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Abstract: A classical molecular dynamics (MD) model of fully unconstrained layered double hy-
droxide (LDH) particles in aqueous NaCl solution was developed to explore the initial stages of the
anion exchange process, a key feature of LDHs for their application in different fields. In particular,
this study focuses on the active corrosion protection mechanism, where LDHs are able to entrap
aggressive species from the solution while releasing fewer corrosive species or even corrosion in-
hibitors. With this purpose in mind, it was explored the release kinetics of the delivery of nitrate
and 2-mercaptobenzothiazole (MBT, a typical corrosion inhibitor) from layered double hydroxide
particles triggered by the presence of aggressive chloride anions in solution. It was shown that the
delamination of the cationic layers occurs during the anion exchange process, which is especially
evident in the case of MBT−.

Keywords: layered double hydroxides; molecular dynamics; anion exchange; delamination; corrosion
inhibitor; self-healing

1. Introduction

Layered double hydroxides (LDHs) are clay-based structures that can be represented
by the formula [MII

1-x MIII
x (OH)2]x+ (Ay)x/y · zH2O, where MII and MIII are divalent and

trivalent metal cations, respectively, and Ay is a y-valence anion [1]. In the case of synthetic
LDHs, cations such as Zn2+ and Mg2+ are most commonly used as MII, while Al3+ is quite
popular as MIII. The metal hydroxide layers have an overall positive charge (x+), which is
balanced by interlayer anions solvated by a certain amount of water molecules that stabilize
the structure via hydrogen bonding. This results in the capacity to intercalate different
types of anionic species (from small inorganic or organic species to large biomolecules, such
as DNA [2]). Some important aspects of the structure are still unclear, which can vary with
different characteristics associated with the cationic layer and interlayer anions, such as the
stacking arrangement of the layers, the position of the anions in the interlayer, the ordering
of the metallic atoms in the cationic layer, and the number of water molecules in the
interlayer [3]. Computational techniques, such as density functional theory (DFT) [4,5] and
classical MD [6,7], have been playing a key role in exploring the inner structure of LDHs.

LDHs find applications in a broad range of fields, such as catalysis [8], adsorption
of hazardous species [9,10], drug delivery [11,12], water purification [13], or corrosion
sensing [14] and protection [1]. In the case of the latter, LDHs were found to efficiently
protect metallic surfaces, either through the formation of conversion films [15] or incor-
porated as functional additives in organic coatings [16], thus decreasing the permeability
of the polymeric coatings to corrosive species, such as chlorides [16]. The corrosion pro-
tection is potentiated by the ability of LDHs to act as reservoirs of functional molecules
(e.g., corrosion inhibitors) in the anionic form, which are released in a controlled manner
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upon exchange with aggressive species, also in the anionic form, such as, for example,
chlorides. The delivery process has been suggested to occur via one of the following [17]:
(i) simple diffusion mechanism [18]; (ii) delamination of the LDH cationic layers [19]; or
(iii) reconstruction of the LDH material [20]. Therefore, since the mechanism of anion
exchange in LDHs is still not clearly understood, it is reported in this work a classical MD
model of fully unconstrained LDH particles in an aqueous chloride solution contributes to
unveiling the initial stages of the process.

Recently, our research group developed an MD framework [6] based on a straightfor-
ward procedure and an open-source simulation package capable of exploring the structure
and dynamics of periodic models of LDHs intercalated with different inorganic anions
(nitrate, chloride and carbonate) for long simulation periods. Despite all atomic positions
being allowed to move freely during the simulations, the integrity of the whole LDH
structure was kept intact, and the structural parameters of the crystalline structure (namely,
the distance between cationic layers and the distance between metallic atoms in the cationic
layer) were found to be in good agreement with experimental X-ray diffraction (XRD)
results. In addition, taking as an example the application of LDHs as nanostructured
reservoirs applied in corrosion protection, the consistency of the MD framework and the
model was supported by the complete immersion of LDH particles, with the nitrate anion
intercalated (LDH-NO3) in a sodium chloride water solution, which was demonstrated
experimentally to act as a nanotrap for aggressive anions when LDH-NO3 nanoadditives
are included in coatings [16]. The structural integrity of the LDH-NO3 structure was also
maintained throughout the MD simulation, even though the LDH particles were free to
move alongside the solution, allowing a natural anion exchange between the LDH and
the solution, as well as dehydration/hydration of the basal space [6]. That work served as
a proof of concept, despite the observed anion exchange being limited. In this work, the
LDH particle model and surrounding conditions were optimized so that more extensive
anion exchange could be observed. The MD framework developed in those earlier works
from our research group [6,7] has already impacted other works in literature dealing with
LDHs, such as the simulation of the removal of hazardous materials [21], the examination
of the degree of undulation of the cationic layers of exfoliated LDHs [22], the optimization
of the steps involved in the MD procedure to evaluate the structure of LDHs as drug
nanocarriers [23], and the partial charge parameterization of the MD force field to evaluate
the hydration states of interlayer contents of different LDH materials [24].

Afterward, the MD framework described above was implemented to unveil the inter-
layer structure of an LDH material intercalated with an efficient corrosion inhibitor [25],
benzo[d]thiazole-2-thiol (a.k.a. 2-mercaptobenzothiazole, MBT) [7]. In that work, it was
examined the position of MBT anions in the interlayer, together with their conformational
and tautomeric equilibrium [26], as well as the degree of solvation within the interlayers [7].

In this work, in order to understand the anion exchange process involving LDHs, MD
simulations were performed using LDH-NO3 and LDH-MBT model particles in an aqueous
sodium chloride solution. A detailed overview of the initial stages of the anion exchange
mechanism was provided while observing the changes in the LDH structure during the
process.

2. Computational Methodology

Classical MD simulations were carried out with the Gromacs 5.1.4 open software [27],
using a leapfrog algorithm [28] to integrate the equations of motion and time steps of 0.5 or
1 fs for the equilibration and production stages, respectively. The non-bonded interactions
considered Lennard-Jones (LJ) and electrostatic interactions calculated up to a cut-off of
1.4 nm. A potential force-switch modifier function forcing the energy to decay smoothly
to zero between 0.8 to 1.4 nm was used for the LJ term, while the long-range electrostatic
interactions were calculated through a combination of Particle Mesh Ewald (PME) [29]
and a Coulomb potential-shift function. The energy contributions to the potential energy
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function from the bonded interactions considered bond stretching, angle bending and
dihedral torsion terms, with all bond lengths constrained by the LINCS algorithm [30].

The temperature was fixed at 298 K, with the velocity-rescaling and Nose-Hoover
thermostats for equilibration and production runs, respectively [31,32]. The pressure
coupling was considered as semi isotropic in XY and Z directions, and the pressure was
fixed at 1 bar using the Berendsen pressure-coupling method [33] for the equilibration steps
and the Parrinello−Rahman barostat [34] for the production runs.

The LJ parameters were taken from our previous work [6], which employed a modified
version of the CLAYFF force field [35] for Zn atoms in the LDH structure and a new set of
atomic point charges, calculated after density functional theory calculations employing
periodic models of the LDH structure. The SPC/E potential [36] was selected for water
because of its favorable ratio between computational tractability and accuracy of calculated
properties when compared with experimental results for density, O-O and O-H pair-
distribution functions and self-diffusion coefficients [37]. The force field parameters for
negatively charged MBT anion were adapted from those in the Automated Topology
Builder (ATB) repository [38], based on the GROMOS force field [39], with atomic partial
charges obtained from separate B3LYP/6-31G* calculations and the CHelpG approach.

The initial structures of LDH-NO3 and LDH-MBT (Figure 1) were taken from previous
studies, in which they were validated using XRD and thermogravimetric analysis (TGA)
results [6,7]. These are composed of 500 units of [Zn(2)Al(OH)6]+ distributed uniformly
forming 5 cationic layers, with the NO3

− and MBT− (400 negative charges) present only
in the interlayers, in order to devote this study only to interlayer anion exchange effects.
Therefore, the outer 100 positive charges of the cationic layers were compensated by
100 chloride anions on the external surface of the LDH. The LDH models were centered in
a dodecahedron box and surrounded by approximately one nanometer of empty space for
solvation. The same number of interlayer species (NO3

− or MBT−) was inserted in terms
of chloride anions for substitution and sodium cations to compensate for the surrounding
chloride charges. Furthermore, the interlayer was filled with water molecules using the
tools provided in the Gromacs package (insert-molecules and solvate). The simulation
boxes contain the same number of water molecules for keeping the concentration constant,
with the number of each species in each simulation being provided in Table 1. The same
minimization and equilibration protocol was followed for Zn(2)Al-NO3 and Zn(2)Al-MBT
LDHs. Energy minimization was carried out in two steps: firstly, the whole LDH was
constrained, which was followed by another minimization step where only the metal atoms
were frozen. After the energy minimization, two NVT simulations were done to equilibrate
the initial temperature, one fixing the positions of the metal atoms (1 ns) followed by another
with all atoms unconstrained (2.5 ns). Then, 10 ns of NpT simulation were performed to
equilibrate the volume, which was followed by 100 ns of NpT simulation to produce the
trajectory with all atomic positions unconstrained used in the subsequent analyses.

Table 1. Composition of the LDH systems studied in this work.

Model Zn(2)Al-NO3 Zn(2)Al-MBT

LDH 500 500
NO3

− 400
MBT− 400
Water * 800/80,252 1800/79,252

Cl- 500 500
Na+ 400 400

* Number of water molecules inside/outside the Zn(2)Al-LDH galleries.

The analysis of the results was performed with a python code developed in-house
(https://github.com/gnovell/LDH_MBT_codes/blob/master/XRD_parallel.py, accessed
on 13 September 2022). The simulation of the XRD pattern for each simulated system
was made using Debye’s formula [40], where the thermal vibration of atoms is considered

https://github.com/gnovell/LDH_MBT_codes/blob/master/XRD_parallel.py
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upon the introduction of a damping exponent factor (Debye-Waller factor), and the an-
gular dependency of geometrical and polarization factors are expressed as suggested by
Iwasa et al. [41], and used in one of our previous studies [7].
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The exchange of the ions from the LDH galleries to the surrounding volume and vice-
versa was followed with another in-house code (https://github.com/gnovell/Counter_
LDH_Cluster/blob/main/CounterAtoms.py, accessed on 1 October 2022) that counts
the ions of the interlayer, such as nitrates. The code uses the DBSCAN algorithm of the
scikit-learn module [42] to locate the “cluster” of Al3+ and Zn2+ hydroxide layers for each
frame of the MD simulation and outturns the volume of the cluster and counts the species
in the LDH galleries, i.e., water and anions. This counting makes use of the Qhull library of
SciPy for determining the convex hull and then locates the positions inside the hull [43,44].

3. Results and Discussion

In previous works, Zn(2)Al LDH structures with the nitrate and MBT− anions interca-
lated were successfully simulated and found in agreement with experimental XRD and TGA
results while unveiling conformational, solvation and other inner structure details [6,7]. In
this work, MD simulations were used to understand the anion exchange processes of both
LDH materials at an atomistic level, using Zn(2)Al-NO3 and Zn(2)Al-MBT models inserted
into water boxes containing a realistic number of Na+/Cl− species. In both cases, a small
model of an LDH particle was immersed into a periodic simulation box of salted water
(please refer to Table 1 for details about the number of species), corresponding to a NaCl
concentration of approximately 322 mM. This concentration is between 5 mM and 500 mM,
which are concentrations commonly used in experimental tests to simulate a corrosive
environment [16].

Selected views along the MD simulation performed for LDH-NO3 are shown in
Figure 2. First, an NVT equilibration was performed. After this NVT equilibration, the
time count was initiated, and 10 ns of NpT equilibration were performed, followed by
100 ns of NpT production. Views at the end of the NpT equilibration (Figure 2b) and at the
middle (Figure 2c) and end (Figure 2d) of the NpT production stage show the progressive
exchange of nitrate by chloride anions. During the initial NVT equilibration, it was already
possible to see nitrate anions at the edges of the LDH model particle exiting the surrounding

https://github.com/gnovell/Counter_LDH_Cluster/blob/main/CounterAtoms.py
https://github.com/gnovell/Counter_LDH_Cluster/blob/main/CounterAtoms.py
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solution and a couple of chloride anions at the edge of the LDH particles (Figure 2a). After
the start of the NpT equilibration (t = 0 in Figure 3), the chlorides entered the interlayer and
diffused towards the inner parts of the LDH galleries (Figure 2b), which was followed by
visible undulations of the LDH layers accompanying the process of the ionic interchange
(Figure 2c) until the end of the simulation Figure 2d). Although the average volume only
increased slightly between the beginning and the end of the simulation, the undulation
resulted in an increase of volume variation from step to step, along the simulation depicted
in the left panel of Figure 3. Accounts of undulation effects for LDHs were previously
reported in the literature [6,45,46]. The slight increase in volume and the high volume
variation from step to step were accompanied by a small increase in the number of water
molecules counted inside the galleries, as well as a high variation of water molecules from
step to step. At the end of the simulation period considered in this work, the number
of nitrate anions counted within the LDH interlayers decreased by ~20%, accompanied
by a similar increase in the number of chloride anions inside the LDH (Figure 3, bottom),
which had to be expected for counterbalancing the positive charge of the metal hydroxide
layers (a.k.a. cationic layers). Besides the undulation of the cationic layers, it is also possible
to notice some opening of the cationic layers in the extremities of the LDH-NO3 particles
during the release of nitrate in exchange by chloride (Figure 2d). This can be caused by
the hydration of the outer parts of the particles during the process, as evidenced by the
increase of the water molecules in the interlayer (Figure 3), which might promote a residual
but detectable dissolution of the cationic layers, as evidenced by high-performance liquid
chromatography measurements [4] and previous MD studies [6].

The MD simulations of Zn(2)Al-MBT performed in this work were able to elucidate
what happened at the atomic level when the MBT− corrosion inhibitor was released
from the interlayers, triggered by the presence of aggressive chloride anions, which were
subsequently intercalated into the LDH model particle. This phenomenon constitutes
the first part of the active corrosion protection mechanism involving LDHs [18]. The
anion exchange process is similar to what was described above for LDH-NO3. However,
a more pronounced delamination process can be observed in Figure 4, where the interlayer
heights significantly increase with simulation time, accompanied by the rotation of the
LDH cationic layers while maintaining their structural integrity. The analysis of the volume
described by all LDH layers along the simulations within the NpT ensemble allows us to
quantify the delamination process, resulting in an increase in volume during the anion
exchange process, as can be seen in Figure 5 (top). This volume increase for LDH-MBT
during anion exchange is also accompanied by an increase of water molecules entering the
interlayer. More specifically, ~8200 water molecules enter the interlayer during the anion
exchange process for LDH-MBT, whereas for LDH-NO3, only ~800 enter the interlayer.
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anionic form (MBT−), green for chloride anions, and blue for water molecules (bottom).

The LDH-MBT delamination requires the breakage of the hydrogen bonding be-
tween the cationic layers and the interlayer contents. To achieve the exfoliation of the
LDH cationic layers in the form of nanosheets, traditional approaches usually involve the
pre-intercalation of larger species to induce the swelling between cationic layers [47,48].
Therefore, the fact that LDH-MBT− shows a larger degree of delamination during the
anion exchange process than nitrate is in agreement with early experimental methodologies
employed to exfoliate LDHs. Moreover, in a previous periodic model density functional
theory study from our research group, it was also shown that larger interlayer distances
could be associated with more favourable delamination energies [5].

The presence of delamination during anion exchange also finds support from a previ-
ous study, in which anion exchange processes in LDHs were investigated by in situ X-ray
diffraction [49]. In that study, it was demonstrated that the exchange reactions lead to
a decrease in the average crystallite size of LDHs, which, according to the authors, occurs
due to the fast anion exchange in the initial stage, as was also verified in this MD study
(Figure 5). The crystallite size was measured according to the full with at half maximum of
the (006) diffraction peak, which is associated with the size of the crystallites perpendicular
to the cationic layers.

In order to analyse the anion exchange simulation beyond 110 ns of NpT for LDH-
MBT, the MD simulation was prolonged an additional 50 ns for this system with the
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results presented in the SI (Figures S3–S5). It was verified that the number of MBT−

anions, chlorides and water molecules in the interlayer appear to be stabilizing after
an initial fast release, with further anion exchange progressing more slowly from thereon.
Indeed, extensive anion exchange of LDH-MBT materials usually takes around 30 min
(although experiments are run for at least a few hours or even a couple of days to ensure
complete substitution) [50]. On the one hand, only the initial stage of the substitution
within very short MD timeframes (160 ns) was analysed, but, on the other hand, this
timeframe is proportional to the nanosized model of the LDH particle considered in this
work. Therefore, in future works, other factors can be considered, such as temperature and
a larger simulation box, to reduce the effect of changes in the concentration of the anions
during the anion exchange process while increasing the number of surrounding anions
available for substitution. Moreover, this initial atomistic MD study can guide the future
development of a coarse-grain model, which might be more computational efficient for
examining larger systems and longer time frames [51].

When comparing the number of chloride anions entering the interlayer in Figure 5
(bottom) for MBT with Figure 3 (bottom) for nitrate, it can be observed that the anion ex-
change process for a larger molecule such as MBT−, with a more pronounced delamination
mechanism for the same period of time, seems to be faster than for nitrate (at least, for the
nanoscale in terms of size and time of the models used in this study). This observation is
supported by an in situ kinetic study of the anion exchange in LDHs using synchrotron
XRD, where it was verified that a larger initial interlayer gallery in comparison with the
entering anion corresponds to a faster substitution [52], with other studies also supporting
this observation [53]. Moreover, radial distribution function (RDF) analysis can be observed
in SI (Tables S1 and S2, and Figure S6).

4. Conclusions

The MD computational model of the initial stages of the anion exchange process
in LDHs allowed us to identify delamination as a key factor in the mechanism. MD
simulations were employed in this work to understand the anion exchange component
of the active corrosion protection ability of LDHs, comparing the release of nitrate with
a typical corrosion inhibitor, 2-mercaptobenthiazole, while aggressive chloride anions were
retrieved from solution to be intercalated in the LDHs. It was found that the release of MBT−

was accompanied by a more pronounced delamination effect, which seems to be dependent
on the size of the initial anions present in the LDH galleries. The molecular dynamics
simulations provided atomistic-level insights into the anion exchange process, which are
very difficult to obtain from experimental techniques alone. Indeed, it was possible to
model by MD simulations previous observations regarding undulation effects [6,45,46],
stability of the cationic layers [4,6], reduction of crystallite size during anion exchange [49],
the promotion of exfoliation by delamination in LDHs [5,47,48], and the relation between
the initial interlayer gallery and the velocity of anion exchange [52,53].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12224039/s1, Figure S1: Large scale version of the snapshots
of the different stages of the MD simulation for LDH-NO3, Figure S2: Large scale version of the
snapshots of the different stages of the MD simulation for LDH-MBT, Figure S3: Volume (in nm3)
described by the position of the metallic atoms (Al and Zn) corresponding to the cationic layers of
the LDH-MBT model particle for the extra 50 ns of MD simulation, Figure S4: Number of water
molecules inside the LDH-MBT interlayers for the extra 50 ns of MD simulation, Figure S5: Number
of chloride and MBT anions inside the LDH-MBT interlayers for the extra 50 ns of MD simulation,
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