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Abstract: In this work, nanoparticles of Co1−xRexFe2O4 and CoFe2−xRexO4 (0 ≤ x ≤ 0.05) were
synthesized by the sol-gel method. The Rietveld refinement analysis of XRD and Raman data
revealed that all of the prepared samples were single phase with a cubic spinel-type structure.
With the substitution of Re, the lattice parameters were slightly increased, and Raman spectra peak
positions corresponding to the movement of the tetrahedral sublattice shifted to a higher energy
position. Furthermore, Raman spectra showed the splitting of T2g mode into branches, indicating the
presence of different cations at crystallographic A- and B-sites. The SEM micrograph confirms that
surface Re exchange changes the coordination environment of metals and induces Fe-site structure
distortion, thereby revealing more active sites for reactions and indicating the bulk sample’s porous
and agglomerated morphology. The vibrating sample magnetometer (VSM) results demonstrated
that the synthesized nanoparticles of all samples were ferromagnetic across the entire temperature
range of 300–4 K. The estimated magnetic parameters, such as the saturation magnetization, remanent
magnetization, coercivity, blocking temperature (TB), and magnetic anisotropy, were found to reduce
for the Co-site doping with the increasing doping ratio of Re, while in the Fe site, they enhanced
with the increasing doping ratio. The ZFC-FC magnetization curve revealed the presence of spin-
glass-like behavior due to the strong dipole–dipole interactions in these ferrite nanoparticles over the
whole temperature range. Finally, the dielectric constant (εr

′) and dielectric loss (tanδ) were sharply
enhanced at low frequencies, while the AC conductivity increased at high frequencies. The sharp
increases at high temperatures are explained by enhancing the barrier for charge mobility at grain
boundaries, suggesting that samples were highly resistive. Interestingly, these parameters (εr

′, tanδ)
were found to be higher for the Fe-site doping with the increasing Re doping ratio compared with the
Co site.

Keywords: sol-gel method; cobalt ferrite; substitution; vibrational modes; magnetization;
dielectric properties

1. Introduction

Spinel ferrite has wide applications in electronic devices, environmental protection,
and biomedical technology [1–4]. In recent years, substituted spinel ferrite has attracted
considerable attention from numerous researchers thanks to remarkable properties such
as reliable saturation magnetization (Ms) [5], high anisotropy (K) [6,7], high coercivity
(Hc) [8], high Curie temperature (Tc) [9], thermal stability, magneto-optical properties,
catalytic, biocompatibility, high electrical resistivity [2,10,11], and so on. Spinel ferrite refers
to the Fd3m cubic spinel structure with a unit formula of AFe2O4, where A represents
divalent and Fe3+ represents trivalent metal elements. The unit cell of AFe2O4 consists
of 32 closely packed oxygen atoms with 64 divalent tetrahedral A-sites and 32 trivalent
octahedral B-sites. Only 8 of the available 64 A-sites are occupied by cations, and only
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16 of the 32 B-sites are occupied by cations. Furthermore, spinel ferrites have received
significant attention because of metal ion substitution and anion exchange phenomena
attributes to the enormous electronic and geometric structure, which usually leads to
charge separation, carrier migration, and variation in the energy bands. The metal ion-
dependent physical properties are mostly inspired by the synthesis approach and the cation
distribution between the tetrahedral and octahedral sites. Recently, it has been extensively
reported that the structural defect, particle size, shape, composition, and arrangement of
A2+ and Fe3+ cations can strongly affect the crystal structure and interactions between ions,
altering spinel ferrites’ magnetic, electrical, and optical properties [1,12–15]. Therefore,
controlled substitution and site preference (A-sites or trivalent octahedral B-sites) can
improve spinel ferrites’ properties [16,17].

Among spinel ferrite materials, cobalt ferrites (CoFe2O4) are used in various appli-
cations because of their good electrical insulation, high coercivity, and easy synthesis
method [18–20]. Mostly, these cobalt ferrite nanoparticles are often synthesized by different
techniques such as solid-state reaction [21], ultrasound irradiation [22], ball milling [19],
sol-gel auto combustion [23] methods, and so on. Among these techniques, the sol-gel
approach is the most appropriate for synthesizing nanoparticles with controlled sizes, high
homogeneity, and proper microstructure. There have been many previous efforts to study
these materials. Koseoglu et al. synthesized Mn-doped cobalt ferrite and discussed the
variation in magnetic properties and the potential application in magnetic sensing [24].
Muscas et al. substituted Co2+ with zinc and discovered an increasing coercivity behavior
as a result of anisotropy change [25]. Kavitha et al. used zirconium to replace cobalt ions,
reporting improved electrical conductivity, dielectric loss, and coercivity field [26]. The
search for new dopants improves the cobalt ferrite’s structure and physical properties.
Rhenium belongs to the 5d3 transition metal, which has been reported as a superior dopant
of some semiconductors and oxides to change the properties of the hosting materials.
Teli et al. discussed the potential spintronic and optoelectronic application of Rhenium-
doped alkaline earth oxides through density functional theory (DFT) calculation [27]. Very
recently, Assadi et al. predicted through theoretical calculation that ReFe2O4 occupies an
unconventional ferrimagnetic state with potential application in spintronics [28]. More-
over, Heidari et al. reported the superior thermal plasmonic characteristics of rhenium
nanoparticles and their potential application in tumor treatment [29]. In this work, we
synthesized rhenium (Re)-doped cobalt ferrite nanoparticles. We performed XRD, SEM,
Raman, M-H, ZFC-FC, and dielectric tests to investigate its influence on cobalt ferrite’s
structural, optical, and magnetic properties. We substituted Re atoms in different sites that
can alter the ferrite’s magnetic moment and crystal structure, resulting in changes in the
properties of the hosting material.

2. Experiment
2.1. Preparation of Co1−xRexFe2O4 and CoFe2−xRexO4 Nanoparticles

The nanoparticles of Co1−xRexFe2O4 and CoFe2−xRexO4 (0 ≤ x ≤ 0.05) were synthe-
sized by the sol-gel method. Both series of nanoparticles undergo the same procedure
with different stoichiometric ratios. During the synthesis, rhenium powder (metals ba-
sis, 99.99%, Aladdin, Shanghai), Co(NO3)2·6H2O (99%, damas-beta), and Fe(NO3)3·9H2O
(98%, damas-beta) were used as oxidizing agents. The ingredients were weighed in desired
stoichiometric proportions, and the metal nitrates were mixed and dissolved in 150 mL
of distilled water using a magnetic stirrer at room temperature. Rhenium was dissolved
in deionized (DI) water and placed in an ultrasonic bath at 40 ◦C for 30 min. The base
solution of metal nitrates and rhenium solution were mixed and stirred for 1 h at 30 ◦C.
Then, 50 mL 0.1 M HNO3 was added to the mixture and stirred for 30 min. Afterwards,
80 mmol ethylene glycol (EG, C2H6O2) was added to foster the formation of sol and pre-
vent agglomeration. The precursor’s mixture was heated to 80 ◦C and stirred steadily on
a hot plate until a puffy dark brown gel appeared. The gel was then transferred into a
dish for combustion and maintained at the same temperature. This study investigates the
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effects of Rhenium substitution for Co and Fe on the structural and physical properties of
inverse-spinel CoFe2O4.

The viscous gel began to froth until a dried gel was achieved. Finally, the dry gel was
calcinated at 800 ◦C for 3 h to obtain crystalline cobalt ferrite nanoparticles. The targeted
nanoparticle sample was obtained by grinding the bulk with a mortar and pestle for 40 min.
For further clarification, the synthesized process of the required rhenium-doped cobalt
ferrite is illustrated in Figure 1.
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2.2. Characterization Method

Phase identification and impurity detection were carried out with an X-ray diffraction
(XRD) method using an Aeris model (Aeris, Malvern Panalytical, Malvern, UK) with Cu kα
radiation with 2θ from 10◦ to 80◦. SEM (Regulus 8100, Hitachi, Tokyo, Japan) was used to
investigate the morphology of the samples. A vibrating sample magnetometer (PPMS-9T,
Quantum Design, San Diego, CA, USA) was used to obtain magnetic hysteresis loops and
ZFC-FC curves at room and low temperatures. Moreover, Raman spectra were measured
by confocal Raman microscope (LabRAM HR Evolution, Horiba, Kyoto, Japan). Dielectric
constant and dielectric loss were obtained by a broadband dielectric/impedance analyzer
(Concept 80, Novocontrol, Montabaur, Germany).

3. Results and Discussion
3.1. XRD Analysis

We performed the X-ray diffraction (XRD) tests of the sol-gel prepared samples to
investigate the phase purity and crystal structure of the acquired (Co1−xRexFe2O4 and
CoFe2−xRexO4) nanoparticles. All samples were tested in continuous mode from 10◦

to 80◦, indicating the successful formation of the single phase without any distortion.
Figure 2 shows the XRD spectra of the Co1−xRexFe2O4 and CoFe2−xRexO4 (x = 0, 0.02, 0.05)
prepared samples. After further refinement by the software Fullprof, all XRD peaks were
well-indexed. It can be seen that all samples have prominent peaks that correspond to
(111), (220), (311), (400), (422), and (440) planes, which all belong to the Fd3m cubic spinel
structure, indicating that Re does not change the structure of the hosting material and
maintains a pure single phase of cobalt ferrite nanoparticles. Furthermore, the experimental
XRD data were used with the software JANA 2006 to estimate the lattice parameters,
surface-to-volume ratio, and reliability factors. The average crystallite size was calculated
from the linewidth of (311) broadening of the XRD pattern with the Scherer formula [12]:

D =
0.9λ

βcosθ
(1)

where D shows the crystallite size in nm, θ represents the diffracted Braggs angle, β defines
the full width of half maximum of the diffraction peaks, and λ is the wavelength of Cu-Kα.
The lattice constant (a) is determined by the following equation:

1/d2 = (h 2 +k2 +l2)/a2 (2)

h, k, and l are Miller indices, and d is the interplanar spacing. The values of the lattice
constant (a = b = c(Å)) increased slightly with the doping ratio, indicating the strong
presence of Re ion in our samples. The refined structural parameters of pure and Re-doped
cobalt ferrite nanoparticles are presented in Table 1. Reliability factors such as goodness
of fitting (GOF), weighted profile R-factor (Rwp), and reliability factor (Rp) of Rietveld
refinement were also evaluated.

Table 1. Refined structural parameters of Re-doped nanoparticles. The grain size decreases with the
doping of rhenium.

Material CoFe2O4 Co0.98Re0.02Fe2O4 Co0.95Re0.05Fe2O4 CoFe1.98Re0.02O4 CoFe1.95Re0.05O4

S. G Fd3m Fd3m Fd3m Fd3m Fd3m
a = b = c (Å) 8.375 8.387 8.398 8.387 8.395

V (A)3 589.271 589.165 589.206 589.607 589.389
Rp 0.861 0.855 0.866 0.878 0.859

Rwp 1.188 1.177 1.187 1.178 1.129
GOF 1.025 1.014 1.027 1.018 0.975

Grain size (nm) 54.125 52.909 51.916 51.588 49.349
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Figure 2. XRD powder pattern of CoFe2O4, Co0.98Re0.02Fe2O4, Co0.95Re0.05Fe2O4, CoFe1.98Re0.02O4,
and CoFe1.95Re0.05O4 nanoparticles. All samples show a pure Fd3m cubic spinel structure. The
inserted figure shows the refined cell parameters’ variation with respect to the doping ratio; the cell
parameter increases with the increase in the rhenium doping ratio.

Firstly, the grain size decreases slightly with the increasing amount of doping, possibly
resulting from the strain effect of Co and Re ions. The structural strain prevents the growth
of crystallites by the substituting elements. With the small amount of doping, the doping
of Re induced a lattice shrinkage of the neighbor lattices, causing a reduction in the grain
size. Secondly, the Re4+ radius in the octahedral site is 0.63 Å, which is rather close to
the replaced Fe3+ radius (0.65 Å) and is not expected to be a substantial driver of the
structural transformation [28]. The inset of Figure 2 shows that the lattice constant increases
with the Re doping ratio on both Co and Fe sites. This increase may be due to carrier
hopping between the dopants and the hosting lattice, as the doping of Re4+ will change
the Fe ions from trivalent to divalent [28]. Many other heavy doping cobalt ferrites show
a similar lattice shrinkage in the literature. For example, Nongjai and Satheeshkumar
et al. synthesized indium- and silver-doped cobalt ferrite nanoparticles and reported an
expansion in lattice parameters due to the substitution of large radius ions [14].

3.2. SEM and EDS Analysis

The surface morphology information of the synthesized Co1−xRexFe2O4 and CoFe2−xRexO4
(0≤ x≤ 0.05) nanoparticles was inspected by scanning electron microscopy (SEM). The pure
and Re-doped cobalt ferrite SEM images were taken at a 5 µm scale, as shown in Figure 3a–e.
The SEM results indicate the formation of nanoparticles with an inhomogeneous spherical or
semi-spherical strain distribution. Nonuniform strain distribution can cause a variation in the
size and shape of the particles. The nanoparticles’ formation was composed of multi-particle
agglomerations, which can be seen clearly for the sample Co1−xRexFe2O4, which increases with
the content of Re in the Co site. In the literature, many previous works have reported the agglom-
erations. For example, Mritunjoy et al. observed similar agglomeration behavior when doping
the cobalt ferrite with Cu, asserting that Van der Waals force and dipole–dipole interaction mainly
contributed to this enhancement in the interparticle interactions [9]. Shakil et al. also reported the
agglomeration of Zn and Cd co-doped cobalt ferrite, proposing that the interactions of magnetic
moments between different lattice sites were likely to result in this agglomeration [30]. When
doping cobalt ferrite with Ti, the grain size increases with a higher doping ratio, which can be
attributed to the interactions between magnetic particles [31].
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Figure 3. SEM image of (a) CoFe2O4, (b) Co1.98Re0.02Fe2O4, and (c) Co1.95Re0.05Fe2O4; (d) EDS
mapping of Fe, O, Co, and Re elements for the Co1.98Re0.02Fe2O4 nanoparticle, showing a uniform
distribution of the elements. SEM image of (e) CoFe1.98Re0.02O4 and (f) CoFe1.95Re0.05O4 nanopar-
ticles. Agglomeration appeared for all doped samples. However, the agglomeration is severely
reduced for Fe-site doped samples (e,f).

Furthermore, it is noted that, with the increase in the Re doping ratio, the Co-site
doped sample particles agglomerate faster than the Fe-site doped samples, which may be
due to the dipole–dipole interactions between each grain. The agglomeration is severely
reduced by adding Re to the Fe site, as seen in Figure 3e,f. Two different morphologies can
be seen with Re Co-site and Re Fe-site doping, thus larger particles can be associated with
the existence of interparticle interactions.

Figure 4 compares the grain size of the Co1−xRexFe2O4 and CoFe2−xRexO4 samples
calculated from the XRD and SEM result. It can be seen that the particle size measured
from the SEM image is more than 10 times larger than the grain size calculated by XRD
spectra, further indicating an agglomeration behavior of the particles, which has also been
reported by other studies [32,33].
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3.3. Raman Analysis

Raman spectroscopy is a powerful technique to investigate the structure of nanoparticles,
especially for tracing the spinel’s structural evolution and cation distribution [34–36]. The
room temperature Raman spectra of (a) CoFe2O4, (c) Co0.98Re0.02Fe2O4, (d) Co0.95Re0.05Fe2O4,
(e) CoFe1.98Re0.02O4, and (f) CoFe1.95Re0.05O4 nanoparticles are presented in Figure 5a–f, and
the spectra were further deconvoluted into seven individual Lorentzian peaks.
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Figure 5. Room temperature Raman spectra and the fitting result of (a) CoFe2O4, (c) Co0.98Re0.02Fe2O4,
(d) Co0.95Re0.05Fe2O4, (e) CoFe1.98Re0.02O4, and (f) CoFe1.95Re0.05O4 nanoparticles excited by a 0.17 mW
532 nm laser. (b) Evolution of the fitting peak intensity and position with the Re doping ratio. The spectra
verify the inverse spinel phase, and the peak positions of the A1g (685 cm−1), T2g(2) (460 cm−1), and
Eg (300 cm−1) modes increase with Re doping, while the positions fluctuate for other modes, indicating a
different presence of cations.

According to the XRD analysis, Re-doped cobalt ferrite belongs to the cubic space
group Fd3m, which has five Raman active modes (A1g: 648–680 cm−1; Eg: 278–293 cm−1;
and 3T2g: 539–565, 449–471, and 163–177 cm−1), predicted from the group theory analy-
sis [37–39]. It is seen from Figure 5a that the pure cobalt ferrite sample shows five major
bands at ~195, 300, 462, 562, and 684 cm−1, which correspond to the five predicted Raman
active modes (A1g + Eg + 3T2g), confirming the formation of spinel phases. Besides, two
bands at ~621 cm−1 and ~356 cm−1 also appear as a result of the quantum size effect
and the inverse and mixed-type spinel ferrite reported in the literature [40–42]. The peak
intensity and position depend on the vibrational modes and the distribution of cations.
Specifically, A1g(2) and A1g(1) peaks at 621 and 685 cm−1, respectively, can be attributed to
the Fe3+-O and Re2+-O bonds at tetrahedral voids (AO4) [40,43]. The T2g(2) and T2g(1) at
460 and 567 cm−1, respectively, are attributed to the asymmetry bending motions of the
oxygen in Fe3+-O and Re2+-O bonds at tetrahedral voids, and T2g(3) at 195 cm−1 is derived
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from the vibration of cations in octahedral voids [44]. The Eg peaks at 300 cm−1 correspond
to the symmetric oxygen bending in AO4 units [45,46].

Figure 5b demonstrates the evolution of Raman peak position and peak intensity with
respect to the Re doping ratio. It can be seen that, with the increase in the doping ratio,
the peak positions of the A1g (685 cm−1), T2g(2) (460 cm−1), and Eg (300 cm−1) modes
increase. According to the literature, these three peaks originate from the movement of the
tetrahedral voids, which indicates that the inclusion of Re mainly influences the structure
of the tetrahedral sites, i.e., increasing the vibrational energy of Fe3+–O and Re2+–O bonds
by varying the bond length [41]. Regarding the T2g(3) (195 cm−1) mode, the peak position
increases with the Fe-site doping ratio, while its fluctuates slightly for Co-site doping
samples. This implies that the substitution of iron to Re also influences the structure of
octahedral sites, leading to a more distorted structure compared with Co-site doping. Other
modes’ peak positions are altered slightly with the increase in the doping ratio. The shift in
Raman peaks indicates that Re substitution imposes a distortion of the tetrahedral sublattice
and influences the octahedral sublattice for Fe-site doping.

3.4. Magnetic Analysis

The magnetic hysteresis loop (M-H) tests of the pure and Re-doped cobalt ferrite at
300 and 4 K are illustrated in Figure 6a,b. The M-H curve was recorded in a magnetic field
up to 50 kOe at temperatures of 300 and 4 K. However, at temperatures of 300 and 4 K, our
M-H data show the single phase of the ferromagnetism. Based on the analysis of all these
hysteresis loops, we extracted the saturation magnetization, coercivity, and remanence mag-
netization. It is observed that all of the pure and Re-doped cobalt ferrite nanoparticles show
hard ferromagnetic behavior, as expected. These measured values of M-H of the samples
were consistent with the reported values and were strongly temperature-dependent [47].
However, the magnetic properties can be improved by substituting metal ions, which usu-
ally leads to charge separation, carrier migration, and variation in energy band structure
used to control the electronic structure of the spinels. The extracted parameters from the
M-H loops, such as saturation magnetization (Ms), coercivity (Hc), magnetic anisotropy
(K), remanence magnetization (Mr), squareness ratio (Mr/Ms), and magnetic moment (nB
in Bohr magneton), are listed in Table 2. Moreover, the anisotropy constant and Bohr
magneton are calculated from Equations (3) and (4) [48]:

K =
Hc ×Ms

0.98
(3)

nB =
MCoFe2O4 ×Ms

5585
(4)

where Hc is the coercivity, Ms is the saturation magnetization (emu/g), and MCoFe2O4 is
the molecular weight of the ferrite. For the Co-site doping, the saturation magnetization
and remanence magnetization decreases with the increasing doping ratio, while in the
Fe-site, they are enhanced with the increasing doping ratio. For the Co-site doping, the
saturation magnetization decreases with the increase in the doping ratio from 0 to 0.05
(at 300 K, from 80 to 78 emu/g; at 4 K, 80 to 77 emu/g), while for the Fe-site doping, the
saturation magnetization increases (from 80 to 81 emu/g at 300 K; 80 to 82.6 emu/g at 4 K).
The variation in saturation magnetization is closely related to the size and shape of the
nanoparticles. From SEM, it is observed that the particles agglomerate with the increase
in substitution of Re to Co as a result of an increase in dipole interactions, changing the
surface properties of the particles. It is likely that, because of agglomeration resulting from
Re doping, the surface-to-volume ratio of the particle decreases, reducing the surface effect,
and the orientation of the magnetic moment can also be influenced by the neighboring
particles. However, the particle size decreases slightly with the increase in doping of Re
to Fe, increasing the saturation magnetization. Additionally, the coercivity measured at
4 K decreases with the increase in the Re–Co substitution ratio, while it increases with the
increase in doping of Re to Fe. This can be explained by the change in anisotropy with
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the inclusion of Re. Moreover, the magnetic moment increases with the decrease in the
Co-site doping ratio, which can be explained by the change in magnetic anisotropy. The
magnetic anisotropy decreases for Co-site doping, leading to a more random orientation of
the moment and a decrease in the net magnetic moment. Similarly, the anisotropy of Fe-site
doping increases, resulting in an increase in the total magnetic moment with an increase
in the doping ratio. Compared with other dopants, Re-doped cobalt ferrite maintains a
higher total magnetic moment [44,49], indicating an increase in the anisotropy resulting
from doping Re.
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Figure 6. Magnetic hysteresis loops of Co1-xRexFe2O4 and CoFe2-xRexO4 nanoparticles at (a) 300 K
and (b) 4 K, showing a variation in the hysteresis shape with different sites of doping. (c) Variation in
anisotropy at 300 K and 4 K with respect to the doping ratio. The anisotropy decreases for Co-site
doping, while it increases for Fe-site doping. (d) M-T curve of Co1−xRexFe2O4 and CoFe2−xRexO4

nanoparticles, indicating a spin-glass-like behavior of the nanoparticles.

When comparing Co-site doping and Fe-site doping, the decrease in Ms and Hc in
Co-site doping and increase in Ms and Hc in Fe-site doping are closely related to the change
in magnetocrystalline anisotropy resulting from Re doping. As shown in Figure 6c, the
anisotropy at 4 K decreases in Co-site doping and increases in Fe-site doping. Furthermore,
this anisotropy behavior can be attributed to the difference in the total energy of the
structures [29,48].
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Table 2. Magnetic parameters (Ms, Mr, Mr/Ms, Hc, and K) of Re-doped nanoparticles were extracted
at 300 K and 4 K. With the increased Re doping ratio, the magnetic parameters reduced in Co-site
doping, while they were enhanced in Fe-site doping.

Samples Ms (emu/g) Mr (emu/g) Mr/Ms Hc (Oe) K (erg/Oe)×104 nB

300 K 4 K 300 K 4 K 300 K 4 K 300 K 4 K 300 K 4 K 300 K 4 K

CoFe2O4 80 80 26 68 0.32 0.85 817 4704 6.68 38.40 3.36 3.36
Co0.98Re0.02Fe2O4 79 79 19 67 0.24 0.85 680 4537 5.48 36.56 3.32 3.32
Co0.95Re0.05Fe2O4 78 77 18 66 0.23 0.86 735 4150 5.86 32.61 3.28 3.24
CoFe1.98Re0.02O4 80.5 81 28 73 0.35 0.90 727 7072 5.98 58.46 3.38 3.40
CoFe1.95Re0.05O4 81 83 27 75 0.33 0.90 712 6801 5.89 57.33 3.40 3.47

When Re is doped in the Co site, Re mainly occupies octahedral sites with opposite
spin alignment with iron in both the octahedral and tetrahedral sites. This structure appears
to be at the lowest energy state and results in a decrease in anisotropy. When doping Re in
the Fe site, the structure occupies a higher energy state, increasing anisotropy as a result
of replacing heavy Re ions with smaller Co2+ ions at the octahedral sites. This decreasing
and increasing behavior mainly results from the surface effects generated from the grain
size variation. Moreover, it is observed that, at a low temperature (4 K), the remanence
magnetization, coercivity field, and squareness of all samples are higher than those at 300 K.
Figure 6c shows the variation in anisotropy with the doping ratio measured at 4 K and
300 K. It is observed that the anisotropy increases significantly with the doping of Re in the
Fe site. In contrast, in the Co site, the anisotropy decreases. It is also worth noting that the
hysteresis loop of the Co-site and Fe-site doping show different shapes. Especially at 4 K,
Fe-site-doped samples show a higher coercivity and saturation magnetization, indicating
better magnetic performance than Co-site doping. The significant increase in coercivity
mainly results from the increased magnetic anisotropy from substituting iron with rhenium.
Magnetization versus temperature characterizations were also conducted on different
samples. Figure 6d presents the ZFC-FC magnetization curve measured under 50 kOe of
Co1−xRexFe2O4 and CoFe2−xRexO4 nanoparticles, showing an irreversible behavior. It can
be seen from the figure that the blocking temperature of all of the nanoparticles is about
250 K, with a slight increase in Fe-site doping and a decrease in Co-site doping, which
reflects the variation trend of anisotropy at 4 K.

3.5. Dielectric Behavior

The dielectric properties of the spinel ferrite are strongly determined by the chemical
composition and site occupancy of metal cations [50]. To further investigate the influ-
ence of different site doping, the dielectric properties of CoFe2O4, Co0.98Re0.02Fe2O4, and
CoFe1.98Re0.02O4 nanoparticles were obtained in various temperature and frequency ranges
of 1 Hz to 1 MHz with an applied AC electric field. The obtained results of the dielectric con-
stant, tangent loss, and AC conductivity are shown in Figures 7–9. The following equations
are used to calculate the dielectric constant, dissipation energy, and AC conductivity:

ε′r =
Cd
Aεo

(5)

tanδ =
ε′′

ε′r
(6)

σac = ωε0ε′rtanδ (7)
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Figure 7a–c show the real part (εr’) of the dielectric constant versus frequency at
various temperatures for CoFe2O4, Co0.98Re0.02Fe2O4, and CoFe1.98Re0.02O4 nanoparticles.
The insets of Figure 7a–c show the temperature-dependent real part of each plot. The real
part of the dielectric dispersion was found to have the highest value at a low frequency
and decreases at a high frequency at all temperatures (CoFe2O4, Co0.98Re0.02Fe2O4, and
CoFe1.98Re0.02O4), representing the typical behavior of spinel ferrite nanoparticles. The
real part undergoes a sharp decrease with frequency up to 1 kHz and remains constant
at a high frequency. Such behavior could be described by considering many sources of
dielectric polarization, such as ionic or interfacial polarization. At lower frequencies, the
main contribution to the polarization is ionic, which is thus responsible for the high value
of the real part. In comparison, at higher frequencies, only electronic polarization remains
active because of the inability of electric dipoles to follow the fast variation in the alternating
electric field. The contribution of net ionic and orientation polarizability becomes slow at
higher frequencies, which causes a decrease in the real part and finally remains almost
constant. The decrease in ionic polarizability or initial loss can be attributed to orientation.

The tangent loss factor (tanδ = ε′′
ε′r

) is defined as the ratio of the dissipated energy to
the stored energy in the material. The values of tanδ as a function of frequency at various
temperatures of CoFe2O4, Co0.98Re0.02Fe2O4, and CoFe1.98Re0.02O4 nanoparticles are shown
in Figure 8a–c. The temperature variation is also shown in the insets in Figure 8a–c. It
is observed that tanδ displays the highest value at a low frequency and increases with
temperature. The highest value of tanδ in the low-frequency region can be attributed to
the high resistivity of grain boundaries, which are more effective at lower frequencies. The
energy loss may be attributed to collision, vibration, and other charge particle interaction
phenomena. The AC conductivity versus frequency at various temperatures of CoFe2O4,
Co0.98Re0.02Fe2O4, and CoFe1.98Re0.02O4 nanoparticles is shown in Figure 9a–c. The values
of AC conductivity were almost independent for all samples at a low frequency and
displayed polarization at a high frequency. At a low frequency, the hopping of charges
across the grain boundaries is minimal and increases with the frequency. The variation in
temperature-dependent AC conductivity is shown in the inset of each plot in Figure 9a–c.
It is evident that the dielectric constant decreases slightly when doping Re at the Co-site,
while it increases significantly in Fe-site doping. The Re doping in the Fe site is expected to
induce the formation of small polarons, while reducing them when doping in the Co-site.
The polarization in cobalt ferrites is mainly attributed to electron hopping between Fe2+

and Fe3+ ions and hole hopping between Co3+ and Co2+ ions [7,51,52]. With Re substituting
Co, the total number of hole sources decreases, which reduces the accumulation of the
carrier, thus decreasing the polarization. For Fe-site doping, the substituion of Fe3+ by
Re4+ induces electron hopping, which supports the formation of polarons. Moreover,
Rahman et al. reported that the formation of polaron derives from the increase in structure
distortion, which means that Fe-site doping increases the structure distortion, while Co-site
doping decreases the distortion [53], confirming the variation in anisotropy discussed in
the magnetic parts.

4. Conclusions

In summary, the effect of Rhenium Co-site and Fe-site doping on the structural,
microstructural, magnetic, Raman, and dielectric properties of CoFe2O4 synthesized by the
sol-gel approach was explored. XRD Rietveld refinement and Raman results indicated that
all of the synthesized samples were single phase with cubic spinel-type structures, and the
lattice parameters increased slightly with the substitution of Rhenium. In the Raman data,
we find that, with an increased doping ratio, most of the peak positions that correspond to
the movement of the tetrahedral sublattice shift to a higher energy site, and the doping of
Re induces the distortion of the crystal structure. The SEM micrograph confirms that the
surface Re exchange changes the coordination environment of metals and induces Fe-site
structure distortion, thereby revealing more active sites for reactions. Furthermore, the
calculated magnetic parameters, such as saturation magnetization, remanent magnetization,
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coercivity, blocking temperature (TB), and magnetic anisotropy, decreased in the Co-site
doping with the increasing doping ratio of Re, while in the Fe site, they were enhanced with
the increasing doping ratio. The variation in saturation magnetization is closely related
to the size and shape of the nanoparticles. From SEM, it is observed that the particles
agglomerate with the increase in the substitution of Re to Co owing to an increase in dipole
interactions, changing the surface properties of the particles. It is likely that, because
of agglomeration resulting from Re doping, the surface-to-volume ratio of the particle
decreases, reducing the surface effect, and the neighboring particles can also influence
the orientation of the magnetic moment. Finally, the dielectric measurement revealed that
the real part (εr’) and tangent loss (tanδ) show a response at low frequencies. The sharp
increase at high temperatures enhances the barrier for charge mobility at grain boundaries,
suggesting that samples were highly resistive. The real part and the tangent loss were
found to be higher in the Fe-site doping with the increasing Re doping ratio as compared
with the Co site, which was attributed to interfacial or space charge polarization.
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