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Abstract: In this work, we report the effect of zinc (Zn) and nickel (Ni) co-doping of hydrothermally
synthesized hematite nanorods prepared on fluorine-doped tin oxide (FTO) substrates for enhanced
photoelectrochemical (PEC) water splitting. Seeded hematite nanorods (NRs) were facilely doped
with a fixed concentration of 3 mM Zn and varied concentrations of 0, 3, 5, 7, and 9 mM Ni. The
samples were observed to have a largely uniform morphology of vertically aligned NRs with slight
inclinations. The samples showed high photon absorption within the visible spectrum due to their
bandgaps, which ranged between 1.9–2.2 eV. The highest photocurrent density of 0.072 mA/cm2

at 1.5 V vs. a reversible hydrogen electrode (RHE) was realized for the 3 mM Zn/7 mM Ni NRs
sample. This photocurrent was 279% higher compared to the value observed for pristine hematite
NRs. The Mott–Schottky results reveal an increase in donor density values with increasing Ni dopant
concentration. The 3 mM Zn/7 mM Ni NRs sample produced the highest donor concentration of
2.89 × 1019 (cm−3), which was 2.1 times higher than that of pristine hematite. This work demonstrates
the role of Zn and Ni co-dopants in enhancing the photocatalytic water oxidation of hematite nanorods
for the generation of hydrogen.

Keywords: hematite nanorods; zinc/nickel co-doping; photocurrent; PEC water oxidation

1. Introduction

Solar water splitting is one of the promising technologies for the green and sustainable
production of hydrogen, a clean chemical energy carrier with a relatively high gravimetric
energy density of 143 MJ kg−1 [1]. The technology uses photoactive electrodes for photon
absorption in a PEC cell setup that also comprises an aqueous electrolyte, a reference
electrode, and a counter electrode usually made of platinum. During photocatalysis, when
the photoelectrode absorbs photons with energy equivalent to or more than its bandgap,
electron–hole (e−/H+) pairs are generated in the electrode. If the photoelectrode is an
n-type semiconductor, the photogenerated electrons are excited from the valence band into
the conduction band, leaving behind holes. The electrons move through an external circuit
to the counter electrode, whereas the holes shift to the photoelectrode–electrolyte interface.
This results in the oxidation of water at the photoanode and, consequently, the reduction of
H+, leading to the evolution of hydrogen at the counter electrode of the PEC device [2,3].
An effective photoelectrode material is expected to have a favorable bandgap that allows
for high photon absorption in the visible spectrum to enable sufficient photogeneration
of the charge carriers required to perform photo-induced redox reactions for hydrogen
production [4,5].

Therefore, when choosing a photoelectrode material for PEC applications, it is im-
portant to carefully consider the key optical and other catalytic properties of the pho-
tocatalyst [6,7]. In addition, the earth abundance of the material is also critical for the
sustainability of hydrogen production via PEC reactions [8]. Hematite is one of the highly
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investigated metal oxides for use as photoanode material for PEC reactions because of
its favorable bandgap (1.9–2.1 eV), which is capable of absorbing ~40% of photons in the
visible region [9], abundance in nature, stability in a broad pH range, and non-toxicity [10].
However, the PEC performance of hematite is greatly hampered by the ultrafast charge
recombination in its bulk and surface because of its short hole-diffusion path of 2–20 nm,
poor electrical conductivity, and slow PEC kinetics for oxygen evolution, among others [11].
In a bid to enhance the performance of hematite electrodes, a range of strategies has been
studied, such as using heterostructures [12,13], nanoscale engineering [14], seed layers [15],
and elemental doping [16].

Nanoscale engineering of semiconductor materials used in PEC water splitting has
been outstanding among other strategies [17]. With this strategy, nanostructures such as
nanosheets [18], nanoparticles [19], and nanorods (NRs) [20] are among the widely inves-
tigated structures for PEC applications because of their explicit and unique potential in
modifying the properties of hematite for enhanced photon absorption and charge transport.
NRs are one of the promising nanostructures investigated for PEC water splitting because
they provide a wider surface area for photocatalytic reactions [21,22]. NRs have also been
reported to exhibit better e−/H+ mobility than nanospheres [9]. Moreover, when NR films
are subjected to high-temperature annealing for a short time, their crystallinity is improved,
which directly enhances charge carrier transport during PEC reactions [23]. Although sev-
eral techniques, such as electrochemical deposition [24], pulsed laser deposition (PLD) [25],
and spray pyrolysis [26], have been used for the preparation of various hematite electrodes,
the hydrothermal technique is considered to be flexible, simple, and inexpensive for the
fabrication of NRs [27,28].

The use of seed layers between substrates and a semiconductor photoanode has
been reported to enhance their photocurrent outputs through the suppression of charge
recombination at the substrate–semiconductor interface [29]. For example, it has been
demonstrated that synthesizing hematite film over tungsten trioxide (WO3)-seeded FTO
increased its photocurrent density by 125% [30]. Relatedly, zinc (Zn)-seeded substrates have
been reported to enhance the nucleation and growth of vertically oriented Zn NRs [31,32].
However, not much has been explored on the PEC properties of hematite NRs grown on
hematite-seeded FTO substrates. In addition, the use of seed layers comprising different
elements from those of the NRs could induce doping at relatively elevated temperatures
from the ion species of the seed layer [33]. It is therefore important to use the same ma-
terial element for the NRs film and maintain the seed layer in controlled conditions to
avoid indirect doping. Furthermore, elemental doping of the photoelectrodes is another
approach to improve the electrical conductivity and photon absorption of hematite nanos-
tructures [27,34]. In addition, doping has been reported to suppress the recombination of
e−/H+ pairs and consequently improve the photocurrent densities of hematite NRs [35].
The influence of various metal and non-metal dopants, such as Sn [36], sulfur (S) [37],
and silver (Ag) [3], has been investigated. For example, a comparative study by Jinzhan
et al. (2016) on the effect of different metal atom dopants on the PEC performance of
hydrothermally synthesized hematite NRs demonstrated improved photocurrent outputs
with titanium (Ti), zirconium (Zr), and Sn dopants [38]. Doping hematite films with Zn in
work conducted by Aadesh et al. (2017) doubled the photocurrent density of the bare films
to 0.81 mA/cm2 at 1.23 V vs. RHE as a result of enhanced charge transport [10]. Moreover,
Zn has been reported to be among the best dopants for enhancing the photocurrent density
of hematite films [3,26]. In addition, investigations on Ni doping of hematite NRs resulted
in a 1.3-fold improvement in photocurrent density compared to that of the undoped NRs,
which was further doubled to 1.28 mA/cm2 by co-doping with cobalt (Co) [39]. The review
by Shengnan et al. also demonstrates that facile doping of hematite with a suitable element
enhances charge separation and transport dynamics, which consequently boosts its PEC
performance [40]. However, despite the numerous research studies conducted on the
effect of different dopants on the PEC performance of hematite NRs, no work has been
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reported on the effect of Ni and Zn as surface co-dopants of hematite towards improving
the semiconductor photocatalytic properties.

In this work, hydrothermally synthesized hematite NRs were co-doped with Zn and
Ni to enhance their PEC performance. First, 3 mM Zn and 3, 5, 7, and 9 mM Ni dopants
were spin-coated over pristine hematite NRs to obtain the Zn and Zn/Ni co-doped NR
samples. The 3 mM Zn/7 mM Ni NRs samples exhibited the highest photocurrent of
72 mA/cm2 at 1.5 V vs. RHE due to the high donor density 2.89 × 1019 (cm−3) observed for
the films. Based on the known literature, no work has been reported on the effect of facile
Zn and Ni co-doping of hematite NRs that were hydrothermally grown over a hematite
seed layer for the enhancement of PEC performance.

2. Materials and Methods
2.1. Materials and Substrate Preparation

Ferric chloride hexahydrate (FeCl3·6H2O), sodium nitrate (NaNO3), zinc nitrate hex-
ahydrate (Zn(NO3)2·6H2O), and nickel nitrate hexahydrate (Ni(NO3)2·6H2O) were ob-
tained from Sigma-Aldrich, South Africa, and used as received. The FTO substrates were
first cleaned in an ultrasonic bath using sodium stearate (C18H35NaO2) soap solution,
followed by deionized water (DI), ethanol, and finally acetone for ten minutes each. The
substrates were then air-dried using nitrogen gas.

2.2. Experimental Procedure

Hematite seed layers were grown over the FTO substrates by spin coating a precursor
solution of 0.05 M FeCl3.6H2O in ethanol at 5000 rpm. The process was repeated 8 times to
grow the desired thickness of the seed layers, with 5 min intervals of drying at 70 ◦C in a
laboratory oven. The hematite seed layers were then annealed at 550 ◦C for 1 h, followed
by gradual cooling to room temperature. Figure 1a illustrates the experimental procedures
for the preparation of the hematite seed layers on FTO substrates via spin coating.

The FTO substrates with the deposited hematite seed layers were placed at the bottom
of an autoclave filled with 45 mL of an aqueous solution of thoroughly mixed 0.15 M
FeCl3·6H2O and 1 M NaNO3, with the conducting side facing upwards. The autoclave
was sealed and placed in a laboratory oven set to a temperature of 100 ◦C for 8 h to grow
yellowish films of FeOOH on FTO. The deposited films were rinsed several times with DI
water to remove the extra reactants and dried thereafter in a laboratory oven at 70 ◦C for
10 min. The FeOOH layers were then annealed at 500 ◦C for 2 h to obtain pristine hematite
NRs (Figure 1b).

Dopant concentrations of 3, 5, 7, and 9 mM were prepared from Ni(NO3)2·6H2O
using ethanol as a solvent to serve as the Ni ion source. In addition, a 3 mM solution
of Zn(NO3)2·6H2O was dissolved in ethanol and used as the Zn co-dopant ion source.
Based on previous results, a 5–15% atomic composition of facile zinc dopant transformed
the conventional n-type hematite film into a p-type photoanode [41]. This study selected
an arbitrary but constant low dopant concentration of 3 mM Zn in order to preserve the
n-type nature of the prepared hematite films. Two drops of the Zn dopant solution were
spin-coated over the annealed hematite NR films for 30 s at 5000 rpm. The films were
then dried in an oven at 70 ◦C for 10 min and subsequently annealed at 550 ◦C for 1 h to
obtain the 3 mM Zn-doped NR samples. Furthermore, the 3 mM Zn-doped hematite NR
samples were also spin-coated with two drops of 3, 5, 7, and 9 mM Ni dopant solutions,
dried, and annealed in the same manner as the Zn-doped hematite films to obtain the
3 mM Zn/3 mM Ni, 3 mM Zn/5 mM Ni, 3 mM Zn/7 mM Ni, and 3 mM Zn/9 mM Ni
NR co-doped samples, respectively. To avoid contamination of the samples, the pristine
hematite NRs and the doped samples were annealed in separate tubes. Figure 2 shows the
schematic representation of the doping and annealing process of the hematite NRs.
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2.3. Characterization

The morphology of the as-prepared samples was examined using a Zeiss Ultra PLUS
field-emission scanning electron (FESEM) microscope at 2 kV. Elemental composition
analysis of the pristine and doped hematite NRs was performed using a Zeiss Crossbeam,
which was connected to an energy-dispersive X-ray spectroscopy (EDS) system. The
structural properties of the samples were investigated using a Bruker D2 Phaser X-ray
diffractometer and a WITec alpha 300 RAS+ confocal micro-Raman microscope. An Agilent
Cary-60 UV-vis spectrophotometer was used to measure the light absorption of the NRs
within a 200–800 nm wavelength range.

PEC measurements were obtained using a VersaSTAT 3F potentiostat from Princeton
Applied Research in a three-electrode cell with 1 M sodium hydroxide (NaOH) electrolyte,
a 2 × 2 cm platinum (Pt) wire mesh as the counter electrode, and a silver/silver chloride
(Ag/AgCl) reference electrode. A Newport Oriel, LCS-100™ solar simulator, calibrated
to 1 sun at 100 mW/cm2, was used as the light source. The light was directed at the
quartz window of the PEC cell, which allowed the illumination of a 0.49 cm2 surface
area of the pristine and doped hematite photoelectrodes. Linear sweep voltammetry
(LSV) measurements in the dark and under illumination were taken to study the current–
voltage characteristics of the samples. All potential values were translated to the RHE scale
according to Equation (1) [10].

VRHE = VAg/AgCl + (0.059pH) + V0
Ag/AgCl (1)

where VRHE represents potential in the RHE, V 0
Ag/AgCl = 0.1976 V at a standard temperature

of 25 ◦C, VAg/AgCl is the potential obtained from the experimental measurements using
Ag/AgCl as the reference electrode, and the pH of the electrolyte is 13.6. The photocurrent
measurement for pristine hematite NRs was used as the baseline result in the analysis of
the photoresponse of the Zn and Zn/Ni co-doped samples. Mott–Schottky studies were
conducted on the pristine and doped hematite samples in the dark at a constant frequency
of 10,000 Hz, an AC amplitude potential of 10 mV, and a DC potential range of −1.2 to 0.5 V
vs. Ag/AgCl. Electrochemical impedance measurements were conducted on illuminated
photoanode samples using a 10 mV potential amplitude within a frequency range of 10,000
to 0.1 Hz at 0.23 V vs. Ag/AgCl.

3. Results
3.1. NR Morphology and Seed Layer Thickness

The surface morphologies of the pristine, Zn-doped, and Zn/Ni co-doped hematite
NRs are shown in Figure 3. The NRs were generally closely packed in clusters and vertically
aligned over the hematite seed layers. All samples exhibited similar morphology despite
the variation in Ni dopant concentrations. This suggests that the surface morphology of
the samples was only influenced by the hydrothermal reaction [42]. Similarly, studies by
Feng Cheng et al. and other researchers confirmed that facile doping of hematite NRs with
Ni had no effect on their surface morphology [39,43]. This was attributed to low Ni dopant
concentrations loaded over the hematite NRs that limited the formation of particles and
eventual agglomeration over the hematite films [44].

An average film thickness of ∼ 127 nm was obtained for the seed layers using a
profilometer alpha step.

3.2. XRD Structural Characterization

To investigate the phase of the prepared pristine and doped hematite NRs, the XRD
diffraction patterns of the samples given in Figure 4 were analyzed. The XRD results show
the rhombohedral crystalline structure of hematite indexed to (104), (110), (116), (214), (300),
and (125) planes with 2-theta peaks at 33.15◦, 35.61◦, 54.09◦, 62.45◦, 63.99◦, and 66.03◦,
respectively, in line with XPert high score plus software analysis for the samples (reference
code: 00-033-0664). The peaks correlate to the R-3C (167) space group with uniform lattice
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parameters of 0.50356 nm for a and b and 0.1374 nm for c. The peaks at (104), (110), (214), and
(300) planes also match the rhombohedra crystalline phases of pristine and doped hematite
NRs according to JCPDS card no. 24-0072 [38]. All samples show comparable intensities for
the peaks in the (110) plane. It is in this plane that higher preferential charge separation and
transport for PEC water splitting is reported [28,45]. The similar intensities observed across
the peaks could be attributed to the uniform annealing temperature used during sample
preparation, which can directly impact the sample’s crystallinity and charge mobility [46].
There were no observable peak shifts across the XRD patterns, in agreement with earlier
reports [38]. This observation is an indication that the dopants had no significant impact
on the structure of the hematite NRs [38,39]. The peaks did not show phases of Ni and
Zn, implying that the dopants were incorporated into the hematite lattice and had no
effect on the hematite crystal structure [28,47]. We attribute the successful incorporation of
dopants within the crystal structure of hematite to the small concentrations and volume of
Zn and Ni used during sample preparation [48]. In addition, Ni, Zn, and Fe have similar
chemical properties since they belong to the same group of transition metals and the fourth
period of the periodic table [39]. The intensity of the 3 mM Zn/5 mM Ni NR sample peaks
was observed to be weak relative to others. This phenomenon is likely due to the lowest
crystallite size presented by the sample [47]. Peaks labeled with asterisks (*) correspond to
the SnO2 phase from the FTO substrate [48].
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The Debye–Scherer relation in Equation (2) was used to determine the average crys-
tallite sizes, where D is the crystallite size, K is a constant (0.9), λ is the wavelength of
CuKα X-rays equal to 0.15418 nm, β is the full-width at half-maximum (FWHM) of the
preferential peak in radians, and θ is the Bragg angle [49].

D =
Kλ

βcosθ
(2)

The crystallite sizes obtained were between 7.62 and 28.29 nm, as shown in Figure 5.
The three most intense peaks of hematite, (104), (110), and (116), were used in the estimation
of the crystal sizes of the films. The sizes generally decreased down to the value of 7.62 nm
with increasing dopant concentration for the 3 mM Zn/5 mM Ni NRs sample. This
observation is consistent with previous findings obtained for tin (Sn)-doped hematite
films [43]. Studies conducted by Lassoued et al. (2018) further reveal that the decrease
in crystallite sizes with the increase in Ni dopant concentration is a result of enhanced
nucleation of particles in the host sample [50]. However, a further increase in Ni dopant
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concentration for 3 mM Zn/7 mM Ni NRs and 3 mM Zn/9 mM Ni NRs samples resulted
in an increase in the crystal sizes relative to the value observed for 3 mM Zn/5 mM Ni
NRs. This may be associated with the agglomeration of tiny crystallites due to the high Ni
dopant concentration used in the film preparation [51].
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3.3. Raman Characterization

Raman spectroscopy was carried out to further examine the effects of Zn and Ni
dopants on the crystalline hematite phase. The Raman spectra of all the samples are
presented in Figure 6. The seven Raman vibrational modes of hematite were observed
at 225, 247, 293, 299, 412, 498, and 613 m cm−1 in all of the samples’ spectra. The A1g

vibrational modes are associated with the peaks at 225 and 498 cm−1. The five Eg modes
observed for the samples correspond to the peaks at 247, 293, 299, 412, and 613 cm−1,
respectively [52]. No additional vibrational modes other than those of hematite were
observed. This further confirms the absence of impurities and the possibility of defects
in the prepared NRs, in agreement with the XRD analysis of the films. A slight blue shift
of the peaks was observed for the doped NRs samples compared to the pristine hematite
NRs. This shift is similar to observations reported for copper (Cu)- [53] and chromium
(Cr)-doped [54] hematite films and is attributed to the incorporation of the dopants in the
hematite lattice. Initially, an increase in peak intensities was observed for the 3 mM Zn
and 3 mM Zn/3 mM Ni NRs samples compared to the pristine hematite NRs. However,
a remarkable reduction in the peak intensity of the 3 mM Zn/5 Mm Ni NR sample was
observed relative to other samples. This is in agreement with reports that the Raman
intensities are directly proportional to crystallite sizes [55,56]. Moreover, a similar trend
of results was noted for the crystallite sizes of the doped NR samples. However, despite
the pristine hematite sample presenting the largest crystallite size, its intensity was the
second lowest after that of the 3 mM Zn/5 Mm Ni NRs. This is ascribed to adjustments
in the hematite surface and grain boundary disorientations due to the surface passivation
effect of the dopants of the doped NRs relative to that of the pristine hematite NRs [57].
Furthermore, a weak LO phonon mode was noticed at about 660 cm−1 for the doped
hematite NRs. Based on previously reported results, this peak is likely attributed to surface
defects or stress as a result of the dopants [54].
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3.4. Elemental Composition

EDS analysis of the undoped and doped hematite NRs samples was conducted to
establish the composition of the different chemical elements in the samples. The chemical
species of iron (Fe) and oxygen (O) for hematite and tin (Sn) from tin oxide (SnO2) on FTO
substrates were observed for all of the NRs samples. The Fe and O k-line signals were
observed at 6.42 and 0.53 keV, respectively, and correspond to previous findings [58]. The
EDS results also show the Zn element in the 3 mM Zn NRs sample. In addition, Zn and Ni
were detected in the spectra of all Zn/Ni co-doped NRs, as shown in Figure 7.
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Additionally, Table 1 shows the different atomic percentage compositions of the
pristine and doped NR samples. Although the atomic composition of Zn was not uniform
across the samples, that of Ni increased with the increase in concentration, similar to the
stoichiometric increase in dopant concentrations used. No other elements were detected.
This implies that the nickel and zinc dopants were successfully incorporated into the
hematite NRs, and hence, it further validates the purity of the samples depicted by the
Raman and XRD analysis of the films.

3.5. UV-Vis Absorption

The light absorption of the pristine hematite NRs and the 3 mM Zn, 3 mM Zn/3 mM
Ni, 3 mM Zn/5 Mm Ni, 3 mM Zn/7 mM Ni, and 3 mM Zn/9 mM Ni doped NRs samples
was investigated within a 350–800 nm wavelength range, and the results are shown in
Figure 8. All absorption spectra show peaks at about 400 nm. This is consistent with the
reported wavelength of the maximum photon absorption for hematite [59], assigned to Fe3+

d-d transitions [58,60]. The onset absorption wavelength for all samples was approximately
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600 nm. The UV-vis absorption properties of NRs showed no direct correlation between
the absorbance and the dopant concentrations. Nevertheless, the observed variations in
photon absorption by the samples might be associated with differences in light scattering
at the surface of the hematite NRs due to changes in their particle sizes, film thickness, and
other intrinsic modifications resulting from Zn/Ni doping [61,62].

Table 1. Chemical atomic composition (at %) of the pristine and doped hematite NRs.

NR Samples
Element (at%)

O Fe Sn Zn Ni

Pristine hematite NRs 70.90 14.00 15.10 - -
3 mM Zn NRs 70.75 13.26 15.94 0.05 -

3 Mm Zn/3 Mm Ni NRs 69.76 17.23 12.93 0.04 0.04
3 Mm Zn/5 Mm Ni NRs 70.18 13.12 16.49 0.10 0.11
3 Mm Zn/7 Mm Ni NRs 69.87 14.09 15.78 0.07 0.19
3 Mm Zn/3 Mm Ni NRs 70.50 12.60 16.58 0.04 0.28
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The bandgap values for the samples were estimated using the expression

Eg(eV) =
1240

λ(nm)
(3)

where Eg is the bandgap, 1240 is a constant obtained from the product of Planck’s constant
(h = 4.14 × 10−15 eV) and the speed of light (c = 3 × 108), and λ is the wavelength obtained
from the intercept of the extrapolated linear section of the absorption spectrum on the
wavelength axis [3]. The bandgaps obtained were 1.90, 1.92, 1.92, 1.95, 1.99, and 1.98 eV
for pristine hematite, 3 mM Zn, 3 mM Zn/3 mM Ni, 3 mM Zn/5 Mm Ni, 3 mM Zn/7mM
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Ni, and 3 mM Zn/9 mM Ni NRs samples, respectively. The values obtained are within the
bandgap range of 1.9–2.2 eV of hematite [63].

3.6. PEC Measurements
3.6.1. LSV Measurements

To investigate the PEC performance of the pristine and Zn/Ni co-doped hematite NRs,
LSV measurements were performed on the prepared samples in dark and light conditions,
and the results are shown in Figure 9. The dark currents were notably small compared to
the corresponding photocurrent density values under illumination. Upon irradiation, the
pristine hematite exhibited a photocurrent of 0.019 mA/cm2 at 1.5 V vs. RHE. There was
no significant difference in photocurrent densities observed for the 3 mM Zn-doped and
pristine hematite NRs samples. This was likely due to the low Zn dopant concentration of
3 mM used in the preparation of the doped sample. Previous studies have also shown that
the application of very low dopant volumes presents no significant effects on the properties
of the host material [64]. The introduction of additional Ni dopant concentrations to the
3 mM Zn NRs samples yielded better photocurrent densities. The photocurrent densities
increased with increasing Ni dopant concentration. The 3 mM Zn/7 mM Ni NRs sample
presented the highest photocurrent of 0.072 mA/cm2 at 1.5 V vs. RHE. This photocurrent
density was 279% higher when compared to the value observed for pristine hematite and
3 mM Zn-doped NRs films. This improvement could be due to enhanced surface reaction
kinetics at the interface of 3 mM Zn/7 mM Ni NRs films with the electrolyte [38]. Moreover,
related studies on hematite NRs films facilely doped with Ni and chromium (Cr) suggest
that the incorporation of the dopants suppresses the recombination of electrons and holes
by modifying the semiconductor interface to inhibit the density of surface states [50,65].
The photocurrent density, however, dropped with the 3 mM Zn/9 mM Ni NRs sample to
0.061 mA/cm2 at 1.5 V vs. RHE. This result revealed the occurrence of the maximum Ni
dopant level for hematite NRs. For the 3 mM Zn/9 mM Ni NRs samples, the Ni dopant
concentration exceeded the optimal level, which likely increased the recombination centers
at the semiconductor–electrolyte interface, resulting in a drop in photocurrent density [65].
The 3 mM Zn/7 mM Ni NRs sample exhibited the lowest onset potential of 1.32 V vs. RHE,
which is paramount in offsetting the energy barrier across the semiconductor–electrolyte
interface for enhanced charge transport [66].

3.6.2. Mott–Schottky Analysis

Figure 10 shows the Mott–Schottky plots of the as-prepared pristine and doped
hematite NRs samples. The positive slopes of the plots confirmed the n-type nature
of hematite [13,42]. Table 2 shows the flat band potential (Vf b) and the donor density (ND)
results obtained from the Mott–Schottky plots of the samples. The Vf b values were derived
from the x-axis intercepts of the extrapolated linear sections of the plots, whereas the ND
values were worked out from the slopes of the plots, in line with the Mott–Schottky relation
given in Equation (4):

C−2 =
2

eεε0 A2ND

(
V − Vf b −

kT
e

)
(4)

where C is the space charge capacitance, e is the electron charge, ε is the dielectric constant
(ε = 80 for hematite), ε0 is the permittivity of free space, A represents the surface area of
the electrode, ND is the donor density, V is applied voltage, E f b is flat band potential, k is
the Boltzmann constant, and T is the temperature in kelvin [38].

The flat band potential is a key parameter for PEC semiconductor electrode materials
since they reflect the hole transport mechanism occurring at the electrode surface region [67].
As a baseline sample, the pristine hematite NRs presented a Vf b of −0.43 V vs. RHE. An
increase of 0.41 V was realized in Vf b when the Zn dopant was introduced for the 3 mM
Zn NR sample. This is quite contrary to other reports [26,68] and might be attributed to
the low dopant concentration used. However, a cathodic shift in Vf b values was observed
with increasing Ni dopant concentration. The 3 mM Zn/9 mM Ni and 3 mM Zn/7 mM
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Ni NRs produced the lowest and second lowest Vf b values of −0.70 and −0.65 V vs. RHE,
respectively. According to Kumari et. al., this could be linked to enhanced hole transport at
the NR–electrolyte interface during oxygen evolution [26].
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Table 2. Flat band potential (Vf b)/V and donor densities ND × 1019/cm−3 of pristine and doped
hematite NR samples synthesized over hematite seed layers.

NR Sample Vf b(V) ND× 1019 (cm−3)

Pristine hematite NRs −0.43 1.38
3 mM Zn NRs −0.02 1.07

3 Mm Zn/3 Mm Ni NRs −0.36 1.55
3 mM Zn/5 mM Ni NRs −0.38 2.01
3 mM Zn/7 mM Ni NRs −0.65 2.89
3 mM Zn/9 mM Ni NRs −0.70 2.69

The ND values of the pristine hematite NRs, 3 mM Zn, 3 mM Zn/3 mM Ni, 3 mM
Zn/5 Mm Ni, 3 mM Zn/7 mM Ni, and 3 mM Zn/9 mM Ni NRs samples are shown in
Table 1. All ND values of the doped samples are within the same order of magnitude of
1019 cm−3. The initial introduction of the Zn dopant for the 3 mM Zn NR sample lowered
the ND of the NRs by 22.5% compared to 1.38 × 1019 (cm−3) obtained for the pristine
hematite NRs, which is consistent with observations by Kumari et al. [69]. While Zn
dopants are responsible for enhancing charge separation in the bulk and interface of the
hematite photoanode, the reduction in ND is attributed to its low water oxidation potential
as a p-type element [70]. Additionally, the results show that an increase in the nickel dopant
concentration of the Zn-doped samples significantly increased the ND values across the
hematite NRs samples. The maximum ND value of 2.89 × 1019 (cm−3) was obtained for
the 3 mM Zn/7 mM Ni NR sample, which was 2.1 times higher than that of the pristine
hematite NRs. This observation indicates that the varied Ni dopant concentrations were
well integrated into hematite as ionized donors and likely established energy traps within
the films [71]. The increase in ND values will directly improve the conductivity of the
co-doped samples and their PEC activity [72]. This is the key reason for the maximum
photocurrent density obtained for the 3 mM Zn/7 mM Ni co-doped films. Furthermore,
increasing the dopant concentration within optimized proportions has been reported to
increase the photocurrent density of hematite films [41]. However, a 7% reduction in ND
was observed for the 3 mM Zn/9 mM Ni NRs compared to that of 3 mM Zn/7 mM Ni
NRs. Higher dopant concentrations are associated with a greater tendency for the dopant
ions to bind to oxygen, leading to the formation of metal oxides [73]. This phenomenon
could have led to the decrease in the ND value for the 3 mM Zn/9 mM Ni NRs, since metal
oxides hinder the deep penetration of dopants into the bulk of the film. A similar trend
toward a slight reduction in ND with increasing Ni doping concentration has previously
been reported for hematite films and was attributed to the possible formation of a blocking
layer by the dopant, consequently limiting their light absorption and PEC activity [44].

To further examine the Zn/Ni dopant effect on the charge mobility dynamics at the
surface interface of the hematite NRs films, electrochemical impedance measurements
were conducted. The plots obtained from the as-prepared photoanodes are shown in
Figure 11. The 3 mM Zn/7 mM Ni NRs exhibited the smallest diameter, indicative of the
lowest resistance to charge transport for this sample. This further confirms the highest
photocurrent density for the 3 mM Zn/7 mM Ni NRs photoanode [3]. The pristine hematite
NRs revealed the largest path, in agreement with previous observations for typical n-type
semiconductor photoanodes in PEC setups [74]. The largest path is associated with the
highest resistance to the transfer of holes to the semiconductor–electrolyte interface for
oxidation. Generally, the Zn/Ni co-dopant proportions enhanced the charge transfer at the
hematite–electrolyte interface.
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Figure 11. Electrochemical impedance Nyquist plots of pristine, Zn-doped, and Zn/Ni-doped
hematite NR photoanodes.

4. Conclusions

Hematite NRs were hydrothermally synthesized over spin-coated seed layers and
co-doped with a constant concentration of 3 mM Zn and varied concentrations of 0, 3, 5, 7,
and 9 mM Ni. The doped samples were annealed at 550 ◦C for 1 h. The samples presented
a largely uniform morphology of vertically aligned NRs with slight inclinations. There
was no significant effect of the facile Zn/Ni co-dopants on the surface morphologies of
the NRs. The XRD analysis revealed a hematite crystalline phase of good purity for all
samples, which was further confirmed by the Raman spectra of the films. The photon
absorption of the pristine and doped NRs samples was high within the visible range of the
electromagnetic spectrum and is related to their estimated bandgap range of 1.9–2.2 eV. The
3 mM Zn/7 mM Ni NRs co-doped sample exhibited the highest PEC performance with a
photocurrent density of 0.072 mA/cm2 at 1.5 V vs. RHE. The high ND value estimated for
the 3 mM Zn/7 mM Ni NRs sample was the key reason for the improved photocatalytic
activity observed for the films. Overall, this study presents a new approach to enhancing
the PEC activity of hematite NRs by facile co-doping with Zn and Ni.
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