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Abstract: Silicon nanophotonics has become a versatile platform for optics and optoelectronics. For
example, strong light localization at the nanoscale and lack of parasitic losses in infrared and visible
spectral ranges make resonant silicon nanoparticles a prospect for improvement in such rapidly
developing fields as photovoltaics. Here, we employed optically resonant silicon nanoparticles
produced by laser ablation for boosting the power conversion efficiency of organic solar cells. Namely,
we created colloidal solutions of spherical nanoparticles with a range of diameters (80–240 nm)
in different solvents. We tested how the nanoparticles’ position in the device, their concentration,
silicon doping, and method of deposition affected the final device efficiency. The best conditions
optimization resulted in an efficiency improvement from 6% up to 7.5%, which correlated with
numerical simulations of nanoparticles’ optical properties. The developed low-cost approach paves
the way toward highly efficient and stable solution-processable solar cells.

Keywords: organic solar cells; silicon nanoparticles; Mie resonances; laser ablation

1. Introduction

Organic solar cells (OSCs) are a prospective class of devices owing to their solution
fabrication techniques, high stability, and ability to be flexible, semitransparent, or even
colorful, which is important for building-integrated and wearable photovoltaics [1–4]. Al-
though the harvesting efficiency of OSCs is constantly increasing, there are still many issues
that have to be addressed before commercialization [5]. To achieve highly efficient OSCs,
one of the remaining issues is associated with the relatively low light absorption of organic
photoactive layers. The film thickness is limited to 200 nm due to the low charge carriers’
mobility and short exciton diffusion lengths in OSCs (to minimize charge recombination
losses). Thus, optical losses in the photoactive layer may reach ~40% of total losses [6,7]. In
this way, the augmentation of light absorption of a photoactive layer of a solar cell (SC) at
a fixed thickness is a promising approach to improve SC characteristics while preserving
its other advantages. Many strategies have been developed for light management in OPV
to decrease optical losses and enhance power conversion efficiency (PCE), including the
design of more advanced donor/acceptor systems [8], as well as the development of new
ternary or tandem SCs [9,10] and light trapping nanostructures [7,11]. In this regard, metal-
lic nanostructures supporting surface plasmons polaritons in visible range incorporated in
SCs can provide additional localization of the optical field on a deeply subwavelength scale,
as well as enhance light absorption via an increase in light scattering [12,13]. As a result, the
excited surface plasmons increase the absorption in a photo-active layer, thus enhancing
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light harvesting in a solar cell [14,15]. Incorporation of metal nanostructures has been
applied to various PV technologies, such as dye-sensitized solar cells [16–18], silicon solar
cells [19,20], organic photovoltaic cells [21–23], and perovskite solar cells [24]. In contrast to
metallic NPs, all-dielectric nanophotonics based on silicon nanoparticles (Si NPs) with Mie
resonances in visible and infrared ranges recently emerged as a powerful tool for various
optical applications [25–30]. Owing to their low cost and chemical and temperature stability,
Si NPs represent a viable and better alternative to noble metals for photovoltaic application.
It should be noted that many types of ternary OPV have been developed, including hybrid
organic-inorganic SCs that embedded Si NPs measuring approximately 2–5 nm [10] and
20–90 nm [31] in the active layer. However, the reported Si nanocrystals are too small to
support Mie resonances in the visible range; the precise origin of PCE enhancement has
been correlated with improved charge transport via better cascade energy-level alignment
in the case of p-type Si NPs integrated into the bulk heterojunction (BHJ) layer.

Here, for the first time to our knowledge, optically resonant Si NPs were employed to
improve OSC device performance, which boosted the final PCE from 6% (without Si NPs)
up to 7.5% (with Si NPs). This approach paves the way for novel optimization strategies to
improve organic photovoltaics by exploiting Mie-enhanced absorption in a photoactive
layer by means of stable, chemically inert, low-cost, and sustainable Si NPs as compared to
noble metal NPs.

2. Results
2.1. Samples

We fabricated Si NPs using the laser ablation method [32], which allowed for the
creation of clean NPs in various solvents. To synthesize quasi-spherical Si NPs we used
the laser ablation method in different solvents according to the procedure mentioned in
reference [33]. As a source of highly intensive laser pulses generating NPs from Si targets,
we used a commercial femtosecond laser system (Ti:Sa oscillator with a regenerative
amplifier, Avesta Project Ltd., Moscow, Russia). The 40-fs laser pulses possessed 810 nm
central wavelengths and a maximum pulse energy of 2.5 mJ at a 1 kHz repetition rate. The
laser intensity was changed automatically using an acousto-optical modulator (R23080-
3-LTD, Avesta Project Ltd., Moscow, Russia) and controlled by a power meter. Laser
pulses were focused using a lens with a focal length of 5 cm (its focal beam diameter
was approximately 150 µm) on a 1000-µm thick monocrystalline Si wafer covered by
approximately 2 mm of solvent. Both p-type and n-type Si wafers were investigated. The
Si NPs obtained from p-type wafers are herein referred to as ‘p-Si NPs’, and those obtained
from n-type wafers are herein referred to as ‘n-Si NPs’. The concentration of Si NPs colloid
was measured to be approximately 3 × 10−4 mol L−1 and might be optimized using a
centrifugation procedure. Concentrations of synthesized samples were calculated via
measurement of the optical absorbance of the solution in visible range (Shimadzu UV-3600,
Shimadzu Ltd., Japan) and estimated using Mie theory. To prepare isopropanol-based
Si NPs ink, we used a solvent exchange procedure via centrifugation. Namely, Si NPs
in water were centrifuged at 10,000 rpm for 10 min and supernatant was removed. The
precipitated Si NPs were dispersed in isopropanol and sonicated for 15 min using a high-
power ultrasonic horn. Different concentrations of isopropanol colloidal inks were obtained
by adding different amounts of solvent to precipitates of Si NPs. The obtained solution
of Si NPs, shown in Figure 1a, exhibited a characteristic brown color, which indicated
increased optical absorption in a short-wavelength range. The average diameter of NPs
was approximately 150 nm according to our dynamic light scattering (DLS) measurements
(Figure 1b). It is worth noting that direct laser ablation of Si NPs in isopropanol was much
less efficient than in water.
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Figure 1. (a) Photo of a colloidal solution of Si NPs in isopropanol. (b) Size distribution of Si NPs in the
solution. (c) Energy band diagram of the device. (d) Schematic illustration of the architecture of the
studied organic solar cells. Arrows indicate the two positions of Si NPs deposition. (e) Cross-sectional
SEM image of the obtained device with a single Si NP covered by BHJ/MoOx/Ag layers.

In order to develop an efficient OSC, we employed the band structure design shown in
Figure 1c; movements of electrons and holes are shown by arrows. Chemical and repeat unit
structures of acceptor and donor polymer molecules used in the study are shown in Figure S1.
Figure 1d shows an architectural schematic of the studied organic solar cells, representing a five-
layer system, Ag(100 nm)/MoOx(8 nm)/ITIC:Ptb7-Th(120 nm)/ZnO(30 nm)/ITO(300 nm),
deposited on a glass substrate. This architecture exhibits high stability and a reasonable
efficiency level. In such a design, sunlight passes through ITO and ZnO to the photoactive
absorbing layer. According to previous studies [14,24,34], to achieve the most optimum
interaction of the incident light with resonant NPs and further its conversion to electricity,
they are usually placed before the absorbing layer. Therefore, it was reasonable to consider
two different positions of the layer with Si NPs: (i) above ITO or (ii) above ZnO layers, as
shown schematically in Figure 1d. A typical cross-sectional SEM image of the obtained
device with Si NP is shown in Figure 1e, which demonstrates the modified local morphology
of the device.

2.2. Devices Fabrication and Characterization

The devices were fabricated on Indium tin oxide (ITO) patterned glass with an inverted
configuration of ITO/ZnO/active layers/MoOx/Ag to investigate the photovoltaic perfor-
mance of the Si NPs-modified organic solar cells. Patterned indium tin oxide (ITO) films,
with a sheet resistance of 15 Ω/� on the glass substrates, were cleaned in detergent, deion-
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ized water, acetone, and isopropanol using an ultrasonic bath, in sequence. The cleaned
ITO films on glass were dried using nitrogen gas and then treated in an UV-ozone cleaner
for 20 min. The ZnO precursor solution was prepared by dissolving 1 g of zinc acetate
dihydrate (Zn(CH3COO)2*2H2O, Sigma-Aldrich, St. Louise, MO, USA, 99.9%) and 0.28 g
of ethanolamine (NH2CH2CH2OH, Sigma-Aldrich, St. Louise, MO, USA, 99.5%) in 10 mL
of 2-methoxyethanol (CH3OCH2CH2OH, Sigma-Aldrich, St. Louise, MO, USA, 99.8%).
The ZnO precursor was spin-coated at 3000 rpm onto the ITO surface. After being annealed
at 200 ◦C for 60 min in ambient conditions, the Si NPs colloidal inks were deposited onto
the surface ZnO- or ITO-coated substrates using a spin-coating (1000 rpm, 60 s) or spray-
coating technique (see more details in Figure S2). The bare and Si NPs-decorated substrates
were transferred into a glove box. A solution of PTB7-Th (PBDTTT-EFT, Poly-[4,8-bis(5-(2-
ethylhexyl)thiophen-2-yl)benzo [1,2-b;4,5-b’]-dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-
fluorothieno [3,4-b]thiophene-)-2-carboxylate-2–6-diyl)], PCE10, Ossila Ltd, Sheffield, UK )
and nonfullerene acceptor ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-
5,5,11,11-tetrakis(4-hexylphenyl)-dithieno [2,3-d:2′,3′-d′]-s-indaceno [1,2-b:5,6-b′]-dithiophene,
1-Material Inc., Quebec, Canada) in chlorobenzene with a concentration of 14 mg mL−1

(PTB7-Th:ITIC (1:1)) was spin-cast at 1000 rpm for 60 s. The photoactive layer films were
vacuumed for 10 min. Next, a thin layer of MoOx film (≈8 nm) was evaporated, followed
by Ag anode deposition (≈100 nm) via thermal evaporation. The active area of the devices
was 21 mm2. The current density–voltage (J-V) characteristics were measured using a
Keithley source measure unit (Tektronix, Beaverton, OR, USA). Solar cell performance
was measured using an Air Mass 1.5 Global (AM 1.5 G) solar simulator (HAL-320, Asahi
Spectra Inc., Torrance, CA, USA) with an irradiation intensity of 100 mW cm−2. The IPCE
spectra for the inverted structure OSCs were measured using an IPCE measuring system
(MAX-303, Asahi Spectra Inc., Torrance, CA, USA) with a CMS-100 monochromator.

Colloidal inks of Si NPs with an average size of approximately 150 nm and relatively
broad size distribution (from 80 to 240 nm) (Figure 1a) were used in this work; these have
polycrystalline structures with almost spherical shapes, according to previously reported
data regarding the laser ablation approach to Si NPs synthesis [35].

Dielectric NPs’ position in the device structure is an important factor that affects the
enhancement mechanisms of OPV devices. The distance between the photoactive layer and
the dielectric resonant particles has a direct impact on the efficiency of the device. At a small
distance, nonradiative electron-hole recombination might occur. Thus, the presence of an
intermediate spacer between the dielectric Si NP and PAL may be necessary. However, it
should be taken into account that the effect of local amplification has a near-field character.
In this regard, two possible interfaces were chosen as possible surfaces for the Si NPs
integration: the surface of ITO or zinc oxide ZnO, as shown in Figure 2. In the first case, an
aqueous or isopropanol dispersion was directly spin-coated onto the bare ITO layer. In the
second case, the spherical Si NPs were deposited on the ZnO layer using a spin-coating
or spray-coating technique. The substrates were heated at 110 ◦C to remove residual
solvent. The surface morphologies of the Si-decorated ZnO electron transport layers were
investigated using optical microscopy.

Spin-coating deposition of Si NPs onto the ZnO layer showed a random but uniform
dispersion of spherical Si NPs. Diluted Si NPs dispersions (C1) covered the surface uni-
formly without any agglomeration; however, highly concentrated solutions (C2) covered
the surface non homogeneously, resulting in small agglomerations with large accumula-
tions of nanoparticles (see Figure S3a,b). The visualization of hundreds of nanoparticles in
a dark-field microscope resembled a “starry sky”, where the colored spots corresponded
to Si nanoparticles. The particle size distribution was in the range of 100–200 nm, which
is in full agreement with the dynamic light scattering method (Figure 1b). Spray-coating
from isopropanol colloidal dispersions led to coffee-ring shaped agglomerates on the ZnO
surface (Figure S3c).
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ZnO layer did not worsen deposition of the blended photoactive layer, which means there 
was no deterioration of the interfacial morphology and wetting properties of ZnO. All 
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Figure 2. (a) PCE, (b) Jcs, (c) Voc, and (d) FF statistical data for photovoltaic performance of individual
devices under 1 sun illumination for reference solar cells and for similar solar cells with different
positions (on ITO or ZnO), diameters (D), and type of doping (nSi or pSi) of Si NPs. From left to
right: reference cells without Si NPs; pSi NPs on ITO; nSi on ZnO; pSi NPs with D = 80–240 nm on
ZnO deposited via spray-coating; pSi NPs with D = 100–140 nm on ZnO deposited via spin-coating
with a concentration of 6 × 10−4 mol L−1; and pSi NPs with D = 140–180 nm on ZnO deposited via
spin-coating with a concentration of 3 × 10−4 mol L−1.

The substrates were used in the fabrication of PTB7-Th:ITIC bulk heterojunction (BHJ)
OSCs. A set of 32 devices was separated into four independent batches of production to
study the influence of Si NPs light localization on photovoltaic parameters, as shown in
Figures 2 and S4. It should be noted that the incorporating Si NPs on the buffer ZnO layer
did not worsen deposition of the blended photoactive layer, which means there was no
deterioration of the interfacial morphology and wetting properties of ZnO. All OSCs (with
and without Si NPs) showed a PCE higher than 6.5%, which corresponds to the standard
state-of-the-art fabrication process for PTB7-Th:ITIC-based OSCs with a similar device
area [36]. In the initial assessment, the champion reference device (Figure 2a) showed a
power conversion efficiency (PCE) of 6.7%, which is one of the average results for PTB7-
Th:ITIC-based OSCs. The devices with Si nanoparticles arrays in contact with ZnO showed
significantly lower photovoltaic performance than the reference devices, with an average
PCE of approximately 6%. In samples with nSiNPs_ZnO, open circuit voltages were 10%
higher than the 800 mV open circuit of the reference devices. In contrast, the short circuit
current density values were approximately 15% lower than that of the reference devices.
This finding indicates that the Si NPs array in contact with the ZnO electron transport
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layer was not compatible with effective charge extraction. In contrast, both the Voc and
Jsc of PTB7-Th:ITIC BHJ OSCs were slightly increased in p-Si_ZnO samples, in which
random Si nanoparticles were sandwiched between electron conductive layers of ZnO and
a photoactive layer. Direct contact of p-type Si NPs with the BHJ active layer seems to have
been favorable for PCE enhancement. A clear increase in PCE from 6.0% (reference cell)
to 7.5% (with pSi NPs on ZnO) was observed; it was based on increases in Jsc (+1%), Voc
(+2%), and FF (+13%). A slight decrease in OSCs performance was observed in p-Si_ZnO
type devices when higher concentrations of Si NPs (6× 10−4 mol L−1) were used, as shown
in Figure 3a–c. A higher concentration of Si NPs led to a slight worsening of morphology
due to Si NPs agglomeration, resulting in decreases in all main parameters: Jcs, Voc, and
FF (Figure 3d–f). Thus, the developed architecture with C1 concentration was close to the
most optimal one. As for the spray-coated devices with p-Si NPs sandwiched between
ZnO and BHJ layers, the general efficiency decreased compared to reference cells.
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Figure 3. (a) Photographs of colloidal solutions of Si NPs in isopropanol with two concentrations:
lower (C1) and higher (C2). (b) Schematic illustration of the architecture of the studied organic solar
cell; an arrow indicates the position of the Si NPs layer. (c–f) PCE, Jcs, Voc, and FF statistical data
for reference solar cells, and for similar solar cells with two different concentrations of Si NPs-C1
(3 × 10−4 mol L−1) and C2 (6 × 10−4 mol L−1).

2.3. Discussion

To better understand the mechanism behind the enhancement of the devices’ PCE,
we carried out numerical modeling of optical properties of a spherical Si NP placed inside
a medium similar to that of the photoactive layer of our organic solar cells ITIC:Ptb7-Th
(Figure 4a). A commercial software (CST Microwave Studio) was used to calculate the
resonant responses of the Si NPs corresponding to those used in our experiment (with
diameters from 80 to 200 nm) as well as absorption spectra for the ITIC:Ptb7-Th layer with
and without Si NPs. The incident light was modeled as a plane wave in the 400–800 nm
spectral range (Figure 4b). Standard open-boundary conditions provided calculations
without reflections or disturbance of the near-field. The results of the modeling revealed
several peaks in scattering spectra corresponding to different Mie modes, namely, electric
and magnetic dipolar and quadrupole modes, which had characteristic near-field structure
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(see detailed description elsewhere [37–39]). More importantly, our numerical analysis
revealed Si NPs’ optimal concentration, size, and space distribution, which led to an
increase in active layer absorbance up to 9.4% around wavelength 600 nm.
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Figure 4. (a) A design for the numeral model. Red section corresponds to a port for the incident plane
wave. (b) Numerically calculated spectra of absorption for the Ptb7-Th absorption layer (AL) without
and with Si NP of different radii, from 40 nm to 100 nm. (c) Experimentally measured absorption
spectrum of Ptb7-Th without Si NPs (red curve) and numerically calculated scattering efficiency of
a single Si NP (with 150 nm diameter ) surrounded by Ptb7-Th (blue curve). Spectral peaks on the
scattering spectrum correspond to different optical modes. (d) Experimentally measured incident
photon-to-current efficiency (ICPE) for devices with and without Si NPs.

Generally, the strongest absorption enhancement was observed in the 550–650 nm
spectral range for all studied Si NPs. This was because Mie modes overlapped the wings of
the ITIC:Ptb7-Th absorption band, as seen in Figure 4c. At maximum absorption, losses
were too strong and suppressed efficient resonant properties, whereas in regions where
losses on scattering and absorption were balanced (i.e., critical coupling conditions), the
absorption efficiency was maximized. Similar critical coupling was widely employed
for efficient optical heating of resonant nanoparticles [27,40]. Our numerical simulations
and general discussion were also supported by experimental measurements of incident
photon-to-current efficiency (IPCE) for the devices with and without Si NPs in Figure 4d.
Indeed, the efficiency of photon-to-current conversion was higher around the 500–700 nm
spectral range, which confirmed the crucial role of Mie resonances for the solar cells’
improvement. Additionally, a more detailed consideration of the device bands’ structure
with p-doped Si NPs (Figure S6) revealed transport properties improvement providing
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an efficient pathway for the generated charge carriers, which is similar to that previously
reported for doped-SiNPs for perovskite solar cells [41].

3. Conclusions

We have proposed using optically resonant silicon nanoparticles fabricated via laser ab-
lation in liquid to boost the power conversion efficiency of organic solar cells. According to
our numerical simulations, spherical Si NPs with diameters close to 150 nm demonstrated
the best improvement in the devices; this is close to our experimental observations that
nanoparticles with 140–180 nm diameters had a higher efficiency growth. The nanoparticles’
position in the device, their concentration, silicon doping, and method of NPs deposition
were tested to check their effects on the final device efficiency. Parameters optimization
resulted in an efficiency improvement from 6% up to 7.5%, which is better than previ-
ously reported improvements with plasmonic nanoparticles for similar organic solar cells
materials (see comparison in Table S1 Supplementary Information). This improvement
was caused by matching the Mie resonances in Si NPs with certain spectral regions of
the absorption band of the organic photoactive material, which correlated with numerical
simulations of nanoparticles’ optical properties. This remarkable effect makes relatively
narrow Mie resonances in Si NPs very promising for the improvement of solar cells based
on organics with relatively narrow absorption bands, which provides some color effect
and is suitable for building-integrated photovoltaic applications. We believe that further
optimization of this technology can be achieved employing electrode designs [42] and new
organic materials [43].
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