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Abstract: Eigenfrequencies of a nanobeam with a point mass interacting with a heavy fluid are
calculated using Bernoulli-Euler kinematics and consistent nonlocal elasticity model. The proposed
approach is applicable to a variety of nanotechnology materials and structures, especially mass
nanosensors. Eigenfrequencies are compared with those of local theory and conclusions are drawn.
Influence of nonlocal effects, heavy fluid interaction and added point mass on dynamic responses is
analyzed and the results are documented. Size phenomena are noted and discussed.
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1. Introduction

Innovative materials, as carbon nanotubes (CNT) are used in nanosensors, nanoac-
tuators and complex Nano-Electro-Mechanical Systems (NEMS) [1]. A nanofluid is a
fluid containing nanometer sized particles, called nanoparticles. From the motion of
nanoparticles with the fluid it is possible to define fluid flow in small volumes. Common
methodology for microscale fluid flow measurement is cantilever deflection [2,3]. Some
nanosensors operate by exploiting eigenfrequencies. For instance, the nanosensor in [4]
detects the change in nanotube vibration frequency when a single particle is attached to
the carbon nanotube end. The discrepancy between the two frequencies of the nanotubes,
with or without the particle attached, is used to measure the mass of the attached particle.
Also, as demonstrated in [5–8], atomic force microscope (AFM) cantilevers often operate in
a heavy fluid. This requires calculation of eigenfrequencies of such nanobeam immersed
in a heavy fluid. Consequently, fluid-nanostructure interaction modelling, which is the
subject of this article, may be of practical interest.

Nowadays, assessment of scale phenomena in nanostructures is effectively achieved
using nonlocal and gradient-based continuum formulations of elasticity theory.

Eringen’s nonlocal continuum mechanics differs from classical (local) mechanics in
that the stress at a point is defined by the elastic strain at the neighboring points, not just
the point under consideration. Specifically, in Eringen’s strain-driven theory, the stress field
is convolution integral of the elastic strain field with a suitable averaging kernel [9].

Strain-driven nonlocal theory is however not applicable to bounded nanostructures
due to conflicts between constitutive and equilibrium requirements [10,11]. These difficul-
ties have been partially bypassed by resorting to a Two-Phase local/nonlocal strain-driven
Model (StrainTPM) adopted in [12], and can be circumvented by resorting to the Purely
nonlocal Stress-Driven integral Model (PurelySDM) presented in [13].

The PurelySDM strategy is a special form of Nonlocal Stress Gradient (NStressG)
elasticity where gradient length and mixture parameters are zero [14,15] and the theory
involves the use of appropriate constitutive boundary conditions. The theory is an example
of nonlocal approach that leads to well-posed structural problems in Nano-Mechanics.
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In this article, existing results [16] for eigenfrequencies of nanobeams calculated by the
PurelySDM nonlocal model are extended to include the influence of a surrounding heavy
fluid. Nanobeams are modeled by Bernoulli-Euler theory (BE) [17,18] and all results are
compared with classical (local) theory (with and without tip point mass and surrounding
heavy fluid-water) [19]. Note that the heavy fluid assumption excludes nanoscale effects
on the fluid flow, what requires a significant extension of the presented theory.

2. Equilibrium Equations and Boundary Conditions

The kinematics of the plane model of nanobeam vibrations used in this article with
a tip point mass immersed in a heavy fluid (water) (Figure 1) is based on BE kinematic
assumptions, since the beam is slender. It is also assumed that the beam is initially straight.
This is a standard approach in the macroscopic theory of vibrations, where the initial slight
curvature of the nanobeam introduced by gravity or fluid pressure is neglected. Further,
the influence of the shape and the volume of the tip mass on the surface elasticity of the
nanobeam was not considered. This effect could be important for large volumes of the
attached nanoparticles. However, their influence on the vibrations is directly included as a
point mass with appropriate inertias.
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For a nanobeam, defined by the BE theory, the displacement field is expressed by:

v = −xu(1)(y, t),

u = u(y, t)
(1)

where v(x,y,t) is the displacement in the y-direction of a point on the cross-section, u(x,t) is
the displacement of a point on the centerline (x = 0) in the x-direction, and t is time. The
superscript term in parentheses defines the order of the partial derivative with respect to
the coordinate y.

The axial strain is defined as follows:

εy = −xu(2), (2)

and the curvature as:
χ(y) = u(2)(y). (3)

The equilibrium equation can be defined by the extended Hamilton principle [17]:∫ t2

t1

(
δuT − δuV + δWnc

)
dt = 0, δu = δu(y, t) = 0|t=t1,t2

, 0 ≤ y ≤ L, (4)

where δT is the variation of the kinetic energy, δV is the potential energy of the internal
forces, δWnc is the virtual work of the nonconservative forces and L is the beam length. For
the problem described, the extended Hamilton’s principle has this form∫ t2

t1

(∫ L

0

(
−m

..
u + f (y, t)−M(2)

)
δudy− Mδu(1)

∣∣∣L
0
− J0

..
u(1)

δu(1)
∣∣∣
L
+ M(1)δ u|L0 − m0

..
uδu

∣∣
L

)
dt = 0, (5)
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where m represents the specific mass with respect to the unit length of the beam, two dots
represents the second derivative with respect to time, f is the external nonconservative
fluid force parallel to the x-axis direction, m0 is the mass and J0 is the mass moment of
inertia of the tip mass at the free end of the beam, and the moment M is the moment of
internal forces:

M(y, t) = −
∫

A
σyxdA, (6)

where σy is the axial stress and A is area of the cross-section.
Accounting for arbitrariness of the virtual transverse displacement δu in the first term

of Equation (5) gives the governing equation:

M(2) − f (y, t) + m
..
u = 0. (7)

Taking in arbitrariness of the virtual transverse displacement δu and the virtual rota-
tion δu(1) at the beam ends in Equation (5) provides the boundary conditions as:

M(1)(0)u(0) = 0, −M(0)u(1)(0) = 0,(
M(1)(L)−m0

..
u(L)

)
u(L) = 0, −

(
M(L) + J0

..
u(1)

(L)
)

u(1)(L) = 0.
(8)

The chosen heavy fluid in this analysis is water. Small-amplitude sound waves
propagate through water with speed of sound c = 1439 m/s [19], indicating that water is
considered a compressible fluid since the speed of sound is less than infinity. In addition,
the flow is assumed irrotational [20] and the fluid is considered non-viscous, which allows
calculation without influence of damping.

Assuming small excitations, the linearized equations describing the specific dynamic
pressures p(x,y,t) in the heavy fluid are defined as follows:

∂2 p
∂x2 +

∂2 p
∂y2 =

1
c2

∂2 p
∂t2 , 0 ≤ x ≤ ∞, 0 ≤ y ≤ H = L (9)

where H is the depth of water which is equal to the length of the beam L in this analysis.
The following boundary conditions are used (Figure 1):
-impermeable and rigid bottom of the fluid:

y = 0 → ∂p
∂y

= 0, (10)

-undisturbed condition at infinite x coordinate:
x = ∞ → p = 0, (11)

-zero dynamic pressure at the top of the fluid:

y = L = H → p = 0, (12)

The boundary condition with inclusion of linear free surface waves is defined in
Section 2.1.

The interaction between beam and heavy fluid (water) is simplified by having the
fluid on one side of the beam. However, the analytical method shown can also be used in
situations where the fluid surrounds the beam. In this case, the resultant force is calculated
for a ring of points with the same y-coordinate [21].

Calculation of interaction in between the beam and fluid is based on expression for
correlation of pressure p in heavy fluid and acceleration of the beam:

x = 0, 0 ≤ y ≤ H = L → ∂p
∂x

= −ρ f
∂2u
∂t2 , (13)

where ρ f is the fluid density.
The specific pressure p describes the action of an external force per unit length of

the beam and is therefore equal to the specific force f. The final differential equilibrium
equation for the beam immersed in the fluid is thus:

M(2) + m
..
u = −p(0, y, t). (14)
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2.1. Separation of Variables Method

The solution for beam vibrations is assumed, according to the separation of variables
method [17], in the form:

u(y, t) = U(y)T(t), (15)

where U(y) is the shape of the beam and the function T(t) is the solution of the equation

T′′ + Ω̂
2
T = 0, (16)

i.e.,
T(t) = aeiΩ̂t + be−iΩ̂t, (17)

where a and b are constants, and Ω̂ is the eigenfrequency.

In the case where Ω̂
2
< 0, Ω̂ = iΩ, the exponential solution (17) for T(t) do not

represent a natural vibration solution, so only the case Ω̂
2 ≥ 0 should be analyzed.

Also using the method of separation of variables, the pressure field in a heavy fluid
can be defined as follows:

p(x, y, t) = P(x, y)T(t) = X(x)Y(y)T(t), (18)

where the product of the functions X(x) and Y(y) defines the shape of the pressure field
P(x,y).

The function X(x) is the solution of a differential equation

X′′ + α̂2X = 0, (19)

and for exponentially declining wave amplitude through x domain has the form:

X(x) = eiα̂x, or X(x) = e−αx, (20)

where α̂ is the fluid imaginary wave number, α̂ = iα, in the x-direction [20]. So, for the
boundary condition (11), the solution can be easily confirmed, 0 = 1/(α∞). It should also
be noted, that the boundary condition (11) is satisfied for any real value of α and that there

are no nontrivial solutions when Ω̂
2
= 0.

The function Y(y) is the solution of a differential equation:

Y′′ + κ̂2Y = 0, (21)
and has the form

Y = Dcos(κ̂y) + Esin(κ̂y). (22)

When the linear free surface condition is not considered, boundary conditions (10)
and (12) are used and the solution of Equation (21), i.e., the expression whose zero points
define the wave numbers κ̂ for the y-direction of the fluid domain, is:

cos(κ̂H) = 0, (23)

and its solution is

κ̂n =
(2n− 1)π

2H
, n = 1, 2, 3, . . . , (24)

where n is the ordinal number of a wave number κ̂.
If the linear free surface waves are considered, the following boundary condition is

used [20]:

y = L = H → Y′ − Ω̂
2

g
Y = 0, (25)

instead of the boundary condition (12), and the solution of Equation (21) is

Ω̂
2

g
+ κ̂ tan(κ̂H) = 0, (26)

where g is the acceleration of gravity. This expression doesn’t have an analytical solution so
the values of the wave number κ̂ must be solved numerically. From Expression (26), it can
be seen that in this case the wave numbers depend on the frequency Ω̂.
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Also, the correlation:

α2
n = κ̂2

n −
Ω̂

2

c2 > 0, (27)

must be fulfilled, because the waves in x- and y-direction produce a standing wave. Thus,
the exact value of the wave number α for any eigenfrequency Ω̂ and wave number κ̂ can be
defined by Equation (27) but the value of α must be real for real values of κ̂ and Ω̂.

The pressure field (18) is defined by the superposition of the pressure field mode shapes:

X(x)Y(y) = ∑∞
n=n1

Gne−αnxcos(κ̂ny), (28)

where n1 is the first ordinal number n of a wave number κ̂ for which condition (27) is
fulfilled, and Gn are real constants.

For a more general discussion of the proposed solutions, the following dimensionless
parameters are defined:

U =
U
L

, ξ =
y
L

, κn = κ̂nL, γ =
ρ f L
ρsF

and c =
c

ΩbL
, (29)

where U, ξ and κn are dimensionless beam mode shape functions, the y-coordinate and the
wave number in the y-direction, respectively; γ is the mass ratio of water to beam, c is the
dimensionless speed of sound in the fluid, F is the beam thickness, and Ωb is the frequency
parameter for the dry beam:

Ωb =

(
EIz

ρsFWL4

)1/2
, (30)

where E is the modulus of elasticity of the material of beam, ρs is the density of the beam,
W is the beam width, and Iz is the second moment of the cross-sectional area:

Iz =
∫

A
x2dA, (31)

The frequency parameter for a beam immersed in a fluid is:

ω
Ω̂

Ωb
, (32)

so the dimensionless wave number for x-direction can be calculated using the expression

α2
n = κ2

n −
ω2

c2 . (33)

The dimensionless equilibrium equation for the beam is now of the form:

U(4)
(ξ)−ω2U(ξ) = −

∞

∑
n=n1

Gne−αn0︸ ︷︷ ︸
An

cos(κnξ), (34)

and includes the field of pressures near the beam (ξ = 0).

2.2. Application of Nonlocal PurelySDM Theory

Since the eigenfrequencies of a beam with nanodimensions are to be calculated, a
nonlocal model should be used. In this paper, the nonlocal PurelySDM model is used
because it leads to a well-posed structural problem in nanomechanics.

In the present formulation, the integral convolution law of the elastic field is adopted
using the stress-driven nonlocal model [13]:

εy(x, y) =
∫ L

0
Ξλ(y− ψ)E−1σy(ψ, y)dψ, (35)

where Ξλ is the special convolution kernel

Ξλ(y) =
1

2Lc
exp

(
−|y|

Lc

)
, (36)

Lc is the characteristic nanobeam length defined by the expression.

Lc = λL, (37)
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where λ is the dimensionless nonlocal parameter (λ > 0).
The integral law by the purely nonlocal stress-driven model [14] is equivalent to the

differential problem:
σy = −L2

c ε
(2)
y E + εyE, (38)

augmented with a set of constitutive boundary conditions that will be introduced later.
The moment of the internal forces can be defined with the curvature from Equations (2),

(4) and (38):
M(x, t) = −L2

c EIzχ(2) + EIzχ, (39)

Also, Equation (39) can be reformulated as

χ− L2
c χ2 = CM, (40)

where C = 1/K represents the local elastic compliance which is the inverse of the elastic
stiffness:

K =
∫

A
Ex2dA = EIz. (41)

The substitution of the integral convolution law, Equation (35), by the gradient coun-
terpart, Equation (38), is possible only if the constitutive boundary conditions are en-
forced [11,13,14]:

χ(1)(0, t)− 1
Lc

χ(0, t) = 0,

χ(1)(L, t) + 1
Lc

χ(L, t) = 0.
(42)

After inclusion of the expression (3) into (40):

u(2) − L2
c u(4) = CM, (43)

and the second derivative with respect to the dimensionless axial beam coordinate ξ, the
equation has the form:

u(4) − L2
c u(6) = CM(2), (44)

After substituting Equation (44) into Equation (14), using the dimensionless parame-
ters and some rearrangements, the equilibrium equation for the nanobeam in heavy fluid
is thus:

λ2U(6) −U(4)
+ ω2U = ∑∞

n=n1
Ancos(κnξ)︸ ︷︷ ︸

X(0)Y(ξ)

. (45)

For the homogeneous part of Equation (45):

λ2U(6) −U(4)
+ ω2U = 0, (46)

an exponential form of the solution is assumed

U(ξ) = a eβξ︸︷︷︸
φ

, (47)

which gives the characteristic equation:

λ2β6 − β4 + ω2 = 0. (48)

After introducing the parameter β2 = δ + 1
3λ2 , with the aim to solve the equation with

the use of the Cardano formula [22], the new form of the equation is:

δ3 +

(
− 1

3λ4

)
︸ ︷︷ ︸

d

δ +
27λ4ω2 − 2

27λ6︸ ︷︷ ︸
f

= 0, (49)

and final expressions for six roots β j j of Equation (49) are:

β1 =
√

δ1 +
1

3λ2 , β2 = −
√

δ1 +
1

3λ2 , δ1 = S + T,

β3 =
√

δ2 +
1

3λ2 , β4 = −
√

δ2 +
1

3λ2 , δ2 = − 1
2 (S + T) + 1

2 i
√

3(S− T)

β5 =
√

δ3 +
1

3λ2 , β6 = −
√

δ3 +
1

3λ2 , δ3 = − 1
2 (S + T)− 1

2 i
√

3(S− T),

(50)

where the unknown coefficients S and T are defined as:
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S =
3

√
− f

2
+
√

D , T =
3

√
− f

2
−
√

D, (51)

and the discriminant D as:

D =
f 2

4
+

d3

27
. (52)

The final solution of the Equation (46) has the form:

U(ξ) = ∑6
j=1 aj eβ jξ︸︷︷︸

φj

. (53)

The next step is to define a particular solution of Equation (45). Note that the right-
hand side of Equation (45) contains the sum of similar elements, indicating that the particu-
lar solution also contains a sum of similar elements. So the first step is to find the particular
solution for the equation with one such element:

λ2U(6) −U(4)
+ ω2U = A1cos(κ1ξ), (54)

and with the use of method of undetermined coefficients the solution is assumed in
the form:

U = Bcos(κ1ξ) + Csin(κ1ξ), (55)

and the solution is:
Upart =

A1

−λ2κ6
1 − κ4

1 + ω2 cos(κ1ξ). (56)

So, the general solution of Equation (45) has this form:

U(ξ) = Uhom + Upart =
6

∑
j=1

ajφj + ∑∞
n=n1

An

ω2 − λ2κ6
n − κ4

n
cos(κnξ). (57)

The coefficients An in the particular solution are determined from the fluid-structure
interaction condition (13), which, using the definition of fluid pressures (28) and beam
displacements (15), has the following form:

X′(x)Y(y) = ∑∞
n=n1

Gn(−αn)e−αnxcos(κ̂ny) = −ρ f u Ω̂
2
(−1)︸ ︷︷ ︸
..
u

. (58)

After the use of dimensionless variables, the dimensionless expression for the beam-
fluid interaction follows:

U(ξ) = −∑∞
n=n1

αn

γω2 Ancos(κnξ). (59)

Equalization of the solution of the equilibrium differential Equation (57) with the
equation of the interaction (59) gives:

U(ξ) = ∑6
j=1 ajφj +

∞

∑
n=n1

(
An

ω2 − λ2κ6
n − κ4

n

)
︸ ︷︷ ︸

Bn

cos(κnξ) = −∑∞
n=n1

αn An

γω2 cos(κnξ), (60)

and the new equation is multiplied by cos(κiξ) and integrated with respect to the beam
length

∫ 1
0 dξ so that the orthogonality of the function Z can be used:

∑6
j=1 Dj

∫ 1

0
cos(κiξ)φj(ξ)dξ︸ ︷︷ ︸

Inj

+ ∑nk
n=1 An

(
1

ω2 − λ2κ6
1 − κ4

1
+

αn

γω2

)∫ 1

0
cos(κiξ)cos(κnξ)dξ︸ ︷︷ ︸∫ 1

0 Zi(ξ)Zn(ξ)dξ=In

= 0. (61)

The solutions for the integral of orthogonal functions are:∫ 1

0
Zi(ξ)Zn(ξ)dξ =

{
0, . . . n = i

1
2 + sin(2κn1)

4κn
, . . . n > i, i = 1, 2, 3 . . .

}
. (62)

In expression (61) nk is the number of used pressure field mode shapes. With the
growth of nk the solution converges.
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In the case where the linear free surface waves are not considered, the wave number (24)
using dimensionless variables (29) is defined as:

κn =
(2n− 1)π

2
= nπ − π

2
, n = 1, 2, 3 . . . , (63)

so final expressions are:

∫ 1

0
Zn(ξ)Zi(ξ)dξ =


0, . . . n = i

1
2 +

sin(π(2n− 1))
2π(2n− 1)︸ ︷︷ ︸

0

, . . . n > i, i = 1, 2, 3 . . .

, (64)

or if n=i (n=i=1) the integral has the solution:∫ 1

0
cos(κ1ξ)cos(κ1ξ)dξ = 0, (65)

while if i=1 and n>1 the integral has the solution:∫ 1

0
cos(κ1ξ)cos(κnξ)dξ =

1
2
= In. (66)

However, if the linear free surface waves are considered, In has to be calculated for all
κn using Equation (62).

The final expression for the coefficients An follows:

An =
2

1
λ2κ6

n+κ4
n−ω2 − αn

γω2︸ ︷︷ ︸
En

∑6
j=1 aj

∫ 1

0
cos(κnξ)φj(ξ)dξ︸ ︷︷ ︸

Inj

, (67)

In the particular solution (56) a new coefficient Bn, and later on Ẽn, is used:

Bn =
An

−λ2κ6
1 − κ4

1 + ω2 =
−2

1− αn(λ2κ6
n+κ4

n−ω2)
γω2︸ ︷︷ ︸

Ẽn

∑6
j=1 aj Inj, (68)

The final general solution of the differential equilibrium Equation (54) has the form:

U(ξ) = ∑6
j=1 ajφj + ∑∞

n=n1
Bncos(κnξ). (69)

The classical boundary conditions for a cantilever nanobeam with a tip point mass
from (8) are:

U(0) = 0, (70)

U(3)
(1) +

m0

ρsFL︸ ︷︷ ︸
rm

ω2U(1)− λ2U(5)
(1) = 0, (71)

U′(0) = 0, (72)

U(2)
(1)− λ2U(4)

(1) = 0, (73)

where rm is the dimensionless ratio of the concentrated mass to the mass of the beam.
Constitutive boundary conditions for the nonlocal PurelySDM method [14] are:

U(3)
(0)− U(2)

(0)
λ

= 0, (74)

−U(3)
(1)− U(2)

(1)
λ

= 0, (75)

Expression (71) contains the boundary condition for a point mass at a free beam end,
while rotational inertia effects are neglected.
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2.3. Definition of the Eigenfrequencies of the Beam-Fluid System

The system of equations with classical and constitutive boundary conditions (70)–
(75) applied to the general solution of the differential equilibrium Equation (69) gives six
homogeneous algebraic equations with six unknowns Ci and unknown eigenfrequency ω.
These algebraic equations can be rewritten in the matrix form as the product of a quadratic
matrix of linearly independent equation solutions, A(ω), and the vector of constants Ci, p:

A(ω)p = 0. (76)
If the determinant of an n × n homogeneous system of equations is zero, then the

system has an infinite number of solutions (in this case eigenfrequencies ω). Thus, the
values of the eigenfrequencies ω are defined as zero points of the determinant of the
matrix A(ω).

3. Examples
3.1. Convergence and the Influence of Nonlocal Parameter

At the beginning of the numerical analysis it is necessary to define the number of
pressure field mode shapes (nk) needed for the convergence of the results. The first part
of this example deals with this issue. The beam length is L = 100 nm, the thickness
F = 3.85 nm, the mass density ρs = 2600 kg/m3 and density of fluid is ρ f = 1000 kg/m3

(water), so dimensionless parameter mass ratio of water to beam is γ = 10. Width of the
beam is W = 10 nm and modulus of elasticity is E = 160 GPa. The linear free surface
waves are not considered, i.e., p(x,y = H,t) = 0. Water is compressible and the speed of
sound is c = 1439 m/s. The beam is completely immersed in water and there is no tip mass.
Solutions in this and other examples were obtained by the aid of Wolfram Mathematica
software. Possible numerical ill-conditioning didn’t appear [23].

From the diagram in Figure 2 and corresponding values in Table 1, it can be seen that
the results converge at nk = 4, so calculations will be performed with this value. Also,
it can be seen that frequency ω2 calculated with local theory, which is defined as the
eigenfrequency of water domain in the rigid beam case [19], do not change its value with
growth of nk. But, it can be also seen, that second frequency calculated with nonlocal
theory changes with growth of nk which points out that frequencies connected with fluid
are influenced by nonlocal theory. The reason for this new effect can be explained with the
expression for fluid standing wave (28, 34) where coefficient Gn is now a function of λ. If
the fluid standing wave changes then its eigenfrequency also changes.
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Table 1. Convergence of eigenfrequencies.

nk 1 2 3 4 5

local theory
ω1 2.3456 1.9889 1.9418 1.9247 1.9169
ω2 2.4674 2.4674 2.4674 2.4674 2.4674

nonlocal PurelySDM theory, λ = 0.1
ω1 2.4936 2.2502 2.1919 2.1712 2.1615
ω2 2.6732 2.4967 2.4977 2.4977 2.4977

The analysis of the influence of the dimensionless nonlocal parameter (0 ≤ λ ≤ 0.06)
on eigenfrequencies of defined beam with and without surrounding water follows. The
results are shown in Figure 3 and Table 2.
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Table 2. Influence of the dimensionless nonlocal parameter growth on the eigenfrequencies.

λ 0 0.01 0.02 0.03 0.04 0.05

nk = 0

ω1 3.5160 3.5515 3.5877 3.6246 3.6621 3.7002
ω1 [10] 3.516013 3.551528 3.587734 3.624609 3.662122 3.700236

ω2 22.0345 22.2764 22.5608 22.8868 23.2523 23.6552

nk = 4

ω1 1.9247 1.9482 1.972 1.9961 2.0206 2.0452
ω1 [13] 1 1.9047 - - - - -

ω2 2.4674 2.4677 2.4686 2.4701 2.4723 2.475
ω3 12.1148 12.2681 12.4436 12.6404 12.8574 13.0929

ω3 [13] 1 12.5670 - - - - -
ω4 22.2066 22.2313 22.305 22.4274 22.5977 22.8147

1 ω1 and ω2 are calculated from dimensionless frequency ω in ([13], Tables 1 and 2) which is correlated to ω with
expression ω = ω2.

From the given results, it is evident that the nonlocal PurelySDM method for the given
boundary conditions causes stiffening effects for nanobeams. The effect is observed for dry
beams as well as for beams immersed in water.
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3.2. The Influence of Tip Point Mass, Water and Nano-Scale Effects

In Example 3.2, the effect of tip point mass on the free end of the dry beam and the
beam immersed in water is analyzed using the local and nonlocal theory. The geometry
of the beam is the same as in Example 3.1. The only difference is in the value of the
dimensionless tip mass rm = 0, 1, 2 and 3. The number of used pressure field mode shapes
is nk = 4. The results are shown in Figure 4 and Table 3.
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Table 3. Influence of tip point mass, water and nano-scale effects (linear free surface waves
not considered).

rm 0 1 2 3

local theory, no fluid

ω1 3.5160 1.5573 1.1582 0.9628
ω2 22.0345 16.2501 15.8609 15.7198

PurelySDM, λ = 0.04, no fluid

ω1 3.6621 1.609 1.1957 0.9937
ω2 23.2523 17.1006 16.6962 16.5498

local theory; fluid, nk = 4

ω1 1.9247 1.2982 1.0404 0.8923
ω2 2.4674 2.4674 2.4674 2.4674
ω3 12.1148 7.8824 7.2903 7.0561
ω4 22.2066 22.2066 22.2066 22.2066

PurelySDM, λ = 0.04; fluid, nk = 4

ω1 2.0206 1.3491 1.0781 0.9235
ω2 2.4723 2.4723 2.4723 2.4723
ω3 12.8574 8.3265 7.7124 7.4708
ω4 22.5977 22.5977 22.5977 22.5977

After comparing the results, it can be seen that the eigenfrequencies decrease with
the growth of the tip mass for both the local and nonlocal theories. The difference is that
the results for the nonlocal PurelySDM theory are slightly higher because the nanobeam is
slightly stiffer. On the other hand, the reduction of the eigenfrequency with the growth of
the tip mass decreases when the beam is immersed in water. This effect can have a crucial
impact on the functionality of nanosensors.
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4. Conclusions

Modeling nanoscale effects on a nanobeam is necessary because such events occur
in experiments with different types of materials, boundary conditions and morphology
of nanostructured materials. In this article, the PurelySDM nonlocal model is used as a
nonlocal approach that leads to well-posed structural problems in nanomechanics.

The method was applied to the analysis of the dynamic behavior of the interaction
between a beam with a tip point mass and water, with the boundary conditions of zero
dynamic pressure at the water surface. The equations defining the system are solved using
the method of separation of variables. The equation for eigenfrequencies is derived and the
exact values are determined using numerical and analytical approaches.

The analyses in the Examples section lead to the following main conclusions:

1. an increase of the nonlocal parameter of PurelySDM method leads to an increase of
the eigenfrequencies for all tested boundary conditions of the system beam-water,
indicating a higher stiffness,

2. the increase in point mass leads to a decrease in eigenfrequencies of a nanobeam for
both local and nonlocal theory,

3. the calculated eigenfrequencies of the coupled system with the local and nonlocal
theory (corresponding to frequencies of the water domain) are equal for various tip
point masses, but growth of eigenfrequencies occurs with the growth of the nonlocal
parameter of PurelySDM method,

4. when the beam is immersed in water, the main effect of the tip point mass (decrease
of the eigenfrequency) is reduced for local and nonlocal theories. This effect can have
a crucial impact on functionality of nanosensors.
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Integral elasticity modeling and size-dependent eigenfrequencies assessment. Math. Meth. Appl. Sci. 2020, 1–18. [CrossRef]
16. Apuzzo, A.; Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Penna, R. Free vibrations of Bernoulli-Euler nano-beams by the

stress-driven nonlocal integral model. Compos. B Eng. 2017, 123, 105–111. [CrossRef]
17. Meirovitch, L. Fundamentals of Vibrations; McGraw Hill International Edition: New York, NY, USA, 2001.
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