel-

opment of a model with unbiased establishment of parameters relation [99]. This is often 

a good strategy to avoid overfitting issues when developing machine learning models and 

improve the prediction accuracy, while excluding strongly correlated features [36]. Be-

sides, bottlenecks related to computational resources and availability of data/descriptors 

can be overcome based on the parametric sensitivity analysis and dependence plots indi-

cating the parameters that are more influential in the predictions, thus selecting the most 

suitable descriptors for establishing multi-perspective predictive models [100,101]. 

Till now, numerous success stories that use machine learning in materials science and 

nanoinformatics have been published. The applications of chemical discovery, though, 

demonstrate much room for improvement, and more specifically addressing theoretical 

and practical challenges can lead to a revolution in chemistry. The need for creative inter-

disciplinary approaches is highlighted to cover increasingly broader domains of nano- 

and cheminformatics, such as combining statistical and quantum mechanics, chemical 

knowledge, and prolific machine learning tools, which promise to advance the level of 

understanding in the field, as well as reduce the time-investment required in convention-

ally used simulation methods. Currently, there is a need to model and access information 

about electronic and energetic properties at nanoscale, while establishing proper (physi-

cochemical) structure–property relationships. This is often limited to structural and con-

figurational features. Another gap is the need for machine learning to learn how long-

range electrostatic, van der Waals, and polarization interactions occur in a studied mate-

rial. Currently, the description of local chemical bonding has been successful. The poten-

tial coupling of intermolecular interaction theories is expected to make realistic the better 

understanding of bonding and interaction states in more complex systems; considering 

the current level of maturity in machine learning there is an uncertainty level that should 

be evaluated and systematically overcome. Another consideration is binding machine 

learning with Hamiltonians to better describe the electronic state of materials, using the 

basis of density functional theory (DFT), and the methods referred to as “molecular or-

bital”, “tight-binding”, and “many body dispersion” techniques. Still, there is the compu-

tational efficiency bottleneck to overcome in this field of simulations [54]. 
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3.1. High-Throughput Screening and Optimization of Nanomaterials with Genetic and Other 

Evolutionary Algorithms 

Inverse design aims to use information of the desired materials functionalities and to 

use predictive modelling, with the aim of enabling the description of the chemical space 

through the establishment of proper structure–property relations. The traditional forward 

development depends on the evaluation of each experiment performed, while inverse en-

gineering has a more goal-oriented character, which may be the key to guarantee success 

in fewer steps. In theory, the major problem with inverse design is the number of the pos-

sible configurations that led to the optimum nanomaterial structure, which corresponds 

to a number of candidates that may be as big as in the scale of thousand structures, which 

is limiting the experimental verification capability [21]. Another concern is that the pre-

dicted material structures may lie between the chemical space variation introduced by the 

features used for the training, and the selected features that are used to establish a predic-

tive model [45]. In this direction, evolutionary algorithms may be the answer to this chal-

lenge. Genetic evolutionary algorithms beyond their use as single algorithms can be also 

combined with back propagation ANNs “GENOUD” algorithm, which was used by Liu 

et al. to utilize the global searching power of the GAs to tackle the main problem of back 

propagation algorithms; by introducing training weights it was managed to avoid local 

optima as the predictive outcome solution of a specific case study. Moreover, the conver-

gence speed is another advantage of the GENOUD algorithm, due to its nature (in the 

family of traditional gradient based optimization algorithms), which can improve also the 

speed of ANNs [102]. As it is shown, machine learning can be prolific in the field of high-

throughput screening, which has been already demonstrated with success by researchers 

[21]. 

What is more, machine learning can lead the establishment of effective strategies to 

utilize the outcome of failed or partially successful experiments and encourage research-

ers to structure and share this kind of data. This can be the pillar to improve and upgrade 

the synthesis strategies and reduce the e-waste (data that is discarded without any gain 

by the effort, time and resources spent). This approach is not focused on establishing 

proper process–structure–property relationships but rather enriching the knowledge base 

and providing a chemical intuition on how to approach strategically the parameter design 

and avoid repeating unsuccessful experiments. Optimization algorithms that guide space 

exploration can be the engine for the predictive models, i.e., a NN to extrapolate the es-

tablished materials correlation to find new knowledge. 

Moosavi et al. performed genetic optimization by using thirty new experiments for 

each “generation”, while optimization was initiated with the more diverse individuals to 

ensure the non-biased exploration of the chemical space. Random forest and bootstrap-

ping were used with a total population of 200 trees to model the synthesis parameters, 

using ‘out-of-bag’ technique for validation. The size of the reactor, the purity of reagents, 

and other relevant parameters influence the experiment. It has been indicated that access 

to more data would enable the machine learning algorithms to improve the filtering of 

inhomogeneities and in choosing the most influential variables, thus effectively reducing 

the number of experiments [103]. 

The ultimate target is to achieve and integrate experiment, theory, and computer sim-

ulation all in one, to automate design and create innovative materials iteratively by select-

ing the parameters for the next most promising experiment. Such an integrated system 

has been used in manufacturing processes for CNTs to speed up their development for 

application in avionics. For a different case study, in the University of Berkeley, they used 

SoA theoretical tools and a database of 66,000 instances of crystalline compounds and 

500,000 nanoporous materials [104]. 

In another case, GAs have been utilized to optimize the physical and functional prop-

erties of metal-organic frameworks (MOFs), more specifically referring to functional 

chemical groups and pores. Collins et al. modelled the CO2 uptake capacity in order to 

maximize MOFs capability to reduce the environmental footprint. Thus, 141 experiments 
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under conditions relevant for post-combustion CO2 capture were used. In this case, 

screening of the possible MOFs configurations varied among 1.65 trillion structures and 

high throughput screening was performed by the GA. A total of 1035 derivatives MOFs 

structures were identified to offer exceptional CO2 uptake >3.0 mmol/g (at 0.15 atm and 

298 K), while several known structures were optimized; MIL-47 entitled MOF structure 

demonstrated an increase in CO2 adsorption by more than 400% (4 mmol/g). Collins et al. 

in their study developed a customized GA to select the functionalization of the parent 

MOF as the mechanism to derive optimized functional and/or physical property by 

searching a small chemical space (CO2 uptakes in 141 experiments), in order to satisfy 

time-efficient computing. The outcome of the study was to optimize more than 20 known 

MOFs. However, with complex reaction paths, reaction yield can be the bottleneck for 

scientists, even though the population of the optimized generations provides multiple so-

lutions for the optimization problem and selecting the synthetic targets. One interesting 

capability of the model was the capacity to be exploited to similar chemical real-life prob-

lems, such as the development of improved covalent organic frameworks or polymer po-

rous networks [105]. This is an additional showcase of materials design and high-through-

put screening capabilities of generic algorithms. 

Other than GAs, the Bayesian-assisted process optimization has been employed in a 

representative optimization case of an annular microreactor synthesis, which was em-

ployed to upscale the synthesis of antibacterial nanoZnO to a production scale of 1 kg/day. 

In this case, mining of the available data was focused on commercial antimicrobial and 

experimentally synthesized nano-ZnO to increase the productivity scale in less than 100 

experiments [61]. Moreover, the establishment of process–structure–property relation-

ships revealed that nanostar and nanorod architectures are related to the assembly of na-

noparticle precursors, and the antibacterial properties were owed to anisotropy, surface 

area, and particle size distribution. 

Other approaches for materials design have been envisaged with dynamic parameter 

design based on back propagation ANNs, by combining a single step optimization proce-

dure without the need for the assumption/estimation of an adjustment parameter. Mod-

elling is performed including features and noise, design and signal descriptors. Hyperpa-

rameter tuning was implemented to optimize the modelling accuracy (hidden layer num-

ber, momentum, number of neurons, learning rate). Latin hypercube sampling was em-

ployed to estimate the parameters related to the contribution of the signal and noise in the 

dataset, and afterwards sequential quadratic programming was employed to efficiently 

model non-linearity of data. It was shown that a two-step procedure, like Taguchi param-

eter design (maximization of characteristic to signal ratio and adjustment of the slope), 

requires an adjustment parameter in order not to settle in a local optimum solution within 

the limits of the dataset, while it is assumed that the signal data follow a uniform statistical 

distribution, which almost always cannot represent a real-life problem. Thus, in the rele-

vant example of plasma enhanced chemical vapor deposition method (PECVD), the opti-

mization of the process was shown to be challenging using a Taguchi optimization 

method. The proposed method by Jung et al. can optimize the dynamic design parameter 

regardless the existence of the adjustment parameter and other relevant shortcomings of 

the Taguchi method. The optimization was achieved only by the inclusion of characteristic 

signal, noise, and expected loss in the model to solve the non-linear problem [106]. 

Electric discharge machining (EDM) is another industrial process. This process is 

used to reshape materials, where several methods have been used in the past for optimi-

zation, namely, factorial analysis, analysis of variance (ANOVA), response surface 

method (RSM), regression, and Taguchi analysis. Taguchi analysis can be used to find the 

best specified parameter, within the levels of the process data, while ANOVA and regres-

sion analysis can be used to describe for instance the electron wear (EW) in die-sinking in 

the steel material of EDM, and maximization of the material removal rate (MRR). Emerg-

ing optimization techniques based on ANN, GA, PSO, and simulated annealing (SA) have 

been promising to make actual proceedings in the field, as well as to find and predict a 
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verified improvement in the machining process with high accuracy. Even evolutionary 

algorithms demonstrate some shortcomings. SA requires only one population to converge 

and a higher computational cost considering that it can easily fall among a local optimum, 

and takes more time to escape, while also GA may face difficulties in finding a universal 

solution. Thus, Majumder et al. in their approach used a hybrid algorithm consisting of three 

evaluators in parallel (GA, SA, PSO), each of which use a back-propagation NN, while the 

outcomes of the optimization process were validated by a trial-and-error approach. In this 

case, PSO could efficiently predict the optimum number of neurons in the hidden layer/-s, 

while both SA and GA require more computational power to converge [107]. 

To conclude with, promising progress is realized in this field. A main occurrence that 

is faced by the scientists is the high demand for computational resources needed to guide 

through the design parameter space. In this aspect, moving towards a more goal-oriented 

approach could be the key to identifying the best candidate (nano-)materials since con-

vergence time is highly proportional to the number of search parameters. In the latter case, 

some limitations can be confronted by missing data regarding materials properties or syn-

thesis parameters, which can be bridged by utilizing simulation data and obtaining de-

pendable alternatives when it is not possible to repeat experiments or there is limited ac-

cess to characterization facilities. 

3.2. Utilization of Synergistic Modelling-Simulation and Combination of Ensemble Machine 

Learning Algorithms for Selection of Materials and Process Parameters 

Machine learning operations are purely data-driven, and this feature has been proved 

in recent years to provide practical solutions in material science field by providing a set of 

decision rules, which correspond to materials physical and chemical properties. The estab-

lishment of these structure–property relations have the potential to feed the simulation 

models in the future [12], and reduce the required cost due to the lower level of complexity, 

but currently accuracy has been the main concern, which cannot still reach DFT capability. 

Most of the manufacturing and engineering sectors require optimization of process 

parameters and adaptation. For instance, to support the expensive and demanding 

polymerization processes. Simulation approaches include the use of FEM and computa-

tional fluid dynamics (CFD) for determining the optimum set of design parameters with 

high precision, which often vary from ten to several hundreds. However, FEM and CFD 

in most cases have been demanding in regard to the simulation time to solve those non-

linear problems and there is plenty of room for achieving shortcuts by using, e.g., surro-

gate-based optimisation (SBO). Surrogate machine learning models are characterized as 

approximation meta-models, such as polynomials, ANN, kernel-based, decision trees, 

and can provide approximations of high-fidelity models [108]. To better explain the term, if 

the machine learning model is supposed to replace a time-consuming physics-based simu-

lation, it is called a meta- or surrogate-model [53]. The input by these models is iteratively 

optimized by simulation evidence as a measure to reduce the bias introduced by the ap-

proximation parameter. Such is the case for the ANN modelling in a 50-dimensional space 

of the shear angle of 24,000 composite fabric elements. Such a model required only 20 up-

dates, while the efficiency of the surrogate model can be further optimized by using, e.g., 

Latin hypercubes for the principled selection of initial samples or exploration/exploitation 

tradeoff in regions with higher uncertainty (less experimental evidence) [108]. 

A similar hybrid machine learning and simulation SBO approach has been realized. 

Zhou et al. used reinforcement learning to optimize the chemical reactions. A deep neural 

network (DNN) architecture was used to iteratively record the predicted result and re-

design the next experiment. The “Deep Reaction Optimizer” model succeeded its proces-

sors of SoA blackbox methods, such as covariance matrix adaption–evolution strategy 

(CMA-ES), in regard to the complex development of chemicals based on simulations and 

experiments, which were reduced by 71 required steps compared to the current SoA 

method. Several probability distributions were strategically used to further explore the 

chemical space, which was finally combined with microdroplet reactions. In this case, 
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optimization was achieved in 30 min and included the outcome of four reactions with 

different mechanisms. The deep reaction optimizer was deployed for the experimental 

setup of silver nanoparticle synthesis. The optimization target is the nanomaterials activ-

ity of the absorbance at 500 nm, which corresponds to Ag nanoparticles with diameter of 

100 nm. In their study it was shown that the model is extendable to bulk-phase reactions, 

while another functionality contained the ability to learn while optimizing the develop-

ment process. For the training of the deep reaction optimizer, two model reactions were 

used; the Pomeranz–Fritsch synthesis of isoquinoline and the reaction of the Friedla ̈nder 

synthesis of substituted quinoline, while further reaction parameters (voltage, pressure, 

flow rate) were mapped using a Gaussian process for optimizing the reaction yield [109]. 

In this paradigm, the main uncertainty is related to the use of the chemical reaction ther-

modynamics which are involved in the reaction mechanisms, which can have a detri-

mental effect to the what if analysis employed in a similar optimization problem. For the 

synthesis of nanomaterials, both the chemistry (state of bonding, interatomic potentials, 

etc.) of the precursor and the dynamics of the reaction (temperature, pressure, flow rate, 

etc.) can provide descriptors that enable the generalizability of the derived models. 

On another occasion, Pt nanoparticles were studied by Lansford et al. in order to 

evaluate their efficiency in CO capture as indicated by their properties. DFT simulations 

were used to accurate generate the absorption sites in the IR spectra corresponding to the 

C-O and Pt-C bonds, with one intended purpose to reduce uncertainty and noise in the 

signal of experimentally acquired IR spectra. DFT was used to predict the frequencies at 

low adsorption of CO, which generated a dataset of 1090 unique intensities and frequen-

cies, including also structural information about CO coordination environment and bind-

ing type (bridge, atop, threefold, and fourfold sites). Those data are used to produce a 

second dataset based on surrogate models, which are physics-driven using forces and di-

pole moment in modelling under harmonic approximation. Subsequently, adsorption 

sites were quantified using as key identifiers the binding-type and the generalized coor-

dination number (GCN). The experimentally produced IR data were fitted using proba-

bility distribution analysis. Then, the authors derived a closed-form solution, which is 

correlating the Wasserstein distance parameter with the softmax activation function, 

which is used to train NN machine learning models that belong to “ensemble” family. 

These networks (two separately, termed as structure surrogate models) were trained to 

recognize the probability distribution functions of GCN and binding type from the simu-

lated spectra, and the error was well quantified by the NN models for the case of CO. The 

model demonstrated ability to generalize to NO probe molecule, as well as in predicting 

the adsorption using both clusters and Pt nanoparticles. It was shown that the spectro-

scopic signatures of Pt–CO and C–O were correlated to the coordination environment, 

while the case study was benchmarked using simulation and experimental validation [93]. 

This is an interesting approach to describe the adsorption capabilities of Pt nanoparticles; 

however, the approach is highly dependent to the adsorption sites, which is nanomaterial 

and particle specific. In the simulation, particles are generated in a structured way, but in 

reality, the statistical distribution may vary, whereas the cluster formation and assembling 

is application dependent, i.e., on how this technology is deployed in a device. 

The motivation for using mathematical and physical theories in simulation is to ex-

trapolate the properties of (nano)materials and select among the best candidates. Ghir-

inghelli acknowledged some basic considerations for the descriptors in his research; low-

dimensionality, unique connection with the material, and very different descriptor values 

are suitable for selecting and characterizing different materials. Testing a large number of 

molecules with high-throughput simulation, to sort the best candidate configurations by 

their correspondence to the need of a specified application, such as selective adsorption, 

removal, stability, catalytic properties, affect the computational cost, which is a sig-

nificant drawback. Even in the case of quantum chemistry, DFT is limited by the few 

candidate structures that can be modelled by this method. Especially, in the case of 

MOFs, data-driven methods seem at this time to be more efficient to tackle the 
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optimization task of this real-life problem [63]. Again, in the case of data-driven models, 

machine learning computation time is affected by the number of descriptors, and still high 

level multi-dimensional models are demanding in time and cost resources to achieve the 

evaluation of the targeted property. 

Similarly, Zhou et al. proposed an effective way to screen the predicted crystal struc-

tures of zeolites, MOFs, COFs, ZIFs, PPNs, and experimentally synthesized zeolites and 

MOFs. The materials selection was guided by the Xe/Kr separation at room temperature 

in a sample consisting of 670,000 structures. The authors used a hybrid method to avoid 

expensive computations, by combining simulation with machine learning. They used sev-

eral descriptors for the aforementioned (nano-)materials, such as the largest dimension of 

spheres, surface area, crystal density, void fraction, as well as a new descriptor “Voronoi 

energy”, named after the respective model. The authors found that Voronoi energy was 

the descriptor with the higher influence in predictions, and could be regarded as the fin-

gerprint of these materials. A high dimensional model was developed using a sample of 

15,000 observations and random forest regression algorithm (in the family of decision 

trees) with the aim to predict xenon selectivity over krypton. The model was then de-

ployed on 655,000 materials to predict their selectivity. Molecular simulations were used 

to refine the predicted outcome of the random forest model, granted that the prediction 

was promising for the effective screening of the Nanoporous Materials Genome, so that 

molecular simulations were used for 20,000 out of the 670,000 available structures. A sig-

nificant outcome was shown to be the fact that many candidate materials from the data-

base could outperform the Xe/Kr separation properties of current state of the art materials; 

JAVTAC zeolite analogue and KAXQIL calcium coordination network were identified as 

the most promising materials for this application. For Xe/Kr separation, no geometric pa-

rameter could be directly correlated to selectivity, which would possibly simplify the rec-

ipe for highly separating materials. Future expansion of the hybrid model could be imple-

mented in a similar manner, and highly efficient high-throughput screening can be per-

formed by modelling and predicting other material properties, such as gas sensing and 

storage, catalysis, and drug delivery capabilities [110]. 

In the same research field, the Nanoporous Materials Genome Center is highly active, 

and MOFs and zeolites are studied about their electronic structure utilizing Monte Carlo 

sampling methods and the theoretical analysis is taken advantage to establish a screening 

workflow. Properties that are used for material selection contain carbon capture, catalysis, 

phase separation, and gas storage [17]. 

In the study of Zhou et al., emphasis was focused on the characteristics of active cen-

ters to determine the adsorbate binding strength, which till now are uncertain. Even the 

adsorption free energies of -O and -OH functional groups/free radicals can be directly 

correlated with OER activity, the computational cost does not enable a systematic study. 

Non-local density functional theory (NLDFT) was used for the measurement of pore size 

and distribution in the COFs, while the electronic structure and the optimum metal-coor-

dination environment was shown to be derived in case of Ni-COF electrocatalyst, which 

was validated by X-ray techniques. The free energy relationship of metal COFs was shown 

to be dependent on the metal used using DFT, more specifically Zn < Cu < Fe < Ni ≈ Co, 

which was experimentally validated, except for the case of Co–COF and Ni–COF catalytic 

OER activities. In the outcomes of this study also two promising candidates (experimen-

tally unexplored) were proposed to be synthesized in the future studies; Fe–N3O and Co–

N2O2. In order to access more sustainable calculations, effort was spent on the identifica-

tion of alternative descriptors with machine learning to simplify the modelling of OER 

activity of catalysts. The study utilized 100 structures with 23 unique features. Electroneg-

ativity, ionic radii, electron affiliation energy, and modelling was performed to evaluate 

the first ionization energy of metals. In this case, the regression algorithm used was the 

gradient boost (GBR) to give more insights and describe the gradient of the free energies 

of oxygen and hydroxyl radicals. A high correlation was shown to govern the relationship 

of electrostatic interaction and adsorption energy of intermediates. Final screening of 
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material features showed that four intrinsic factors are only required to describe the OER 

activity of the model catalysts metal-NxOy, while the predictions could be well-correlated 

with DFT predictions [111]. 

Especially, in the field of MOFs and COFs, a wide variety of approaches and de-

scriptors has been utilized to confront engineering and application oriented problems. The 

main issue is that it is still a grey field on how research should be oriented, and a better 

organization of the computational research should clearly provide guidelines, i.e., which 

are the parameters with the higher sensitivity compared to the study objective, and which 

parameters should be characterized or modelled by the researchers to reach dependable 

conclusions. Currently, there is a lot of sparsity in the machine learning approaches which 

could be connected to the researchers’ backgrounds as well as accessibility to characteri-

zation and computational facilities. This limitation can be efficiently overcome by struc-

turing materials data and sharing them in open repositories, as well as by establishing 

roadmaps and community standards. 

In another interesting field of carbon nanomaterials research, Xiang et al. performed 

machine learning simulations in a molecular dynamics HTMD environment at high-

throughput in order to tailor and optimize CNTs structure in regards to mechanical per-

formance. The structural features were studied, namely number of walls, crosslink den-

sity, chirality, diameter, and it was revealed that armchair configuration, as well as the 

minimization of diameter lead to optimization of nominal tensile strength. Moreover, it 

was found that a small wall number with a higher outer diameter of 43.39 Å is beneficial 

when it is combined with a high crosslink density of the adjacent walls. More specifically, 

for the armchair-type CNTs that consisted of five walls, the nominal tensile strength var-

ied between 58 and 64 GPa, nominal Young’s modulus between 677 and 698 GPa, effective 

tensile strength between 65 and 71 GPa, and effective Young’s modulus between 730 and 

754 GPa. SOMs were used for the visualization of the results, and it was shown that the 

crosslink density negatively influences the mechanical properties when the number of 

walls is high, due to the lower density in the outer walls [112]. In this case, the authors 

offered a robust case establishing a useful link between the chemical structure and perfor-

mance. What is missing is the link to process data descriptors in order to verify the results. 

This is often the case owing to the multidisciplinary needs of the field. 

Arabha and Rajabpour studied the elastic modulus and thermal properties of carbon-

based 2D nanostructures, which is conventionally implemented with MD and DFT ap-

proaches. The drawback of MD is that the output is strongly correlated to the accuracy of 

the estimation of interatomic potentials, while DFT can offer this information only at a 

high cost. In their approach, the elastic modulus and thermal conductivity of nitrogenated 

holey monolayer graphene was achieved using machine learning passively fitted intera-

tomic potentials (MLIPs), which depend on the output of non-equilibrium MD simula-

tions. In the one case, the thermal conductivity of graphene lattice was measured at 85.5 ± 

3 W/m-K, which was accompanied by an effective phonon mean free path of 36.7 ± 1 nm. 

Then, the uniaxial tension was simulated for the measurement of elastic modulus (390 ± 3 

GPa), ultimate strength (42 ± 2 GPa), and fractural strain (0.29 ± 0.01). Thus, the machine 

learning approach was shown to be effective and accurate utilizing classical MD simula-

tions. The model was able also to regenerate the phononic properties with remarkable 

accuracy close to the DFT approach, while it was revealed that thermal conductivity is 

length-dependent. Moreover, by training MLIP, the point defect configurations were de-

tected, which gave insights regarding defective structures and their mechanical proper-

ties. For the case of 2% defects, elastic modulus declined by 5%, while fractural and ulti-

mate strength were also reduced (by 40% and 15%). However, even this MLIP approach 

was shown to require a high computational cost [22]. 

Even in the case of surrogate models and the combination of machine learning with 

simulation models, the computational cost remains a barrier to realize the benefits of com-

putational modelling. Quantum chemistry can be in the center of the solution to this prob-

lem, offering accurate and faster quantum-mechanical measurements of electronic effects 
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and contributions which can be used as an alternative to establish structure–property re-

lationships. The use also of machine learning potential has been proposed as a promising 

solution. 

The combination of machine learning and quantum chemical calculations at low level 

of theory has been realized for the precise simulation of hundreds of thousands of mole-

cules, which enables the avoidance of expensive electronic calculations at the highest level 

[46]. The foundation of atomic-scale modelling has been mainly focused on the measure-

ment of cohesion energy of electrons or atoms, as it is connected to the majority of the 

occurring phenomena, and with materials properties as well. Few assumptions can pro-

vide an accurate picture of the effects that govern the materials behavior, which is pre-

dicted accordingly. A common case in engineering field is the modelling of the diffusion 

rate of elements, using the simulation of material applications exposed to extreme condi-

tions, where actual testing is not possible. Approaches such as DFT require high compu-

tational cost even for supercomputers; depending on the number of electrons in the ma-

terial requires powerful resources to compute the material energy in a reasonable timeline. 

Another example is the prediction of the melting point of a material, which may take up 

to thousands of hours to converge. Thus, quantum computing holds a lot of promise for 

future excellence in the field. Currently, efficiency is the key word to enable faster com-

putation. In the DFT approach, the dynamical mean field theory can address the efficiency 

issue, especially for Coulomb interactions on a single particle structure. Similarly, density 

matrix renormalization and quantum Monte Carlo methods have been emerging to model 

i.e., high temperature superconductivity. Phenomenological models should still be 

adopted to describe the behaviour of specific materials to maximize their impact [3]. 

Another proposal is to use deep tensor neural network models (DTNNs). It was 

shown that DTNNs can model accurately chemical environments with atom-centered ba-

ses (rotation, translation, permutation) and molecular energies using for training the ref-

erence DFT calculations obtained by GDB database, using one dataset consisting of 7211 

molecules, and another with 133,885 molecules, containing compositional data the con-

tained elements (including heavy atoms), MD trajectories, data of atomization energies, 

and exchange correlation potential. Due to its functionality to construct the model recur-

sively using pairwise distances, the model can also be employed to generate “alchemical” 

reaction paths. DTNN in this study by Schutt et al. demonstrated an advantage compared 

to previously developed ANNs; there was no need to develop separate ANN models for 

each non-equivalent many-body system, due to the common (and not fixed) quantum 

chemical bases that effectively describe the high-order interactions and which atom inter-

acts, which does not require to select manually symmetry functions and adapts to each sce-

nario due to the data-driven character of DTNNs. These advantages can be promising to 

gain quantum-chemical insights with the referred model to achieve an accuracy of 1 

kcal/mol even for intermediate size molecules throughout configuration and compositional 

space, for instance local molecular chemical potentials, relative isomer energies and aro-

matic ring stability, and the detection of molecules with peculiar electronic structure [113]. 

In another case, machine-learning potentials (MLPs) were used to reduce the compu-

tational cost of modelling the output data from first principles quantum-mechanics meth-

ods by Chen et al. The MLP based Monte Carlo and MD simulations were assisted by a 

sampling methods/packages (TINKER molecular modelling software; atomic energy net-

work ANN potential package, ænet; and large-scale atomic/molecular massively parallel 

simulator, LAMMPS) to increase efficiency without costs in accuracy when describing 

complex and large systems, while scalability was more effective using the ænet–TINKER 

interface (limited to shared memory systems). Two specific instances were described us-

ing the combination of machine learning and simulation for modelling: the equilibration 

of nanostructured battery materials and the study of diffusion in liquid water. Both inter-

faces were shown to provide a sustainable solution to large-scale MD simulation taking 

advantage over parallel computing capabilities by enabling a single step computational 

time at (sub-)millisecond scale; the shared-memory ænet—TINKER showed high level of 
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parallel efficiency using a single computer node, while ænet—LAMMPS interface demon-

strated 80% efficiency at scaling on multi-mode architectures (up to 100 computer cores), 

both demonstrating an accuracy close to first-principles methods [114]. 

4. Selection of Nanomaterials Tailored for Improvements in Quality of Life; Human 

and Environmental Health 

The challenging task of effective and safe nanomaterials design is the most common 

bottleneck to wide commercialization. A shortcoming nowadays in commercial nano-

materials and nano-reinforced composites is about the documentation of their safety 

datasheet, which is not always available or comprehensive. Major steps and efforts have 

yet to be realized for establishing a thorough characterization of nanomaterials, com-

monly accepted nanodescriptors, and high-throughput in vitro methods to assess toxicity 

and relevant endpoints. Another major discussion in the field includes the current in vitro 

methods performed to animals which have provided inconsistent results when deploying 

the studies to human cells, due to differences in human pathophysiology and biology, 

which can be resolved by using in silico methods [45]. 

In case of bioresearch fields, there is also an ethical aspect to consider. Performing 

experiments on animals is lengthy and costly, while in 2006 Registration, Evaluation, Au-

thorisation and Restriction of Chemicals (REACH) suggests the adoption of alternative 

research methods, such as in silico [40,115]. In silico methods for nanomaterial design 

have been emerging with quantitative structure–activity relationship (QSAR) models, 

providing implications in drug and molecular design of small sequences of organic mol-

ecules. These models, however, are limited by the amount of data when examining the 

case of new nanomaterials, while the identification of suitable nanodescriptors (empirical, 

experimental, structural) is another main challenge in predicting the behavior of complex 

structures. To address this challenge, the descriptors that will be identified should address 

the interoperability need of these models, namely to represent adequately the physico-

chemical behavior (i.e., zeta potential, relaxivities, bandgap) and describe the structural 

diversity (i.e., size, shape). These descriptors are essential to train the intelligent machine 

systems to identify how the features critical to nanomaterials safety and stability are af-

fected and perform virtual screening. For instance, protein corona fingerprinting, which 

describes how serum properties are on the surface in case of cellular models. In this direc-

tion, two descriptors with the ability to generalize the predictions on nanomaterials have 

been identified by Yan et al., namely the Pauling electronegativity and Delaunay tessella-

tion approach, which simulates the surface chemistry of a nanomaterial [48]. Conse-

quently, feature selection is an essential methodology to improve the ability of predictive 

models in the tricky field of both environmental and safety monitoring by predicting pre-

cisely the biological effects and mechanism upon exposure to nanomaterials. Establishing 

proper structure–property–activity relationships depends on descriptor selection, which 

has been used in numbers, and often vary amongst the scientific community. Thus, this 

methodology has found application in numerous studies by using the sensitivity analysis 

to identify non-correlated descriptors. Feature selection, first of all, can be used to tackle 

the overfitting problem in machine learning models and provide higher generalizability 

potential, considering that universal descriptors of (eco-)toxicity are yet to be realized. A 

second benefit corresponds to the improved possibilities to perform mechanistic basis for 

the model by the experts in the field [57]. 

Another emerging need is about binding the outcomes of both in vivo and in vitro 

studies to support regulators for policymaking, which could be achieved via the develop-

ment of in vivo machine learning models. This is an example of the approach towards this 

direction by US National Institutes of Health and Environmental Protection Agency 

(EPA), which tries to collect and provide reliable information based on an accepted suite 

of cell-based assays, which are used for mapping the toxicity profile of chemical com-

pounds. Similarly, it can be possible to establish the broad toxicity profile of nanomaterials 

using also machine learning modelling. Already, the development of such high-
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throughput methods is realized by focusing on short-term milestones for measuring the 

interactions of commercial nanoparticles with plasma proteins, while there are coordi-

nated efforts for the establishment of enhanced monitoring methods to enable tracking of 

nanoparticles during their residence in the human body. Other orientations contain the 

development of information sharing mechanisms, which has been a multidisciplinary 

challenge to be address by computer scientists, experimentalists, industry, and regulators. 

Already, an increment in in vivo data has been evidenced to describe nanoparticle effects, 

while also relevant work is being performed in database development to support the pre-

dictive modelling for nanoparticle corona formation in different environments, the eluci-

dation of mechanisms to describe the effects of nanoparticles which enter into cells as well 

as toxicity mechanisms, to name a few, apoptosis, free-radical production, and genotoxi-

city [45]. 

By establishing data-driven connections between nanomaterials and, e.g., the im-

mune system, it possible to drive material design and ensure greater safety. The major 

battlement remains related to the access to clinical applications data, and actual para-

digms such as immunotherapy [40]. For example, it is known that it is easier for the 

smaller nanoparticles to penetrate the cellular membranes and interact with organelles 

[27], but other individual features also affect the nanomaterial behavior and interactions. 

Digital infrastructures and databases are expected to bridge this gap of knowledge and 

support the discovery of nanomaterials that can embrace the activation and inhibition of 

therapeutical mechanisms based on their individual features; though it required a massive 

effort to create general rules [37]. Especially, systems and bodies connected to machine in-

telligence and IoT (Internet of Things) or IoB (Internet of Bodies) depend on the connectivity 

of sensors with detection capabilities to enable the high-throughput transfer of data via for 

instance radio-frequency identification devices for learning and adapting decisions, also 

termed as informed guesses, that are related to the components qualitative and quantitative 

features [9]. 

Many research groups approach the machine learning modelling of real-life prob-

lems with consciousness about the importance of the amount of data to represent the prob-

lem with quantitative and deep structure property relationships and perform high 

throughput screening to identify the most promising candidates [21]. A representative 

example is related to the work performed by Courtney R. Thomas’s team who developed 

a high-throughput recommendation system for engineered nanomaterials to predict the 

nano- and eco- toxicology, safety, environmental impact, and relevant properties [116]. 

Thus, nanoinformatics utilization in the Big Data era for the prediction of (eco-)tox-

icity of nanomaterials is emerging as a science to increase confidence and support the 

commercialization of innovative nanotechnology [52]. Nanoinformatics is a crucial field 

for providing methodologies to categorize nanomaterials based on their physicochemical 

behavior and (eco-)toxicological properties to increase the knowledge base and support 

the development of read-across models (Figure 4). Several strategies, such as that pro-

vided by ECHA, have an enabling character to allow the in-silico exploration of nano-

materials toxicological endpoints based on an experimental data-driven approach, which 

can support in the future regulatory testing [117]. What it is more important with data 

and nanoinformatics is that the machine learning tools and QSAR/QSPR models for the 

correlation of nanomaterial properties with toxicity, exposure, and hazard assessment can 

support the policy adaptivity to new nanotechnologies in the future upon standardization 

[57]. Thus, design procedures can be used to maximize nanomaterial utility while there is 

compliance with European Commission and global strategies to replace, reduce, and re-

fine (3R principles), which aims to reduce adverse biological effects and support ethical 

science by reducing the tests performed using animals [47,49]. 
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Figure 4. Predictive modelling applied for nanomaterials selection; impact in societal sciences, 

safety, and well-being. 

4.1. Machine Learning Modelling of Biological Effects of Nanomaterials 

What has been evidenced regarding the conventional QSAR modelling is that even 

the access to data of different nanomaterials may be sufficient, though the diversity in 

descriptors in terms of both uniqueness of the identified exposure problem and the avail-

ability of common descriptors for different nanomaterials. Typical descriptors are about 

the physicochemical properties, composition, surface chemistry, and structure, which can 

be used to optimize protocols for physical/chemical description by establishing the prin-

ciples for the interaction between different material classes and living organisms. This 

shortcoming is limiting the ability to identify universal descriptors and perform proper 

virtual screening of nanomaterials, as well as their suitability to characterize various prop-

erties, such as physicochemical, biological, or structural diversity, while dynamic changes 

and interaction with the immune system can alter the aforementioned nanomaterial fea-

tures, and thus their behavior, i.e., by biotransformation in the body as in case of protein 

crown adsorption [37]. Machine learning can return many benefits, such as fast computa-

tional speed and high accuracy, while it is resistant to interference (anti-isomorphism), 

without the need to utilize complex mathematic formulas, and with the ability to provide 

a generalized solution to a specific problem. Feature engineering can be used to filter out 

the critical parameters that are important, in order to give more insights about nano-

material related immune responses. 

A common problem in machine learning is the modelling capabilities of individual 

algorithms, hyperparameter tuning, and access to high quantity and quality of data, 

which may limit the model complexity. This means that the predictions and functionality 

of the models are limited by the domain of the properties that are fed into the model, and 

predictions beyond that domain would lead to poor results. This highlights the need for 

using datasets that cover the chemical diversity of the studied nanomaterials, while mo-

lecular and biological descriptors are sufficient to describe the expected behavior for the 

interaction with i.e., human cells. Moreover, experimental validation of the models pre-

dictive ability can enable the utilization of such predictive models by regulators and 
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scientists, since machine learning can establish useful tools to study the molecular mech-

anisms and describe nanomaterials biological activity like in case of QSAR models [118]. 

Another feature that may affect the predictive ability for a toxicity endpoint in many 

cases is toxicological model bias, since the introduction of weights is often missing. More 

specifically, since missing a toxic instance will have a negative and non-reversible impact, 

which should be prevented by design; for instance, by introducing weights to perform 

class rebalancing or introduce a cost-penalty factor in wrong predictions. Furthermore, to 

tackle the issue of the bias induced for the prediction of the majority class of data, 

resampling techniques can be applicable such as the SMOTE (Synthetic Minority Over-

Sampling) technique [36]. Subramanian and Palaniappan used the SMOTE method to ad-

dress this class skew problem and reduce the training bias by creating synthetic toxic in-

stances of the minority data based on the data features of the minority class, while the 

other classes are not affected at all. Utilizing in vitro features in a principled agnostic ap-

proach led to a total accuracy of 96%. Hyperparameter tuning and trimming of the feature 

space were employed, based on intrinsic and extrinsic physicochemical properties, to-

gether with periodic table features, which are exclusive of in vitro parameters, e.g., cell 

type and line and assay method, for multicollinearity [119]. 

In the field of carbon-based nanomaterials, Gernand and Casman in their meta-anal-

ysis studied the pulmonary toxicity effects of 17 CNTs types on guinea pigs using random 

forest algorithms. They used the structural features of CNTs, the concentration of metallic 

impurities, the dose and duration of exposure, and other features obtained by the obser-

vations in laboratory. The authors could effectively predict the toxicity endpoints, i.e., 

number of polymorphonuclear neutrophils, lactate dehydrogenase, number of macro-

phages, and total protein concentrations, with a confidence of 0.88–0.96 as indicated by 

the r-square value, where the parameters of the presence of metallic impurities, surface 

area and charge, agglomeration, as well as nanotube length and diameter were shown to 

be important modulators of CNTs biological effects [120]. 

In another study, CNTs were modelled about their potential genotoxicity, which is 

an important aspect of their behavior in order to enable their exploitation in numerous 

applications. A fully mathematical model was developed by Kotzabasaki et al. to describe 

their toxicological endpoint in terms of genotoxicity considering the fact that it is a well-

studied field in literature and accessible data demonstrate completeness in accordance to 

REACH requirement. Both in vivo and in vitro studies were involved to develop the 

model, while two cheminformatics workflows were executed using various SoA machine 

learning methods, which were validated using multiple performance criteria. Some prom-

ising models were developed using the random forest algorithm, as well as linear regres-

sion. Both models were able to model properly the toxicity effects using only a few de-

scriptors, and more specifically Zeta average, length, and percentage of pure carbon. In 

case of linear regression improved results were obtained when polydispersity index was 

included. These descriptors have been highlighted also by literature about their connec-

tion to genotoxic hazard potential of CNTs, and especially larger length was reported to 

induce in vivo toxicity and resulting to cell death by a reactive oxygen species generation 

mechanism. Further insights are considered to be obtained if the descriptors include in-

formation about extrinsic properties of the surrounding medium, such asionic strength, 

serum proteins, and pH [115]. 

Gonzalez-Durruthy et al. studied a more specific case about the biological impact of 

CNTs on the mass flux of oxygen in mitochondria. Non-significant respiratory effects 

were observed when CNTs do not exceed the 5 µg/mL concentration, which corresponds 

to a typical pharmacodynamics criterion of NOAEL. For this purpose, the data obtained 

by Raman spectroscopy and subsequent SG transformation were used to define new 

nanodescriptors and realize the dosimetry correlation to adverse effects on mitochondria. 

Raman analysis is expected to provide real-time feedback based on the applied experi-

mental conditions about the oxygen mass flux, which can be influenced by the presence 

of CNTs. This approach can provide a sustainable methodology to analyze CNTs effects 
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by generating a massive amount of raw data to support decision-making at regulatory 

level in the field of biomaterial science. The dataset used for this study is available at 

FigShare repository, including the following parameters: 32,940 cases of mitochondrial 

oxygen mass flux Jm(O2) in the presence of CNTs, and 34 features, including various chem-

ical modification of CNT, Replicate, Solvent, and time for various types of CNTs, such as 

single walled, mixed single walled/double-walled, and multi-walled. PT machine learn-

ing regression models were established using R language and BioCAI HPC platform 

(available in github repository), and more specifically NN, linear regression, as well as 

random forest regression algorithms were employed. The best performing model in each 

case was selected based on the prediction efficiency in the test dataset based on the maxi-

mization of regression coefficient and the minimization of RMSE (root mean square error) 

values after proper tuning of model hyperparameters in order to fit the RRegrs method-

ology, while the overall best performing model has been deployed online to serve the 

identification of the mass flux of oxygen in presence of CNTs for the mitochondria case 

[121]. 

Within the family of CNTs so far, we navigated through three different risk assess-

ment studies, where three different approaches were utilized. A significant difference that 

can affect and turnover the result of each study is the purity of CNTs. For instance, the 

simulation of CNT structures leads to pure nanotubes, unless otherwise identified, while 

experimentally they may contain traces or higher concentrations of the catalyst, chemi-

sorbed ions if they are functionalized, and so on. This case is not limited to CNTs but can 

be extended to every nanostructure where a data conflict can be confronted. The main 

point is that if the experimental data that are accessible refer to the effects of pure nano-

materials, the documentation of the toxicity effects can lead to unreliable structure–prop-

erty–activity relations. Thus, the researchers should make sure to be precise in document-

ing data (not limited to purity example) in order to be reusable in future studies and re-

duce conflicting predictions of different machine learning algorithms. 

In the case of graphene, studies often demonstrate conflicting conclusions, while it is 

thought that size is the main driver for cytotoxicity, followed by time and dose dependent 

exposure effects which have been evidenced. Furthermore, surface modification, oxida-

tion state, and surface charge were shown to be involved in the graphene stability changes 

and act as a main driver of toxicity in bacteria and human colorectal adenocarcinoma cell 

line HT-29 compared to graphene in its pure form. Moreover, PEGylation or treatment of 

graphene with Pluronic acid has been shown to enhance the biocompatibility of graphene, 

while in case of graphene oxide cytotoxicity effects are lowered if the surface charge is 

negative. In addition, factors such as cell morphology and type, as well as organ type led 

to different toxicity response profiles when exposed to graphene related types; for in-

stance, breast cancer cells are not affected at all when exposed to PEGylated graphene 

oxide, while lung cancer cell have a 30% viability. In the case of liver cancer, it was shown 

that cells are damaged at the DNA level. In this direction, Bayesian networks and random 

forest models were considered promising to manage data mined from literature and da-

tabases in order to develop a predictive modelling framework about the factors affecting 

cellular toxicity of graphene and deliver a holistic hazard ranking assessment of graphene, 

as well as support rational nanomaterials design, environmental, and health policies [122]. 

Apart from carbon-based nanomaterials, numerous studies have focused on the ef-

fects of metal-based nanomaterials. More specifically, de Pablo et al. studied GNPs by 

establishing QNAR models using random forest machine learning algorithms in order to 

perform rapid in silico screening of newly designed structures. The virtual representations 

(vGNPs) were generated using an in-house “GNPrep” program, which is also placing the 

surface ligands in a randomized manner about the density representation of Au-S bonds in 

the surface and the data were stored as Protein Data Bank (PDB) files. Hence, 100 represen-

tations were used for the descriptor calculations for each GNP to avoid possible instabilities. 

The vGNPs represent diversity in the surface chemistry as derived by nanocombinatorial 

chemistry technique, which is used to attach on the surface different small organic 
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molecules. Optimization of virtual structures was performed by energy minimization 

method (such as the amber forcefield method) and the main descriptors that were identified 

correspond to the Pauling electronegativity and interface geometry. Moreover, other known 

descriptors of hydrophobicity and zeta potential were used to adequately model the bioac-

tivity of the nanoparticles, such as cellular uptakes, GNP- enzyme bindings, and ROS in-

ductions [3]. 

Yan et al. used 147 nanoparticles synthesized by nanocombinatorial library approach 

to generate images of their nanostructure, and used a two-step annotation process. First, 

the simulation is used to generate the virtual representation of the nanoparticle. Then, the 

nanostructure image is generated based on the virtual representation by the first step. 

Four basic nanoparticle attributes were utilized in the creation of the virtual image, in-

cluding the size of nanoparticle core, the type of core material, the surface ligand density, 

and the chemical structure of surface ligand. A CNN was developed based on LeNet ar-

chitecture, which implements Keras and TensorFlow. Zeta potential, superhydrophobi-

city, protein adsorption, and cellular uptake were used as descriptors. The model archi-

tecture consisted of the feature extractor, which corresponds to the first four pairs of con-

volutional and max-pooling layers, and the predictor, which is consisting of two fully 

connected layers, resulting in an agreement of the training and validation loss. In this case 

overfitting was avoided using data augmentation and dropout regularization. The dataset 

was consisted of 12 platinum, 12 palladium, and 123 GNPs, with a size less than 10 nm in 

most cases, which is similar to the size of proteins. A class activation map was used to 

observe the regions in the image, while the deep CNN was shown to act as an information 

distillation pipeline, by using raw data to filter out irrelevant information and effectively 

magnify and refine information useful for predicting the in vivo fate for nanoparticles 

while entering cell lines [29]. 

Trinh et al. developed a nanoQSAR model to provide a time and cost-efficient pre-

dictive method for the assessment of toxicity of gold and silver nanoparticles using data 

mined from 63 published articles. Data were curated and resulted in a dataset with 2005 

observations and 31 descriptors, while missing data were completed by using manufac-

turer references. PChem scores were used to evaluate data quality and completeness to 

subsequently develop random forest and support vector machine classification models, 

which showed that surface charge, core size, dose, and cell lines were influencing the tox-

icity of the studied nanoparticles [123]. 

Joyita Roya and Kunal Roy worked on the establishment of nano-QSAR models for 

metal oxide nanoparticles towards RAW 264.7 cells and the release of lactate dehydrogen-

ase from the cell as an endpoint, which can be interpretated also in non-investigated na-

noparticles. 25 different nanoparticles were studies, amongst them, Ni(OH)2, ZnO, SiO2, 

AlOOH, CeO2, and TiO2. In their study, they developed partial least squares, multiple 

linear regression models, and the intelligent consensus predictive tool of the Small Dataset 

Modeler software based on Periodic table and physicochemical descriptors. It was shown 

that an increase in the number of nanoparticles, formation of a metal cation, solubility, 

and electronegativity led to the increment of cytotoxicity [124]. 

Winkler et al. employed Bayesian NN using sparse machine learning methods to de-

velop proof-of-concept models using molecular descriptors and studied the biological ef-

fects of various nanoparticles: (a) iron oxide decorated with 108 different molecules re-

garding their toxicity to five cell lines, (b) 52 nanoparticles varying in composition and 

functionalized using surface attachments or coating with zeta potential, relativities, and 

size used as main descriptors for their biological effects on four cell lines, using 4 different 

concentrations, and (c) GNPs, which were modified using different small molecules and 

studied about their ability for non- and specific binding to biological endpoints. The de-

veloped model included a Bayesian regularized feed-forward NN with three layers, using 

either a Gaussian or Laplacian prior, combined with non-linear feature selection method 

such as multi-linear regression optimized by an expectation minimization algorithm with 

a sparse (Laplacian) prior to maximize the complexity level and the predictive ability, 
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sparsity, and weight pruning of the model. Such algorithms have the advantage of being 

very fast in handling high-throughput data, and can support the analysis of synthesis, 

characterization, and testing related to nanomaterials and their biological effects, which 

have the potential to support policymaking in the near future. Thus, these predictive mod-

els can be utilized to assist regulators to ensure a safe working environment, as well as 

protect the environment and the eco-systems from the nanomaterials acute effects without 

restricting innovation in nanomaterials development and their commercial exploitation. 

In their research, it was shown that surface charge or zeta potential have a weak corre-

spondence to cell apoptosis, which is regarded to relate to an adsorption mechanism of 

protein corona in serum or plasma of the cell culture, which introduces a zeta potential in 

the region of −10 to −20 mV, and thus the individual zeta potential of the nanomaterials is 

not relevant for the models. In regard to smooth muscle apoptosis mechanism, the type of 

nanomaterials was shown to be more important, especially for nanoparticles consisted of 

transition metal oxides, where cellular cytotoxic, proinflammatory responses and their 

ability to generate oxygen radicals were the key descriptors. Another outcome of the study 

was that macrophage cells are not able to uptake nanoparticles, especially when the size 

does not exceed the 30 nm, and it is effective if the size exceeds the 300 nm. Finally, there 

was not clear connection of the surface chemistry of nanoparticles and the macrophage 

uptake [118]. 

Particle size is a widely accepted descriptor which influences various toxic or biolog-

ical effects of Ag nanoparticles, along with other weaker features, such as shape, agglom-

eration/aggregation states, surface chemistry or colloidal stability. Cell uptake, damages 

to DNA, mitochondria and cell membrane, and ROS production have been identified as 

effects that are mainly size-dependent, which rises the importance of a standardized and 

widely accepted monitoring technique, which can provide high-throughput information 

about the statistical representation of size distribution. Current techniques suffer from the 

agglomeration state of nanoparticles in the case of DLS, while in TEM observation the 

nanoparticles might be affected by the test media [27]. 

In the study of Yu et al., a dose dependency on toxicity effects of metal oxide nano-

particles has been demonstrated via the interpretation of machine learning models, which 

showed that the hydrodynamic size of nanoparticles has a negative impact on cells viabil-

ity when it exceeds the value of 260 nm, which was mainly evidenced in case of CuO and 

Mn2O3 nanoparticles. An overall higher cell toxicity was also observed in case of CoO and 

ZnO nanoparticles [49]. However, another major outcome of their study was the fact that 

descriptors demonstrated high correlation, which makes it difficult to identify the param-

eters that influence the toxicity by a horizontal overview of the nanomaterial parameters, 

thus limiting the transfer learning ability of the developed models. 

Of course, someone can recognize that in such data driven representations both the 

sensitivity and the degree of correlation between parameters are dependent on the 

amount of data available. If a researcher utilizes the data from the studies presented above 

another parameter can show the stronger influence on nanomaterials activity, whereas 

strong correlated parameters may be less correlated when the context is more general. 

Thus, the scientific community should recognize when the conclusions of a research are 

domain specific or could be more horizontal, which is the case. The ultimate target should 

be to reduce the experimental effort, while in-silico methods enable to reduce uncertainty 

of the outcomes, and efficiently reduce the resources requirements for safety assessments 

which will influence the design and engineering phase of nanomaterials to realize win-

win scenarios. In addition, machine learning should be used in a manner that does not 

cancel previous outcomes, norms, or rules, unless this is a breakthrough revelation. 

In another study, machine learning classification algorithms and NN clustering were 

adopted to map the nanomaterial genotoxicity/mutagenicity and perform fast screening 

to identify the best candidates using a safe-by-design approach. Based on a set of selection 

rules it was shown that the algorithm could accurately predict the mutagenic character of 

NiO, In2O3, CuO, and WO3 nanomaterials based on Ames test using the covalent index 
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classifier, while the Comet test rule, which includes also the impact of cation polarization 

power, was employed to predict genotoxicity [125]. On the contrary, it was revealed that 

generally the size of nanoparticles does not specifically affect their genotoxicity, and thus 

Sizochenko et al. in their study developed a model without such functionality, and neither 

the shape nor solvents were used as descriptors. 

Another approach by Sizochenko et al. includes the use of SOMs to perform inter-

species correlation analysis modelling in the nanoscale to predict both qualitatively and 

quantitatively nanomaterials cytotoxicity and different mechanisms were revealed. More 

specifically, they studied 184 nanomaterials including metal and silicon oxide nanoparti-

cles, using 15 datasets about their toxicity to algae, protozoa, bacteria, and mammalian 

cell lines, and the nanomaterials were categorized in four classes based on their activity. 

Special effort was devoted to identifying periodic table descriptors, which correspond to 

nanoparticles charge, valence, electronegativity, ionic radius, and other relevant proper-

ties. Relevant developments in the specific field have been realized by utilizing a simpli-

fied representation of molecular structure, metal ligand binding descriptors, and liquid 

drop models, assisted by quantum chemical methods. Another paradigm for addressing 

these challenges has been identified in terms of descriptors such as sphericity, as derived 

by TEM or SMILES structural representations, which can flourish under the development 

of CNNs and deep learning models, which have the advantage to be unbiased by the hu-

man factor in the selection of suitable descriptors [45]. 

In the study of Ban et al. zeta and redox potential, as well as dissolution rate were 

shown to determine the extent of nanomaterials toxicity, whereas it was revealed that sur-

face modification of nanomaterials was strongly correlated to the ability of protein corona 

formation [49]. Feng et al. gave another perspective about the toxicity of functionalized 

nanomaterials. In addition to the surface chemistry, the shape effects on nanomaterial in-

flammation effect were also studied, and shown to be dependent on the affinity in cells-

nanomaterials interface. It was shown that is not about the nanomaterial itself, but the 

presence and the expression of inflammatory factors, such as bacterial endotoxins (i.e., 

lipopolysaccharides) or surfactants that ensure well-dispersibility and are used in formu-

lations. For the case study of Au and Pt nanomaterials, such endotoxins have the ability 

to bind on the surface and interfere with the formation of biological coronas, which trigger 

the monocyte inflammatory reaction. In this case, inhibition of inflammatory response 

was achieved by using the purified forms of nanomaterials, which raises a major issue in 

establishing actual relation of nanomaterials and toxicity effects, as then the modelling 

can be significantly biased by the presence of contaminants when using experimental 

data, which is not the case in the vast majority of studies and may lead to false-positive 

conclusions about immune response or false-negative outcomes related to immunother-

apy studies [37]. 

4.2. Machine Learning for Nanomaterials Applications in Biomedicine and Therapies 

Another concern of nanomaterials is their applicability for medical use, which is lim-

ited by the authorization by administrative bodies, such as FDA [58]. Nanoparticles hold 

a lot of promise to serve improved cellular uptake and successfully target cancer cells in 

order to deliver biological factors that are designed to fight the specific malicious cells. To 

support these efforts dedicated nano-QSAR models have been developed in order to esti-

mate the acute effects and efficiency of nanomaterials, to reduce the need for performing 

a high-cost investigation which is required due to the large design space. Several models 

have been reported concerning the toxicity of metals, their oxides, and nanoparticles, but 

still there is a gap in the range of cellular toxicity studies, e.g., regarding the effects on 

liposomes or micelles cytotoxicity, while other classes of nanomaterials such as polymeric 

nanoparticles have not been systematically studied. In other cases, the studies are limited 

by the computational verification of the strong correlation of cytotoxicity with nano-

materials features, to name a few, size, concentration, and charge. Moreover, in many re-

search approaches, what is missing is the high-dimensionality and the amount of data 
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used for constructing the datasets, which outshines an overall need for aggregation/col-

lection of more data about cytotoxicity in order to develop machine learning models that 

demonstrate generalizability, reliability, and transfer learning capability, which is often 

limited by overfitting and class imbalance [58]. 

What is more interesting to study in case of nanomaterials is the toxicity when in-

serted into blood circulation; the binding of several proteins onto the surface during cir-

culation may alter their properties and biological fate. Lazarovits et al. studied this specific 

case by sampling at different times and isolating the nanoparticles, and quantifying the 

attached proteins via mass spectrometry. These inputs can be used to train machine learn-

ing in order to predict the organ accumulation of nanoparticles, biological fate, and also 

the blood clearance. A DNN was developed by the authors, which has the competitive 

advantage over hierarchical clustering and principal component analysis to identify spe-

cific patterns on high-dimensional data even if variation in data is not high. The model 

was used to study the accumulation of nanoparticles in spleen and liver organs, while the 

predictive accuracy reached the 94% using a double-blinded study. There were evidenced 

numerous different combinations of nanoparticles and binding proteins, while also there 

are multiple chemical/biological inhibitors that can enhance their clearance from the 

blood, while the clearance patterns were found to be predictable and it was possible to 

reduce spleen and liver uptake by 70% and 50%, respectively. Moreover, other interac-

tions of nanoparticles contain the interactions and alternations by organs, tissues, and 

cells, which result in nanoparticles fate as a mechanism that inhibits their toxicity, and 

results in minimized accumulation by the target site. Currently, the unpredictable lifecy-

cle of nanoparticles, including multifactorial and multivariate changes, in the human body 

has limited their application in clinical nanomedicine. The authors used in their study the 

GNPs as the model nanomaterial since their synthesis is well controlled over size and 

surface chemistry, while another benefit is that ICP-MS characterization can effectively 

quantify the Au nanoparticles elementally and PEG coating can ensure their long half-life 

in circulation in the tested rats. The dataset consisted of multiple parameters, including 

63,630 proteins’ label-free quantitative (LFQ) intensities, quantified Au in the blood over 

24 h, gold content in liver and spleen, and 5 different Au nanoparticles sizes (8–80 nm). It 

was proved that the increment in nanoparticle size led to increased clearance rate, and 

subsequent uptake by liver and spleen. The deep learning model demonstrated over 90% 

accuracy in predicting the injected nanoparticle size, while the liver accumulation was 

predicted with 81–93% accuracy, in case of spleen uptake the same metric was in the range 

of 77–92.6%, the blood half-life of nanoparticles was predicted with 84–91% accuracy and 

for the biological fate 77–94%. However, a big challenge for therapeutic applications re-

mains the prediction of nanoparticle lifecycle considering that the multitude of proteins 

adsorbed may be difficult to manipulate and the distribution patterns difficult to alter, 

which was proven by the assay of Serial Injection of Materials for Biodistribution Analysis 

(SIMBA). Thus, these challenges were addressed with supervised machine learning in 

their study to describe how the surface chemistry of nanoparticles dictates the interactions 

with tissues and cells in the body, and efficiently predicts the biodistribution and clear-

ance patterns of engineered nanomaterials and contribute to the design of nanomaterials 

and relevant strategies for novel therapeutics development [126]. 

The in-silico design of an innovative therapy will contain the selection of nanoparti-

cles based on the different capabilities to carry drugs to the target organ. In such a case, 

an evolutionary algorithm has been developed by Tsompanas et al. to provide a meta-

meric representation. The algorithm demonstrated adaptivity to the genome length and 

the number of the combined nanoparticles to exploit the same fitness with the training 

dataset. The simulation indicated that therapeutic nanoparticles should be released at a 

high rate and early in the process to increase the effectiveness. It is proposed by the au-

thors that the high cost of the simulation can be significantly reduced by the involvement 

of machine learning in the evolutionary optimization loop, which is the case in surrogate-

assisted evolutionary algorithms [40]. 
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Esmaeilzadeh-Gharehdaghi et al. in their study developed ANNs to identify the op-

timum parameter to accomplish the monodispersion of nanochitozan nanoparticles, 

which is essential to realize high in vivo/vitro performance, physical stability, carrier ca-

pacity, release profiles, and enhanced biodistribution of active ingredient and degradation 

of biopolymer nanoparticles, as well as to obtain a predictable clearance profile for appli-

cation in nanomedicine. The polydispersity index (PDI) of chitosan nanodispersion (107–

710 nm) was modeled in a solution medium using four uncorrelated parameters in order to 

receive feedback from the interactions between different experimental factors, and more 

specifically the concentration of chitosan, pH, amplitude, and duration of sonication show-

ing a reverse relationship. Using the developed model, it was possible to obtain the opti-

mum parameters for achieving monodispersity with PDI equal to 0.2, while concentration 

parameter was considered to be the parameter that affected the PDI value at most [127]. 

In another application of machine learning for studying the targeted activity of na-

nomaterials, two comprehensive datasets are the ChEMBL and the DVRNs to develop a 

general-purpose model developing DVRNs for cancer co-therapy by-design. In the first 

dataset, a considerable number of assay conditions is included, with features that describe 

biological activity, types of proteins, assay strains and organisms, while the second de-

scribes 25 nanosystems with 16 features about biological activity, assay cells, and raw na-

nomaterials amongst them. Santana et al. used moving average operators to quantify de-

viations of the input variables, and multiplicative PT operators to reduce dimensionality 

and perform data fusion, while linear discriminant analysis was also used to find the op-

timum machine learning model. It was shown that the derived model was capable of ad-

dressing the accuracy, sensitivity and specificity requirement, as indicated by the valida-

tion by more than 130,000 cases (DVRNs vs. ChEMBL data pairs), and the overall model 

accuracy in the range of 83–88% [25]. A downfall of the developed model is the require-

ment for the exploration of a wide space of moving average parameters, which can be 

performed in a more efficient manner by using feature selection methods, as well as an-

other restricting feature is the requirement to include 21 variables, which is connected to 

the boundary conditions of the biological assay of nanoparticle drug release system, of the 

vitamin and its synthesis parameters. For the second case it seems that a feature selection 

method may be prone to information loss, so that alternative approaches such as pertur-

bation-theory operators (PTOs) may give a better alternative for efficient reduction of di-

mensions according to the relevant metrics (Chi square, p-level), with an ultimate target 

to predict biological activity (inhibition %) and pharmaceutical function (cumulative re-

lease %). The training dataset consisted of almost 90,000 observations, including almost 

6700 observations with desirable biological effects, while the rest were non-desirable. 

Another special case of nanomaterials is DNA, which is not actually considered as a 

biological material in the nanotechnology field. Engineering functional sequences of DNA 

can be key to produce nanomaterials with functional properties, which is the case for ex-

ample in antigen-specific monoclonal antibodies (mAb) development assisted by genera-

tive machine learning computational design can find application in cancer treatment and 

autoimmune therapies development. The bottleneck in this case is the ability to experi-

mentally verify the utility of the possible antibody sequences that can be combined, con-

sidering the main design parameters, such as epitope, paratope, affinity, and developabil-

ity. A possible solution was proposed by Akbar et al. with the development of a simula-

tion network to describe lattice-based antibody-antigen binding, which integrates a rep-

resentative framework of parameters for physiological antibody binding. Machine learn-

ing can be used in this case to generate virtually 3D-antibody-antigen structures and pre-

dict their functionality. More specifically, 1D sequential data of 70,000,000 structures 

(higher amount of data by three orders of magnitude compared to SoA were used to feed 

the transfer learning model which reflects proper biological complexity in order to design 

the conformational (3D) epitope-specific antibodies, while the deep learning computer 

mAb design at high-throughput was validated by experiments for its ability to accelerate 

antibody discovery. A key functionality of in silico generative frameworks was that since 
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training is completed, the model can be utilized as on-demand as a large-scale tool for the 

development of virtual representations of antigen-specific and immune receptor se-

quences [128]. 

Machine learning has also found application to the vaccine design field, and more 

specifically Munteanu et al. used predictive modelling for proteomes to be used as new 

B-cell epitopes, whose activity is a function of the queried peptide sequence, which in this 

case is used as a descriptor. Seven models were developed using 709,100 instances for 

training (IEDB database http://www.iedb.org, accessed on 31 July 2022), which contain 

data for 505 adjuvant additives, 28 experimental methods, 15 types of in vivo processes, 

323 host and 1448 epitope organisms, and 83,683 peptides sequences, which included 10 

features about the reference and query peptide sequences. It was shown that the random 

forest model better described the design problem using only 50 trees even for the classic 

QSAR model, as it was evaluated by the metric area under the receiver operating charac-

teristics (AUROC) which resulted in a score of 0.981 using five-fold cross-validation to 

unknown data. The sensitivity analysis showed that the reference epitope activity and 

perturbation of the Shannon entropies were the more important descriptors. The model 

introduced by the authors is expected to have an impact in the in silico screening of pep-

tides, and contribute to the field of vaccine design by taking advantage of the epitope 

prediction and the established structure–activity relationships [129]. 

4.3. Machine Learning Modelling of Environmental Effects 

Machine learning is expected to be an emerging solution in the shortage of resources 

and support the supply chain by contributing to enhanced management of energy, re-

sources, and time toward waste minimization [53]. This is a major gain for the manufac-

turing processes and industrial resilience, since machine learning can be used in Graphic 

User Interfaces (GUIs) and support the real-time adaptation of the parameters or predict 

the expected outcome early in the process without any adaptation to prevent quality is-

sues. What is more, it is possible to identify processing step shortcuts and provide diag-

nostic insights about flaws in materials behavior or processing units. Another important 

functionality is to support the data-driven optimization, which can be used to adapt the 

process parameters towards self-optimizing reinforcement learning control systems and 

a tailored outcome, i.e., control and tune physical properties (optical, magnetic, electronic) 

on the nanoscale and/or predict the unknown levels of contaminants which affect the en-

vironmental toxicological profile based on previous experience, in regard to material 

properties and service life expectations. 

Energy is another field that is moving towards the protection of the environment 

with the innovations in the development of energy conversion technologies using nano-

materials assisted by in silico methods. For instance, in the case of silicon based solar cells, 

the current limitation is that the band gap cannot convert quantitatively all the photons 

received onto the surface to energy. Two main parameters affect the energy conversion. 

Specifically, the bandgap of solar cells should be equal to 1.34 eV and the wavelength of 

the solar radiation received should vary from 400 to 700 nm. Out of this range, the photons 

cannot be captured due to the Shockely queisser limit, with their energy being lower than 

the band gap energy of the solar cell. Possible strategies to overcome this limit include 

altering the solar spectrum over 700 nm in order to increase the number of photons re-

ceived or to use nanomaterials which are able to convert a larger portion of solar energy 

to current due to their band gap. The current limitation of nanomaterials is their high cost, 

but the silicon solar cell cost is still higher, and the cost–benefit balance can favour the 

adoption of nanomaterials in this case. Two promising candidates for improving conver-

sion efficiency are silicon nanoholes/nanowires (SINH) and Graphene and its oxide form. 

For Si nanowires the large surface area to volume ratio is an enabling feature to improve 

light harvesting, while higher charge collection is facilitated by the formation of a core-

sheath p-n junction. In the case of graphene, the advantage of the high conductivity is not 

combined with capacity for energy storage, while graphene, which is considered as a 
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supercapacitor, is expected to be a more suitable candidate for solar energy conversion 

due to the better charge holding capacity and its ability to serve long time solar energy 

storage. Another strategic benefit is the substitution of the potential toxic constituents of 

batteries and released chemicals, which are not re-usable in the end-of-life, while for ex-

ample graphene is considered to be biodegradable in nature without introducing any haz-

ard to the environment. In this scope, to support the solar cell development with increased 

efficiency, machine learning was used to estimate the solar energy harvesting for a period 

of three years using the Sun path calculator application to collect the required data, which 

were 13,140 in number. A DNN was developed, using Adam optimizer and 20 epochs in 

total, to deliver a model with almost 93% accuracy in both training and validation da-

tasets. It was shown that the nanomaterials can introduce actual improvements in the 

maximum solar energy that can be harvested. More specifically, it was revealed that gra-

phene can lead to a 40% increment of harvesting capacity in comparison with silicon solar 

cells, based on the sun path tracking with machine learning, which is expected to create 

new opportunities in the smart farming of renewable and eco-friendly energy alternatives 

[130]. 

The modelling of environmental impact of nanomaterials by the utilization of sensors 

(including biosensors) is another important sector in order to acquire high-throughput 

and real-time data and feed machine learning algorithms and perform meta-analysis. One 

relevant example regards self-sustaining wireless sensor networks (WSNs), which are 

used for mining of data in order to supervise the personal health and environment moni-

toring. The current sensor technology though is limited to the monitoring of physical 

properties, which correspond to pressure, temperature, salinity, conductivity, moisture, 

movement/vibration or light illumination, while there is an emerging need to monitor also 

chemical descriptors. The large scale deployment of environmental monitoring has been 

evidenced for instance by the wireless sensor network GreenOrbs infrastructure (5000 

sensors), which has been and can be used for surveillance of marine environment, water 

status, and greenhouse monitoring among others. In this field, wireless body sensor net-

work (WBSN), including wearable devices, can find promising deployment via the mobile 

devices using the IoT to keep track for example of human health or even the environmen-

tal status by a data-driven feedback; still there is the need to provide the ability via wire-

less (bio-)sensors to track specific molecular information, by using interfaces with the 

blood, sweat, soil, or water, which have a tailored functionalized surface to act as a recep-

tor suitable to study, i.e., the human and environmental condition after exposure to engi-

neered nanomaterials [17]. 

Since nanomaterials have a bright potential for the demonstration of selectivity on 

emitted gases and chemicals, sensor development and integration with machine learning 

are quite promising to provide advances in the field of environmental protection. Thai in 

their work developed low-cost chemoresistive gas microsensors on a chip interface for 

producing on-chip grown tin oxide (SnO2) nanowires decorated with noble metals to pro-

duce four identical resistive nodes/sensors; one sensor was decorated with Pt nanoparti-

cles and the second was decorated with Ag nanoparticles. The microsensors can support 

both portable and wearable gas sensing applications. In this case the authors integrated 

the sensors with a heater and positioned the nodes at different spots to acquire 4D data 

with the capability to identify five different gases, i.e., ethanol, acetone, hydrogen, hydro-

gen sulphide, and ammonia, and provide an estimation of the concentrations in a quanti-

tative manner. A machine learning model was involved in order to support the handling 

of sensor data and automate the recognition process for the emitted gases. A support vec-

tor machine was used which was capable to classify (recognise the class of gases) the gases 

with 100% accuracy, while in the quantitative estimation of gas concentration, using the 

exposure limits of American Conference of Governmental Industrial Hygienists, it was 

shown that error varies between 8% and 28%. The quantification error was attributed by 

the authors to the noble metal which was used to decorate the SnO2 nanowires, so that the 

Pt decorated sensors showed an increased ability to accurate predict gases such as 



Nanomaterials 2022, 12, 2646 41 of 57 
 

 

ammonia, hydrogen, and acetone, while Ag decoration did not favor the identification of 

specific gases. Another factor that affects the selectivity of gases for the identification by 

the sensor is the operation temperature, which is also the temperature of the sensor nodes. 

Thus, the performance of each sensor was evaluated in that study, as well as their com-

bined detection ability using the support vector machine model [131]. 

Moreover, beyond the use of sensor-based systems, the establishment of machine 

learning can support the in-silico monitoring of the environmental impact of engineered 

nanomaterials solely based on in vivo and in vitro data. MODERN’s library was used in 

a meta-analysis to model the toxicity of 12 different engineered nanoparticles based on 

type of assay and the resulting EC50 values. The procedure contained the normalization of 

data using their mean value divided by the standard deviation (standardization) and the 

Euclidean distance was used to group the data, followed by a process to convert distances 

to weights. What was shown by unsupervised machine learning was that there is a con-

nection of solubility of engineered metal nanoparticles and toxicity, with CuO and ZnO 

being the most toxic. On the other hand, only MgO nanoparticles were non-toxic/passive. 

Other metal nanoparticles, namely Co3O4, Al2O3, SiO2, Fe3O4, Mn3O4, and TiO2, demon-

strated concentration dependent toxicity beyond 100 mg/L. Exception to this rule were 

Sb2O3 and MgO nanoparticles even at high concentrations of 100 mg/L. Moreover, it was 

revealed that ZnO, CuO, and Pb nanoparticles were toxic via a growth inhibition mecha-

nism at very low concentrations in the scale of 1 mg/L [46]. The modelling of the environ-

mental effects of engineered nanoparticles was based on the viability data of bacteria, al-

gae, and protozoa; in that case it was shown that solubility is not a descriptor for environ-

mental toxicity, but the electronic structure was directly correlated for the case of soluble 

and active CuO, ZnO, TiO2, and Fe3O4. Similarly, ecotoxicity effects were observed for 

other active engineered nanomaterials, and more specifically, Mn3O4, SiO2, Co3O4, and 

Al2O3. The third group of nanomaterials contained Sb2O3, MgO, and WO3 which were pas-

sive as indicated by the EC50 metric, with a value below 100 mg/L, which corresponds to 

a superphysiological dose exposure. 

Another factor affecting toxicity is the surface transformation—protein binding—

when nanomaterials are exposed to nature. Varsou et al. conducted studies using typical 

grades of water (Class I and Class V) to represent environments of natural habitats for 

freshwater zooplankton Daphnia magna microorganism at pH conditions at 7.6–7.8. They 

used a dataset containing five Ag nanomaterials with different coatings and six TiO2 na-

nomaterials with different capping agents. Several concentrations were studied at various 

media of Class I or V river water containing natural organic matter or HH (high hardness) 

Combo, including freshly dispersed and two years long dispersions. The effective concen-

trations (EC) were determined at an exposure duration of either 24 or 48 h. In their ap-

proach they determined the EC40 corresponding to the 40% of the initial population at 48h, 

which was set as the toxicity threshold with high confidence. Thus, the dataset was con-

sisted of a total of 353 observations (available in NanoPhasros database), which corre-

sponded to 150 substances that were considered toxic, and the rest of them non-toxic. The 

numerical descriptors involved the DLS and TEM size, tested concentration, the zeta po-

tential at pH ranging from 7.6 to 7.8, electrophoretic mobility, and medium conductivity, 

which were preprocessed via a Gaussian normalization method, and a sensitivity analysis 

followed using the Isalos Analytics Platform. The k nearest neighbors EnaloskNN 

Nanoinformatics tool was used to establish the machine learning model in order to study 

the ecotoxicity in silico, following ECHA’s recommended strategy for grouping of NM. k 

nearest neighbors was used in this case due to its suitability to establish accurate models 

for small datasets combining a low computational cost, while the predictive power was 

evaluated and validated in accordance with OECD criteria and a QSAR model. The estab-

lished model was used to evaluate whether the environmental ageing and degree of ag-

glomeration of nanomaterials is connected to the reduction of the environmental ecotoxi-

city. Amongst the aims was to identify if the ecotoxicity is inhibited in the media contain-

ing natural organic matter compared to the media containing only salt. It was shown that 
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the agglomeration of the nanomaterials led to the inhibition of toxicity, which was affected 

by the size, the surface conductivity, and the surface charge. The subsequent reduction of 

the reactivity and dissolution potential in the case of soluble Ag nanomaterials, and the 

increased size were related to the reduction of bioavailability and uptake by the daphnids. 

Another mechanism that was evidenced was connected to the presence of natural organic 

matter which lead to the formation of an ecological corona, which reduced the toxicity of 

the dispersed nanomaterials [117]. 

Mikolajczyk et al. established (nano-)QSAR models to support the safe-by-design 

synthesis of hybrid nanoparticles, by using Decision Trees, and multiple linear regression 

models. In this scope, a GA was combined with multiple linear regression using QSARINS 

software to generate the most relevant variables with no correlation in order to be used as 

molecular descriptors. In case of decision tree algorithm, a decision stump technique was 

used, which was characterized by a single attribute, and a regression meta-classifier to 

improve the performance. The decision tree algorithm was developed in the Weka envi-

ronment and its incorporation into the KNIME Analytics Platform. Beyond computational 

modelling, experimental validation was performed to improve TiO2 nanomaterials pho-

tocatalytic properties and reduce environmental toxicity, including several surface modi-

fications approaches with noble Au/Ag/Pd/Pt metals. It was revealed that photocatalytic 

properties and cytotoxicity against eukaryotic cells are related in case of multicomponent 

TiO2-based hybrids. More specifically the parameters that influence damages to cells are 

the solubility, the composition in Au/Ag/Pd/Pt metals, the electronic properties such as 

conduction band energy level, and band gap, and the photocatalytic activity [132]. 

What is more, machine learning can play an important role in the hazard assessment 

of chemicals that are exposed to the environment, which often demonstrate commonali-

ties regarding the descriptors that determine the ecotoxicity of nanomaterials. Hou et al. 

in their study used the physicochemical properties (mined by OPERA database—availa-

ble at EPA’s CompTox Chemistry Dashboard) of chemicals in USEtox version 2.11, as well 

as their toxicity mechanisms to establish a data-driven model for the identifying their eco-

toxicity in terms of HC50 metric, which indicates the 50% reduction of the initial popula-

tion of studied microorganisms. This is a rather complex task, due to the biological, phys-

ical, and chemical processes that describe how chemicals interact and transform in envi-

ronmental ecosystems. The common room of developments in the field can be correlated 

to the ecotoxicological impact of nanomaterials, since many nanomaterials can be used to 

carry chemicals towards several applications, such as self-healing and nanomedicine or 

chemicals can be present in the form of contaminants. The validation of the machine learn-

ing models was performed by involving ECOSAR and other QSAR models, while three 

models were utilized to select the best performing model in comparison to principal com-

ponent, partial least squares, and ordinary least squares regression methods. The dataset 

contained data regarding 27 inorganic metals and 3077 organic chemicals, out of which 

283 HC50 values corresponded to extrapolation by the known acute EC50 values, and 2307 

contained actual both HC50 values and physicochemical properties; amongst them 

Henry’s law constant, boiling point, biodegradation half-life, bioconcentration factor, at-

mospheric hydroxylation rate, molecular weight, water solubility, vapor pressure, soil ad-

sorption coefficient, octanol-water and octanol/air partition coefficient, fish biotransfor-

mation half-life. The authors demonstrated that the random forest model was more effi-

cient to predict the ecotoxicity characterization factors and HC50 values compared to ECO-

SAR and the machine learning regression methods. It was shown that hydrophobicity and 

water solubility were the descriptors that determined the chemicals effect by an ecotoxi-

cological endpoint, which is the case also for nanomaterials, which provided an efficient 

data-driven methodology, which can also guide the life cycle analysis of chemicals end of 

life environmental impact and is promising to enable broader applications [133]. 

Another green application of nanomaterials and machine learning is in the develop-

ment of gas removal technologies, e.g., for the management of NO waste gas, in order to 

conform with the emission requirements for diesel and gasoline engines, as well as the 
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development of catalytic technologies which do not require reducing agents for the de-

composition of NO in automotive sector. The challenge in current metal catalyst technol-

ogy is the poisoning due to the oxygen dissociation and their strong binding energy with 

oxygen. In the past this issue was addressed by using alloy catalysts including Au and Rh 

elements, which enhance the oxygen desorption. In this case, machine learning was used 

to correlate the binding energies with nanoparticles of atoms and molecules, as well as to 

predict the formation energies of nanoparticles and assist the decomposition reaction ki-

netics analysis, in order to extract useful information about the composition, size, and 

surface segregations to catalytic active, as well as individual features of the active sites 

present in the catalyst structures. The machine learning approach demonstrates benefits 

over the conventional Sabatier analysis. The latter requires many approximations to pre-

dict the catalyst efficiency. Actually, in their study, machine learning was combined with 

DFT simulation using the smooth overlap atomic position, which give information about 

the similarity of two local environments of the surrounding molecules/surfaces/solids in 

order to predict the energies of relaxed surfaces and reaction intermediates by using as 

input their unrelaxed atomic geometries, and multi-dimensional descriptors. A Bayesian 

linear regressor was used to provide the input parameters for DFT, which was capable of 

predicting binding energy of surfaces with the reaction intermediates [134]. 

In a similar work, structure activity relationships were established using a combina-

tion of DFT with ANNs to study the oxidation of GNP clusters in the presence of CO in 

an efficient manner by reducing the computational cost. With DFT the optimum structures 

of GNP clusters were defined, including anionic, neutral, and cationic structures, as well 

as structural descriptors (electron affinity, ionization potential, HOMO-LUMO gap, bind-

ing energy) and adsorption energies of O2 and CO, while the input parameters (defined 

by the user) were the coordination number of the adsorption site, the presence of unpaired 

electrons, the charge and the size of the cluster. The ANNs were used to correlate the 

structural descriptors with the aforementioned user defined parameters and the adsorp-

tion energy, which was shown to have similar capabilities to DFT. What was shown is that 

the adsorption strength of CO was higher for the cationic structures, which is related to 

the electron donating nature of CO, while size mattered only for cationic clusters and 

demonstrated a decreasing trend [135]. The latter is an expected outcome as in theory the 

charge is diluted by increasing the number of cluster atoms. 

In another study, “atom types” were used as features of the dataset to feed the ma-

chine learning models in order to accurately describe the chemical character of materials 

and their ability to capture toxic waste gases, which was shown to be promising in regard 

to exceeding the performance of other models where the building blocks of the materials 

are used or the chemical character is not considered at all. By using the “atom types” ap-

proach, it was shown that significant improvements were achieved using smaller training 

sets by an order of magnitude, whereas compared to the building blocks approach it pro-

vides a strategic advantage of generalizability—the number of atom types is particular, 

while building block combinations could be unlimited—for deployment in studies of 

other kind of materials. This was specifically demonstrated by Fanourgakis et al. in the 

case of COF and MOF nanomaterials. The validation of the actual improvement in mod-

elling performance was realized by using the database data of 137 953 structures and their 

atomic coordinates, that were formed by bringing together the MOFs building blocks, 

which include 16 functional groups, 30 organic linkers, and five different metallic corners, 

while the atom types were identified for almost 78,000 structures. Machine learning was 

established using a random forest model using the scikit-learn module for the identifica-

tion of nanomaterial gas adsorption capacities based on capturing eco-pollutant gases—

specifically, methane and carbon dioxide—and various thermodynamic conditions, as it 

has been proved efficient in regard to computational cost in past studies of MOFs com-

pared to molecular simulations [136]. 

Another sector where nanomaterials can have a critical impact in the scope of envi-

ronmental and human well-being is the automotive industry. Due to their catalytic 
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properties, a reduction can be realized in regard to harmful emissions and the improve-

ment of the conversion yield of waste gases to substances that do not have short- or long-

term effects on health, such as nitrogen, water, and carbon dioxide. In this scope, current 

catalysts have shown limitations regarding their applicability, which are summarized as 

the conversion performance, including how performance may be decreased during life-

time of a vehicle, while also there is a temperature dependency. Machine learning can 

address these needs by the in-silico design of structures that have the potential to outper-

form current catalyst technology. So far, several efforts have focused on screening new 

catalyst candidates, on augmentation of quantum mechanics about the catalytic function-

alities, and on prediction the properties of catalysts using dedicated descriptors. White-

head in their study approached the problem by the scope of the process-property relation-

ship, in order to identify the optimum parameters for the synthesis of the catalyst, includ-

ing composition information of the formulations. The machine learning model was devel-

oped to predict 16 different catalytic properties which were verified by laboratory testing. 

To support decision making, Alchemite software was adopted in order to quantify the 

uncertainty of the predictions and establish a proper recommendation system for the next 

experiment. The training dataset was consisted of 551 catalysts, along with their infor-

mation, while 10% of the data were excluded to be used as the testing dataset. A Bayesian 

tree of Parzen estimators model was used, and predictions were optimized using hy-

perparameter tuning and crossvalidation. With this study, the potential impact of ma-

chine learning to solve real-life problems where catalysts are needed was shown, as well 

as potential impact beyond the automotive field, e.g., in the design of metal alloys, drug 

carriers, or batteries, while it is possible to handle the sparse real-world experimental data, 

and support the full cycle of formulation development, including handling and establish-

ing virtual representations of process–structure–property relationships for accelerated 

catalyst design [137]. 

5. Mining and Accessibility of Experimental Research to Enrich the Knowledge Base 

and Conduct Meta-Analysis 

Machine learning has found many applications in identifying hidden patterns for the 

process design of nanomaterials, high-throughput screening in silico with the support of 

characterization data, as well in the design of safe bio-nanomaterials towards the discov-

ery of novel therapies. Especially, predictive efficiency was shown in most cases not to be 

dependent on the algorithm complexity, but on the amount of data, their quality, and 

organization. Data mining is a subsection of AI and is responsible to browse and deliver 

data from multiple sources, including online, published articles, databases, images to en-

able the knowledge discovery. This technique enables the transformation of vast amounts 

of (un-)structured data into useful knowledge to address the modern needs of engineering 

community [9]. What is more interesting is that data mining in the fields of (nano-)mate-

rials science and engineering is considered as an extension of (Nano-)informatics [138]. 

The ultimate objective is to achieve a fully automated design of protocols in the algo-

rithmic pipelines in order to automate the creation of workflows based on the nano-

material targeted application. Of special importance is the development of cloud-based 

platforms that will enable the evolution, e.g., of wet-lab facilities for establishing an auto-

mated feedback system of experimental data (closed-loop laboratories) to allow the re-

mote process design and monitoring with the capability for online and real-time adaptiv-

ity of manufacturing process, as well as the automation of digitalized data-driven optimi-

zation procedures [56]. 

Moreover, considering that these high-level ambitions of the industry transition in 

the following years are challenging the limits and the capacity for innovation, big data 

and machine learning approaches have a great potential to transform ambition to actual 

progress due to their generality and computational efficiency. In order to enable excel-

lence at the industrial level, the establishment of large infrastructures with high compu-

tational capacity are required to enable handling of big data, as well as actions are required 
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to support their usability and interoperability by establishing protocols for gathering and 

data curation. This is of high importance for materials science and nanotechnology, since 

access to large databases with structured characterization data and computational facili-

ties is required to establish accurate predictive models. However, this is not limiting the 

utility of machine learning to use knowledge included in small datasets, whereas another 

advantage of machine learning is the computational efficiency in regards to resources and 

time. The actual limitation of machine learning is connected to fundamental conceptual 

difficulties regarding what machine learning can achieve in principle [17]. 

Another consideration concerns the available tools and characterization methods to 

generate high-throughput data, which is quite important to maximize the potential impact 

of machine intelligence. Still, domain experts need to supervise the experimental data in 

order to ensure that data are consistent with theory and knowledge acquired to date, in 

order to establish the fundamentals regarding experimental/simulation data annotation, 

validation, and possibly rejection to reduce bias introduced due to the low quality or due 

to the fact that new data are placed beyond the information space used for training the 

machines intelligence. 

Data pre-processing is often a challenging task and requires a holistic understanding 

of how the algorithms function in order for machine learning to establish meaningful data 

representations. The following step of training the machine learning models is also an 

important step since the hyperparameters tuning are an individualized task for each al-

gorithm. This is often quite tricky since the algorithms are required to perform accurately 

beyond the knowledge base, e.g., on unseen data, known as transfer learning, as well as 

to enrich the knowledge base, i.e., reinforcement learning, in order to take over challeng-

ing regression/classification tasks, e.g., as in the case of process and quality monitoring 

[17]. 

In the era of information, machine learning methods can be used to mine text and 

extract useful data features and learning rules using a large variety of algorithms in order 

to provide decision-making efficiency and accomplish real world specific tasks. Academic 

science and publications are flourishing, and it is well understood that the amount of data 

cannot be solely handled by human. In addition, search engines provide the ability to 

mine data based on limited number of keywords, and often it is a time-consuming task to 

browse relevant and usable information. A main priority is to utilize data from literature 

and store them in a way to be interoperable for all the researchers, and moreover to use 

the data already stored in databases, is to be able to trace the researchers workflow and 

satisfy that data provide the information without introducing bias into the conclusions of 

any research. Moreover, the collection of data, pre-processing, and dataset manage-

ment/cleaning/formatting are essential processes for enabling datasets with different for-

mat to be utilized in extracting the desired information to enrich the knowledge base for 

training. A major concern of the research community, with all these years of technology 

developments and pushing for innovation, is the publication of unsuccessful research, in 

order to (i) ensure that the human effort and time are not spend without any outcome or 

result, (ii) to provide benefit to other researchers by saving time on what has been already 

performed, while (iii) giving answers when research is inconclusive. Machine learning 

can successfully address this concern, and utilize data that correspond to both successful 

and failed experiments, that can be prminent for the optimization tasks using machine 

learning, as well as guide the exploration in knowledge space. The knowledge space de-

pends on data accessibility. The European Commission directives in Europe require that 

data are as open as possible and shared (as closed as possible) within the interconnected 

users via the web [60]. A major initiative towards this direction is the European Horizon 

2020 Open Research Data Pilot. 

Data that will be accessed and used for the development of algorithms that serve the 

materials identification, discovery, and optimization of crystallographic, optical, mechan-

ical properties should be prepared following a specific protocol to nullify the potential 

errors. Often, data contain infinite/null/missing values or even different descriptor 
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columns, so that the datasets should be harmonized regarding the contained columns and 

their identity [57,125], while also to exclude the rows which contain those problematic 

data cells or provide an estimated value, which usually corresponds to the mean value of 

two values in the neighboring region or use the most frequent values or other values based 

on similarity with other data [126]. Moreover, based on the principle used by the instru-

ment to log the characterization data, it is possible to identify the abnormal values, which 

negatively impact any predictive model and the management of dummy values is critical 

when mining third party data. Other data pre-processing is connected to data sampling, 

and normalization/standardization, which are used in developing representative, repro-

ducible, and accurate predictive models, ensuring that the values of data are not affected 

by the order of magnitude. One consideration is to use a normalization function that is 

reversible, in order to be able to revisit the original data and evaluate if the predictive 

models provide realistic predictions. 

Ming Wang et al. introduced an automated feature engineering for the nanomaterial 

discovery. Automated feature engineering is another route for pre-processing of mined 

data, which extracts key parameters as independent descriptors, which are connected to 

specific structure and properties of nanomaterials. A common approach is to use deep 

learning algorithms and predict a desired output for discovery/design purposes, which is 

a costly process in regard to computational power and time. By using specified features 

of the dataset, it is possible to minimize the required costs and the domain knowledge for 

the establishment of a data-driven model with superior computational efficiency and ex-

perimental performance. Thus, feature engineering is essential when accessing large da-

tabases, which can tackle the need to access “Big Data” in the scale of ten thousand of data 

to build representative and descriptive models with transfer learning functionality [12], 

while the common case is to adopt transparent and abstract descriptors to ensure results 

accuracy. 

Thus, text mining can overcome this shortcoming and increase visibility of new 

knowledge by the development of a systematic review process of tens of thousands full-

text manuscripts and reduce the number of articles that should be manually reviewed by 

the scientists. For instance, it is feasible to automate the extraction of useful data from the 

published literature about polymer (natural/synthetic), organic/inorganic, carbon based, 

ceramic, metallic, and semi-metallic/semi-conducting nanomaterials at once in order to be 

used for meta-analysis, as shown by Li et al. Amongst the most popular methods for text 

mining are text clustering and classification, information extraction, and association rule 

mining. Thus, data mining can be a frontier in fields, such as the medical application of 

nanomaterials, in order to reduce their toxicity by design and effectively control their 

physical and chemical properties to the benefit of society [139]. 

Using mining to obtain data from published studies can provide new insights for the 

toxicity of nanomaterials that were not targeted in original publications and correlate 

some key attributes amongst the reported parameters with the toxicity endpoints. Meta-

analysis using machine learning can reveal a data-driven trend also in cases that studies 

demonstrate conflict regarding the outcomes and resolve them by using the evidence by 

a structured summary of the studies, and even provide additional insights where the out-

comes were inconclusive. For instance, in the mining of 17 publications about CNTs and 

their effect on pulmonary toxicity, 136 types of structures indicated that aggregate size, 

diameter, length, and metallic impurities are the most important descriptors. In another 

case regarding quantum dots, it was shown that toxicity was connected beyond the struc-

tural factors also to exposure indicators and cell lines such as exposure time, assay type, 

diameter, surface modification, shell and ligand [122]. 

For text meta-analysis and automated labelling of research datasets Naïve Bayes and 

k-means algorithm has been used. A demonstration of research highlights that trend pre-

diction has been realized amongst 350,000 scientific articles published in 22 journals in the 

period of 2000–2017, showing that polymer nanomaterials are the most researched 

nanostructures, but the interest has been decreasing in recent years, and now the focus is 
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on metal and carbon-based nanomaterials, which is predicted to be studied comprehen-

sively in regards to biomedical effects in the next years [139]. In this direction, machine 

learning showcases the combination of text mining and computer vision as a promising 

strategy in order to mine hundreds of thousands of data reported in literature to link im-

mune response to the nanomaterials and reveal the underlying mechanism of cell interac-

tion [37]. 

Text mining has been realized also for the design of nanocarriers, by extracting 652 

data for protein corona formation on various nanomaterials, including 21 qualitative and 

quantitative factors, amongst them structural, physicochemical, and experimental de-

scriptors. The types of nanomaterials varied, and more specifically liposomal, non-metal-

lic, metallic, and carbon-based nanomaterials were studied, including surface functional-

ized or surface charged, and pristine for modelling their interaction with 178 types of se-

lected proteins and 73 corona components. The establishment of a precise model was quite 

challenging based on the diversity of the toxicity effects based on only limited factors con-

sidering the numerous variables that determine the nanomaterials behavior and cell re-

sponse upon exposure. The sensitivity analysis showed that nine independent descriptors 

were important to the resulting toxicity profile, namely centrifugation speed, time, and 

temperature, incubation time, nanomaterial and plasma concentration, zeta potential, in-

cubation plasma source size, and surface modification. Prediction accuracy for a random 

forest model reached a R2 metric higher than 0.8 regarding the prediction cell recognition 

of nanomaterials in both fetal bovine and human serum, and it was considered as a prom-

ising method to provide a platform for the design of nanocarriers with known biological 

responses and corona fingerprints [140]. 

In another study, knowledge discovery in the field of nanomaterials informatics was 

implemented with data mining algorithms to extract information for vapor-grown carbon 

nanofibers reinforced vinyl ester nanocomposites, and more specifically about the visco-

elastic properties, which are described by materials properties of tan delta, storage mod-

ulus, and loss modulus. The input parameters contained the testing temperature, carbon 

nanofibers type, weight fraction, mixing method, and dispersing agent. SOMs showed 

that temperature was the most important descriptor, while the second most important 

was weight fraction [138]. It was shown that storage moduli drops with temperature in-

crease, while beyond the glass transition temperature the effect was magnified by a de-

crease of several orders of magnitude [138]. 

Databases can be used also for knowledge discovery and support the systematic in-

vestigation of structure–property relations, since they provide a structured architecture 

which can increase the potential impact of machine learning. Two amongst the larger da-

tabases that have been open to public for years and used for mining, PubChem and 

SMILES, have made an impact on science by collecting data about chemicals and proteins. 

PubChem database provides multiple properties, such as structural, physicochemical, 

and bioactivities, including annotation, such as SMILES and chemical structures amongst 

them, which have already contributed to cheminformatics, medicinal chemistry, and drug 

discovery. The Protein Data Bank includes 3D structures of biomolecules, which have 

been actively involved in biology experimental and in silico research [8]. Another publicly 

available database, PubVINAS, contains annotated nanomaterials information suitable for 

modelling applications and to support rational nanomaterials design (http://www.pubvi-

nas.com/, accessed on 31 July 2022). The database contains 705 unique nanomaterials, in-

cluding GNPs, metal oxides nanoparticles, CNTs, DNA origami nanoparticles, and cyclic 

peptide nanotubes, including their structural descriptors, 1365 physicochemical and 2386 

bioactivity features in PDB format. Yan et al. used these descriptors to develop prop-

erty/bioactivity models with k-nearest neighbors and deep learning to predict three key 

factors determining the bioactivity profile, namely the cellular uptake, zeta potentials, and 

hydrophobicity of new nanomaterials from nanostructures [5]. 

Beyond PubVINAS, there are also other six databases (caNanoLab, eNanoMapper, 

NR, NKB, NBIK and NIL) for nanomaterials, containing structural characterization data. 
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A common descriptor in all databases is the aspect ratio and shape, while except for the 

NIL database, the size (and distribution) and coating/shell information is available in all 

databases. Moreover, surface area information is available in some of them, while func-

tional group descriptors are available only at NBIK, to support the understanding that the 

physicochemical properties are scattered amongst these seven databases. In addition, 

these databases contain biological properties derived from 23 common types of biological 

characterizations, experiments, and protocols for the nanomaterials contained, with em-

phasis on caNanoLab, eNanoMapper, and PubVINAS, which also contain risk assessment 

and safety evaluation of nanomaterials and derived products. Moreover, one considera-

tion is regarding the functionality of the seven databases, what is missing is filtering func-

tionality for NIL database, and searching functionality for PubVINAS, while another con-

sideration is about the size of nanomaterials databases considering the amount of data 

generated in nanotechnology field. Annotation of nanomaterials may enhance the efforts 

for data collection and structuring in the future, while large nanomaterials databases are 

needed, such as PubChem, PDB, or EADB for instance, to facilitate rational nanomaterial 

design and the establishment of data-driven structure–activity relationships, and support 

industrial uptake and commercialization of nanomaterials, and safety, ethics, and regula-

tion-compliance as well [55]. 

More databases have been established as well, to enable researchers to access real-

world data for the analysis of 2D nanomaterials. Some indicative open-source databases, 

are the Harvard Clean Energy Project, the Open Quantum Materials Database and the 

Materials Project, ChemSpider, NanoHUB, Springer Materials, etc. For instance, mining 

of data from Materials Project Database led to development of models for the classification 

of 2D materials based on lattice constants as a descriptor with an accuracy of almost 89% 

amongst many 2D materials. In another case the International Crystallographic Structural 

Database was used for the selection of 2D materials based on covalent radii, structural 

gaps, packing ratio, and symmetry, as well as for the discovery of 92 new 2D structures, 

and the detection of monolayered 2D structures, which are stable using a topology-scaling 

algorithm [18]. 

What is the next step? An interesting strategy to enable visibility and maximize the 

impact of a database is the deployment of online application integrated with the databases 

and AI (as depicted in Figure 5), thus transforming databases to digital experience plat-

forms and open innovation ecosystems. A paradigm is the dendPoint user-friendly appli-

cation (http://biosig.unimelb.edu.au/dendpoint, accessed on 31st July 2022), which is a 

widely available in silico model, which utilized the physicochemical and scaffold struc-

ture properties of complex polymeric nanomaterials to predict intravenous pharmacoki-

netics. In that case, Kaminskas et al. manually curated a database including dendrimer 

biopharmaceutical behavior, and structural and chemical features of polymeric nano-

materials as well. This web application enables both the prediction and comparison of 

dendrimer key properties, such as dose and clearance in liver and urine, volume of distri-

bution, and half-life, to facilitate the rapid exploration of literature derived properties, and 

to enable the visualization of dendrimer pharmacokinetic properties. This relational data-

base and predictive method binding could be the catalyst for guiding the design and de-

velopment of such structures by enhancing the scientific community efforts towards a 

systematic analysis of structure and the subsequent biological endpoints. The constant 

updating of such infrastructures is essential to reinforce research efforts to go beyond the 

SoA, while it can provide multiple functionalities when data become available and cu-

rated. In this case, a possible exposure scenario is that dendrimers may be delivered via 

non-intravenous routes, i.e., inhalation, which requires additional information concerning 

the physicochemical properties to accurately model the pharmacokinetic behavior, and 

successfully support progress in the field of nanomedicine [141]. 
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Figure 5. Database and knowledge discovery workflows to support innovation and circularity in 

Industry. 

In the future, such relational databases could be interactively enriched by the users, 

in such a manner that the user uploads and curates or the data are curated automatically 

by involving a proper protocol, with respect to the GDPR rules and user privacy. Moreo-

ver, the need for data standardization and proper documentation can maximize the po-

tential uptake of research data and accelerate the progress in multiple nanotechnology 

fields beyond the nanomedicine, considering that often the main barrier in AI concerns 

data quality, amount, and structuring in the databases. 

6. Prospects and Conclusions 

To summarize, AI and nanoinformatics have burst out in the recent decade in many 

fields of nanomaterials application, and is now moving to inverse design and modelling 

of multi-structure/multi-property relationships. AI has already been used to tackle chal-

lenges in the design and discovery of novel nanomaterials, to optimize structure and per-

formance by assisting process design and unbiased decision making, to ensure safer and 

eco-friendlier nanomaterials. With the aim to bridge the gap in fields of inconclusive re-

search structure–property–activity–toxicity and descriptive biotoxicity profiles have been 

established, assisted by knowledge discovery from mining of the published scientific 

works as well as curated databases. The applications vary and include biomedicine, smart 

integrated biosensors, environmental science, such as gas separation, energy management 

composite devices, (wearable) electronics, automotive and aerospace, catalysis, and struc-

tural applications amongst them. 

Furthermore, feature engineering was shown to be critical for the improvement of 

data-driven representation and has been a key strategy to reduce the bias and overfitting 

problem of the developed models. Sensitivity analysis enables to identify the descriptors 

that are strongly correlated, so that one can choose suitable descriptors in the design/en-

gineering phase of the experiments and reduce the workload in regard to computation 

resources needed to model the process and synthesis of safe, circular, and greener by-

design innovative nanomaterials [49]. A competitive benefit of deep learning models is 
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that it is not necessary for the scientist to manually perform feature engineering, since the 

algorithm demonstrates self-adjustment efficiency and the ability to select suitable fea-

tures independently in a continuous learning process. For example, when small datasets are 

available, linear regression model can find limited success since in the multi-dimensional 

field, known as “curse of dimensionality”, where the parameter relation is complex, and 

thus Bayesian/naïve Bayes methods can find success, due to their ability to readjust previ-

ously adjusted parameters. The decision tree and ensemble method are also other popular 

methods to handle small datasets, but still it has been shown that less sophisticated algo-

rithms can overcome the performance if there is access to higher amount of data. 

Additionally, evolutionary methods and data mining can be used standalone and 

bring innovation in multiple disciplines of nanotechnology and support the development 

of a new generation in nanomaterials high throughput synthesis, characterization, and 

data analysis. The role of evolutionary methods and data mining can be essential for the 

demanding online and real-time optimization tasks in a closed-loop laboratory and max-

imize the development time, reduce the resources needed by utilizing in silico modelling 

and inverse design procedures, and improve process adaptivity, production yield, and 

quality assurance of nanomaterials and their nanoreinforced composites. 

Another topic which may bring a revolution in science and the research of nano-

materials and their activity profile is the combination of simulation (DFT, MD, Monte 

Carlo, CFD, quantum-chemical simulations) with AI, and more specifically surrogate 

models and evolutionary algorithms. Along with the data-driven nanomaterial represen-

tations, mathematic, chemistry, biology, and physics models can be combined to ade-

quately model, e.g., complex long-range interatomic interactions, such as van der Waals, 

to predict reactivity or even the behavior profile by a bioactivity/biotoxicity end-point. 

The capacity of machine learning to perform rapid calculations can be vital to get the ben-

efits of simulation with increased computational efficiency, considering that simulation is 

quite demanding due to factors such as equilibration time, millions of iterations, and solv-

ing (series) of complex equations. Thus, the efficient combination of predictive modelling 

will contribute to the formation of general design rules and contribute to a hierarchical 

assessment of in silico designed nanomaterials. 

Another benefit by the development of machine learning and computer vision is to 

support nanocharacterization, considering the fact that in the new era of high-throughput 

and digital characterization the data amounts that are generated will no longer be able to 

be handled by the scientists. Thus, reliable algorithms that will preserve computing con-

sumption and interdependence of data should be developed. The dependable AI will not 

be limited by the algorithm performance, and apart from the limit by the characterization 

method resolution, it will be possible to model uncertainty, take the maximum out of the 

characterization data, and enable the statistic representation of material behaviors and 

properties, ensuring the objective judgment by machine intelligence to enrich and not re-

place the domain knowledge. These advancements are expected to support the improve-

ment and refinement of science in various fields, guide computations and experiments 

where there is an identified gap for science and/or industry, and trigger the advancement 

of nanotechnology and instrumentation as well. 

Practical applications of AI tools reported in this summary of the current SoA are 

listed below: 

• High-throughput research space exploration of nanomaterials options/candidates; 

• Image segmentation/object detection for statistical analysis of nanomaterials 

shape/size/agglomeration state/defects detection; 

• Objective and decentralized decision-making based on multi-dimensional datasets to 

improve generalizability and evidence-based conclusions (i.e., phase analysis, anom-

aly detection); 

• Design of experiments via genetic algorithms, PSO; 

• Fast calculation of input values for modelling, instead of using time-consuming sim-

ulation, especially where absolute accuracy is not limiting; 
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• Data mining of publicly available datasets to enrich the knowledge base and extrap-

olate predictive models with increased accuracy; 

• Use of ensemble algorithms to improve predictive capabilities when limited infor-

mation is accessible; 

• Establishment of models to correlate the chemical structure and physical, chemical, 

and physicochemical properties with the activity and (eco-)toxicity profile of nano-

materials, utilizing known activity profiles of well-studied materials. 

Currently, the emerging need for standardization of the produced data, including 

annotation, management, high content screening, and handling, has been highlighted by 

the scientific community. Especially, the individual features of the generated datasets, in-

cluding possible small amount of data, sparsity, variability, class imbalance, bias, missing, 

or descriptors variance amongst datasets. Thus, protocols for the interoperability, collec-

tion, and curation of data are required in order to be stored in databases and to be useable 

to address the community needs. Moreover, standards regarding the assessment of data 

quality and relative paucity can fill the gap for handling non-curated data, which will 

enable meaningful data-driven representations with AI. 

Another need for machine learning is to ensure the reproducibility of the predictive 

modelling process, considering that the barrier in previous simulation activities was about 

the lack of proper repeatability even when simulations were performed within the same 

research group. Thus, machine learning requires the dissemination of examples and shar-

ing of representative data to support the proper documentation of the decisions made for 

the development of an algorithm and to reinforce research efforts to enable the domain 

knowledge validation by ensuring that different studies will not raise more questions than 

the topics/challenges answered. 

What is more, the main bottleneck nowadays has been the access to large amounts of 

data, which need to be curated and structured in order to allow AI to mature in the forth-

coming years and transform the available data to domain knowledge. Overcoming these 

barriers will allow to adapt a process both experimentally and in silico to discover and 

produce nanomaterials and address the needs of each application. Again, in the latter case 

the “curse of dimensionality” is a big challenge for the data science community. 

Future progress in nanoinformatics will ensure that diverse scientific and socioeco-

nomic information is integrated to identify on time the trends and needs for the society 

and maximize the commercialization benefits of technology. Governance over nano-

materials data can drive their commercialization in an efficient manner by identifying reg-

ulation and policy gaps on time and thus increasing the societal confidence and ac-

ceptance for the adoption and use of rational nanotechnology in every-day life applica-

tions. Finally, another need concerns data security, which can be the case in databases and 

with the online deployment of web applications, since the future is oriented in cloud com-

puting and interconnection with databases. A lot of promise for data security is held by 

blockchain technology, which can provide complete supervision, as in the case of decen-

tralized cryptocurrency projects. 
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